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Abstract

One of the goals of verification and validation (V&V)
activities for online adaptive control systems is providing
assurance that they are able to detect novel system behav-
iors and provide adequate (safe) control actions. Novel
(or abnormal) system behaviors cannot be enumerated or
fully and explicitly described in requirements documenta-
tion. Therefore, they have to be observed and recognized
during the operation. Novelty detection methods, there-
fore, provide an adequate approach for the V&V purposes.

We propose a novelty detection method based on Sup-
port Vector Data Description (SVDD) as a candidate ap-
proach for validating adaptive control systems. As a one-
class classifier, the support vector data description is able
to form a decision boundary around the learned data do-
main with very little or no knowledge of data points outside
the boundary (outliers). We apply the SVDD techniques for
novelty detection as part of the validation on an Intelligent
Flight Control System (IFCS). Experimental results show
that the SVDD can be adopted as an effective tool for find-
ing indications of the safe region for the learned domain,
whereby we are able to separate faulty behavior from nor-
mal events.

1 Introduction

Adaptive systems can be applied to domains where the
requirement for autonomy is significant or environmental
conditions are unpredictable. The aim of an adaptive sys-
tem is to perform appropriately under both previously iden-
tified and unidentified circumstances through adaptation.
If the adaptation occurs after the deployment of the sys-
tem, the system is called an online adaptive system. In
recent years, these systems have attracted increasing inter-
est in application domains such as flight control, robotics
and business critical applications.

Online adaptive systems are considered promising be-
cause of their plasticity. However, plasticity poses a sig-
nificant problem in terms of Verification and Validation
(V&V). These systems react distinctively with respect to
specific data patterns and novel data might cause unstable

Figure 1: A validation framework for online adaptive systems.

states and potential failures. From safety and reliability
assurance points of view, we propose an online validation
framework consisting of:

1. Pre-filter, which should be able to block the unreliable
or unreasonable training data from entering the online
adaptive component and provide backward and for-
ward recovery capabilities,

2. Run-time monitor, dealing with the real-time stability
and convergence analysis of the learning device and
indicating the current confidence measure, and

3. Post-filter, which should disallow the propagation of
unsafe control adjustments into the controller, based
on its knowledge of system safety requirements.

Figure 1 illustrates such an assurance architecture for on-
line adaptive systems.

Our work on Step 2 in this validation framework has
been focusing on the run-time performance checks using
the Lyapunov theory of stability. Although not sufficient,
Step 2 is a necessary part of this research ensuring learn-
ing (adaptation) stability and peak performance. In recent
work [1], we proved that when an online neural network
trains on a fixed feature manifold, the evolving state of the
system due to the network’s position adjustment is self-
stabilizing in a globally asymptotically stable manner. This



stability measure, together with the properly applied statis-
tical analysis performed by the pre-adaptation filter, should
give us a reliable indication of the validity and safety of the
resulting system outputs (control adjustments).

Steps 1 and 3 in our validation framework seek to de-
fine a novelty detection technique suitable for alerting to
anomalous system adaptation and false prediction (control
adjustment). In this paper, we propose a novel approach
to building Pre and Post adaptation filters (see Figure 1)
using support vector data description for detecting outliers
based on the decision boundary obtained from learning on
the target data only.

In general, novelty detection techniques require before-
hand knowledge of both nominal and off-nominal data do-
mains. However, for a control system such as the Intelli-
gent Flight Control System (IFCS), some of the fault sit-
uations (failure modes) are very difficult to anticipate and
obtain representative data beforehand. Under such circum-
stances, the classification performance of regular models is
relatively poor due to the restriction of their generalization
capability and the low quality of the off-nominal data. As a
one-class classification tool, the SVDD method is derived
from the Support Vector learning theory by Tax et al [2, 3].
Different from general Support Vector classifiers, which
decide the maximum margin hyperplane that separates two
classes, the SVDD method tries to find the optimal decision
boundary for one given data set. Thus, it provides the best
representation of the target-class and offers inferences that
can be used to detect the outliers from the nominal feature
space, practically defined as the ”safe region”.

In this paper, we explore the SVDD method on a se-
ries of nominal flight data obtained from simulations of an
intelligent flight control system. We conducted tests us-
ing five different known failure flight modes. Section 2
presents recent research work. In Section 3, we give a brief
introduction on the support vector data description tech-
nique. The description of the flight control system simu-
lation and the results obtained from the experiments with
simulated flight data is provided in Section 4. We conclude
the paper with a description of future work in Section 5.

2 Related Work

2.1 V & V of Online Adaptive Systems

Several approaches have been proposed for the verifica-
tion and validation of online adaptive systems. In principle,
analytical methods can provide assurance of system per-
formance with respect to the predefined properties. These
are static methods that provide reasoning about the sys-
tem’s functional behavior under certain assumptions. Ap-
proximation theory has been applied to analyze the ap-
proximation capabilities of adaptive paradigms. In the re-

lated literature, structures such as Multi-Layer Perceptron
(MLP) and Radial Basis Function (RBF) networks have
been proven to be universal approximators. In a recent re-
search effort, Mili et.al. [4] proposed an abstract compu-
tational model for online adaptive systems. Their model
attempts to capture the functional behavior of an online
adaptive system by abstracting away random factors in the
function of the system hence focusing exclusively on de-
tails that are relevant to the learning algorithm and the
learning data. While this is a generic model that establishes
functional properties of adaptive systems using refinement-
based reasoning, it is difficult to apply it for real-time vali-
dation of complex systems.

Empirical methods are widely used in validating adap-
tive systems. Research work has focused on system eval-
uation through testing. Popular methods such as cross-
validation during training, bias-variance trade-off, etc., are
favorite approaches for balancing the memorization and
generalization abilities. However, checking all possible in-
puts is impossible. In an attempt of validating the general-
ization performance of a RBF neural network by Leonard
et. al. [5] the adaptive component is modified to provide
support for testing based validation of results. Experimen-
tal success in research suggests its significant potential for
future use.

2.2 Novelty Detection

In the past decades, several statistical methods for nov-
elty detection have been developed. Popular parametric
models are Parzen window, k-nearest model and Gaussian
mixture model [6, 7]. These are well-known statistical ap-
proaches. Briefly, these methods utilize a certain number
of parameters and kernels to build a model for the underly-
ing data statistics. Novelty detection is achieved by evalu-
ating the data based on the kernels and their combinations.
Due to the requirement for extensive knowledge of a data
domain when building a parametric model, these models
are not as applicable and flexible as non-parametric mod-
els in real-world data domains.

Recently, learning paradigms using data mining tech-
niques such as Support Vector Machines (SVM) have been
investigated in the context of novelty detection. SVM is
a classification algorithm that generates a maximum mar-
gin hyperplane, which provides “the greatest separation be-
tween the classes” [2]. Given a test instance, its distance
from the hyperplane can be calculated and, following some
threshold, we are able to determine whether the instance is
novel. Sample applications in detecting novelties can be
found in Scholkopf’s paper [8].

Other machine learners can also provide models for
novelty detection. Conventional neural networks such as
MLP, RBF and Self Organizing Maps (SOM) are popular



mainly because they require no a priori knowledge about
the domain [9]. However, such models usually require
massive computational effort, thus making online monitor-
ing infeasible. Therefore, we are more inclined to adopt
computationally efficient learning techniques.

3 Support Vector Data Description

Support vector data description has been developed by
Tax et. al. to solve the one-class classification problem
based on Vapnik’s Support Vector Machine learning theory
[2]. The method of support vector data description origi-
nates from the idea of finding a sphere with the minimal
volume to contain all data [10]. Given a data set S consist-
ing of N examples xi, i = 1, ..N , the SVDD’s task is to
minimize an error function containing the volume of this
sphere. With the constraint that all data points must be
within the sphere, defined by its radius R and its center a,
the objective function can be translated into the following
form by applying Lagrangian multipliers:

L(R, a, αi) = R2 −
∑

i

αi{R
2 − (x2 − 2axi + a2)},

where αi > 0 is the Lagrange multiplier. L is to be mini-
mized with respect to R and a and maximized with respect
to αi. By solving the partial derivatives of L, we also have:

∑

i

αi = 1; a =
∑

i

αixi,

which gives the Lagrangian with respect to αi:

L =
∑

i

αi(xi · xi)−
∑

i,j

αiαj(xi · xj),

where αi ≥ 0 and
∑

i αi = 1. By replacing some kernel
functions K(x, y) with the product of (x, y) in the above
equations we have:

L = 1−
∑

i

α2

i −
∑

i6=j

αiαjK(xi, xj).

According to the solution that maximizes L, a large por-
tion of αi’s become zero. Some αi’s are greater than zero
and their corresponding objects are those called support
objects. Support objects lie on the boundary that forms
a sphere that contains the data. Hence, object z is accepted
by the description (within the boundary of the sphere)
when:

‖z − a‖2 = (z −
∑

i

αixi)(z −
∑

i

αixi) ≤ R2.

Similarly, by applying the kernel function, the formula
for checking an object z now becomes:

1− 2
∑

i

αiK(z, xi) +
∑

i,j

αiαjK(xi, xj) ≤ R2.

Figure 2: The Intelligent Flight Control System.

By applying kernel functions, we reach a more flexible
and stable description of the boundary. However, since
the SVDD is used as a one-class classifier, in practice,
there are no actual outliers well defined other than those
we randomly draw from the rest of the space outside the
target class. Hence, by applying the SVDD, we only ob-
tain a sound representation of the target class. To detect
outliers, more precise criteria should be inferred from em-
pirical testing or pre-defined thresholds.

4 Experiments

We applied SVDD method for novelty detection of a
flight control system in a simulation environment and con-
ducted a series of experiments based on data segments ob-
tained from it. A data description inferred in this way
is used for identifying outliers in datasets collected from
five different failure mode simulation runs. The Intelligent
Flight Control System (IFCS) was developed by the Na-
tional Aeronautics and Space Administration (NASA) as
“a revolutionary flight control system that can efficiently
identify aircraft stability and control characteristics using
neural networks and use this information to optimize air-
craft performance in both normal and simulated failure
conditions [11].” Figure 2 shows the architecture of the
IFCS employing the Dynamic Cell Structure neural net-
work, referred to as the Online Neural Network. Briefly,
the online neural network learns from the discrepancies be-
tween the baseline neural network and the real-time param-
eter identification (PID) according to the sensor data se-
quences generated by the PID. It also produces parameters
to be used by the controller to optimize the flight response
of the aircraft under a variety of maneuvering conditions.
Furthermore, when abrupt changes to the flight control sys-
tem occur, the online neural network helps to simulate fail-
ure or damage to the aircraft control surfaces. In either
scenario, the online learning of the network should pro-
vide reliable performance for further mapping of those key
control parameters, which motivates us to seek a practical
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Figure 3: 2D Plot of SVDD of IFCS simulation data testing on
five failure modes and the nominal flight condition simulations.

methodology to detect such abrupt changes for validation
purposes.

The experiment is conducted by training and testing the
SVDD with data from the flight simulator. For the purpose
of this experiment, we choose to fly the aircraft in the open
loop mode, with and without induced actuator failures. The
simulator also allows the user to set the time of failure of
the actuator as well as the option to choose the actuator
to fail. SVDD training is done with data obtained from
the simulator, under nominal conditions. Here, nominal
conditions imply that there is no actuator failure induced
on the aircraft, during the simulation. Once the SVM is
trained and the decision boundary is formed, the test phase
is carried out with data from the simulator, under different
actuator failure conditions. Each data point can be con-
sidered to have multiple dimensions, representing different
flight parameters including the angular rates, control sur-
face deflections and Euler angles, among others. For the
purposes of initial experiments, we choose the pairing of
the longitudinal parameters q, α and θ with respect to the
average of the stabilator deflections and monitor the deci-
sion boundaries by applying the Gaussian kernel function
for the SVDD method.

By applying the support vector data description method,
the nominal domain is well learned and a decision bound-
ary is formed. We then collect data sequences under five
different actuator failure modes listed below. A failure
mode is selected at the beginning of each simulation run.

Mode 1 Actuator Failure - stuck left stabilator at current
position (0 degree)

Mode 2 Actuator Failure - stuck left stabilator at pre-
defined deflection (+3 degree)

Mode 3 Actuator Failure - stuck left stabilator at pre-
defined deflection (-3 degree)
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Figure 4: Data sequences of IFCS simulation under five failure
modes and the regular mode.

Mode 4 Actuator Failure - stuck right aileron at pre-
defined deflection (+3 degree)

Mode 5 Actuator Failure - stuck right aileron at pre-
defined deflection (-3 degree).

For each mode, we select the following three pairs of
highly correlated parameters to test our approach.

Pair 1 (q the pitch rate, δs the average of the Left Stabila-
tor and the Right Stabilator)

Pair 2 (α the angle of attack, δs the average of the Left
Stabilator and the Right Stabilator )

Pair 3 (θ the pitch attitude, δs the average of the Left Sta-
bilator and the Right Stabilator )

Figure 3 shows the test results using parameter pair
3 for each mode. The crosses represent the testing data
points while the circles represent the learned data points.
The closed line surrounding the data points is the deci-
sion boundary obtained through the SVDD learning on the
nominal flight data. The time history of the parameter pair
under test, in each of the five test modes as well as the
nominal case is plotted in Figure 4. Figure 5 shows the
detected outliers for each failure mode as well as the nom-
inal case corresponding to the time history. For those data
points whose value equals one, they are considered outliers
detected by the SVDD method, which can be referred to as
the ones falling outside the boundary in Figure 3. Simi-
larly, the data points with value zero in Figure 5 fall within
the boundaries described in Figure 3. Comparing Figure
4 and Figure 5, we are able to see that for each spike that
reflects abrupt changes in the data sequence, our method is
sensitive to such changes and has the capability of detect-
ing suspicious novelties. Please note that x axis represents
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Figure 5: Detected novelties (Value 1) of IFCS simulation under
five failure modes and the nominal mode.

actual time (20 frames per second) in all graphs of Figures
4 and 5.

From Figure 3 we can see that although some of the data
points still fall inside the decision boundary, a large portion
of data points that fall outside are considered as outliers.
Our SVDD detectors show very effective outlier (failure
mode) detection capabilities. Similar results are obtained
from experiments on the other two pairs of data.

5 Conclusion

This paper proposes a novel approach to validating on-
line adaptive systems using the support vector data descrip-
tion method. We offer a validation framework comprising
of two filters that check the validity of inputs and classi-
fications. Empirical results are obtained from running the
SVDD algorithm on a sequence of simulation data for an
actual flight control system. We observe that this method
provides us a very good technique for separating nominal
flight conditions from those representing possible failures.
Its computational efficiency gives us the confidence to con-
tinue pursuing SVDD for online monitoring of the adaptive
flight control system.

In the future, we expect to be able to test our method in
an online (real-time) fashion. Meanwhile, statistical meth-
ods for determining the cross correlations among different
dimensions will be investigated. We believe with the assis-
tance of such methods, more accurate and sensitive detec-
tions can be made. However, more experiments need to be
conducted to verify the domain specific performance of the
novelty detectors implemented using the SVDD algorithm.
Thus, we will focus on finding appropriate thresholds in
further experiments as more data becomes available.
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