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Abstract 

A repeated empirical result is that machine 
learners can learn adequate models using a small 
subset of the available features. Learning from 
such subsets can be faster, and produces simpler 
models. In this paper we present a new method 
for feature subset selection using the TAR2 
treatment learner. TAR2 assumes small 
backbones; i.e. a small number of features will 
suffice for selecting preferred classes. TAR2 can 
be used as a pre-processor to other learners for 
identifying useful feature subsets. When 
compared to other methods described in a recent 
survey by Hall and Holmes (in press), TAR2 
found the smallest subsets, with minimal or no 
change in classification accuracy. 

1. Introduction 

If the reader is a busy person, then he/she might not need, 
or be able to use, complex models. Rather, such a busy 
person might just want to know the least he/she needs to 
do to achieve the most benefits. Machine learning for 
busy people might not strive for (e.g.) elaborate models or 
(e.g.) increasing the expressive power of the language of 
the learnt model. Rather, a better goal might be to find the  
smallest model with the most impact.  

Smaller models are easier and faster to read than larger 
models. One way to find these smaller models is to reduce 
the number of features in the instance set. The goal of 
feature subset selection (FSS) is to find those features that 
can be ignored without degrading the results of learning.  

FSS helps human readers to understand a learnt model. It 
also can drastically reduce the search space for a learner. 
Numerous studies have shown that a learner can ignore 
many features with little or no loss in classification 
accuracy (e.g. Holte 1993; Kohavi & John, 1997; Hall and 
Holmes, in press).  For example, using the “Wrapper”  
FSS method described in section 2, an average of 82% of 
the features seen in 10 domains could be ignored. Further, 

ignoring those features only changed classifier accuracy 
by an average of  5.45% (see Table 1). 

 

Table1: Some FSS results (from Kohavi & John, 1997)  

  Aver 

 Number of features -age 
Before 6 36 10 6 6 13 15 8 25 180 30.5 

 after 2 12 2 1 1 2 2 1 3 11 3.7 
%change 67 67 80 83 83 84 87 87 88 94 82 

% 
accuracy 

change 
7 0 0 25 6 6 5 1 0.5 4 5.45 

 

How can ignoring features improve learning? This article 
offers a novel explanation based on the idea of small 
backbones (explained later).  Hall & Holmes (in press) 
offer another, more standard explanation. They comment 
that including irrelevant, redundant and noisy features can 
slow down learning and lead to theories with poor 
predictive performance. Alternative explanations are 
specific to particular learning schemes. For examples, 
Kohavi & John (1997) review studies with Naïve Bayes 
classifiers. The accuracy of such classifiers decreases very 
slowly as irrelevant features are added to an instance set. 
However, the accuracy of the same classifiers can degrade 
sharply as the number of correlated features increase. 
Also, Witten & Frank (1999) note that effective 
generalization requires numerous examples. Decision tree 
learners recursively split instances by ranking features 
according to how much they decreases the diversity of the 
classes in the split sets. As learning progresses, fewer and 
fewer instances are available to learn the next sub-tree. If 
the instances contain too many features of similar rank, 
then many splits are quickly generated. Hence, instances 
become sparser in the sub-trees, and effective 
generalization becomes harder. 

Standard FSS methods include information gain ranking, 
principle component analysis, wrappers, just to name a 
few.  Here, we study a new FSS method based on the 
TAR2 treatment learner (Menzies et.al., 2003, in press). 
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Standard learners seek accurate descriptions of concepts 
whereas treatment learning seek some minimal set of 
differences between concepts. These differences are 
returned as a treatment; i.e. a conjunction of features 
recommending what actions to take.  TAR2 inputs 
instances, applies a preference ordering on the classes, 
and outputs a treatment.  
A curious feature of TAR2 is that, in the usual case, very 
small treatments are often adequate for selecting preferred 
classes. One possible explanation of this curious 
observation is the small backbone idea described later in 
this article.  Whatever the reason, TAR2’s treatments 
usually contain only a small subset of the available 
features; i.e. TAR2 might be useful for FSS. To test this 
speculation, we devised and adapted TAR2 for FSS. The 
adapted system was called TAR2less. 
 
This paper describes an experimental evaluation of 
TAR2less. The results generated by TAR2less are 
compared to results seen in a recent state-of-the-art survey 
of FSS methods (Hall and Holmes, in press).  For 
naturally occurring datasets, TAR2less out-performs the 
standard FSS methods.    

2. Standard Methods for FSS  

This section describes the standard methods for FSS used 
in the Hall and Holmes study. Subsequently, we describe 
TAR2, TAR2less, and compare the performance of 
TAR2less with these standard methods. 
 
FSS techniques can be broadly classified into wrappers 
and filters   (Kohavi & John, 1997). Wrappers select 
features using some target learning algorithm to evaluate 
the selected features. The filter approach selects features 
independent of the target learning algorithm. The filter 
approach is much faster when compared to the wrapper 
methods.   

IG=  Information Gain Attribute Ranking: This is a 
simple and fast method for feature ranking (Dumais, Platt, 
Heckerman & Sahami, 1998; Yang & Pedersen 1997). 
This method measures the entropy of the class before and 
after observing a feature. The difference in the entropy 
gives a measure of the information gained because of that 
attribute (Quinlan, 1993). A final comparison of this 
measure is used in feature selection. 

RLF= Relief: Relief is an instance based learning scheme 
(Kira & Rendell, 1992; Kononenko, 1994). It works by 
randomly sampling one instance within the data. It then 
locates the nearest neighbors for that instance from not 
only the same class but the opposite class as well. The 
values of the nearest neighbor features are then compared 
to that of the sampled instance and the feature scores are 
maintained and updated based on this. This process is 
specified for some user-specified M number of instances.  

Relief can handle noisy data and other data anomalies by 
averaging the values for K nearest neighbors of the same 
and opposite class for each instance (Kononenko, 1994). 
For data sets with multiple classes, the nearest neighbors 
for each class that is different from the current sampled 
instance are selected and the contributions are determined 
by using the class probabilities of the class in the dataset.   
 
PC= principle components: Principal component 
analysis is a statistical technique that reduces the 
dimensionality of the data by transforming the original 
feature space and extracting its eigenvectors (Hall & 
Holmes, 2002). The eigenvectors define a linear 
transformation from the original feature space to a new 
uncorrelated space. Eigenvectors can be ranked according 
to the amount of variation in the original data that they 
account for. Based on this the features are selected. 
 
CFS= Correlation-based Feature Selection: CFS 
(Correlation-based Feature Selection) uses subsets of 
features (Hall, 1998; Hall, 2000). This technique relies on 
a heuristic merit calculation that assigns high scores to 
subsets with features that are highly correlated with the 
class and poorly correlated with each other. Merit can find 
the redundant features since they will be highly correlated 
with the other features.  It can also identify ignorable 
features since they will be poor predictors of any class. To 
do this CFS informs a heuristic search for key features via 
a correlation matrix. 

CBS= Consistency-based Subset Evaluation: CBS is 
really a set of methods that use class consistency as an 
evaluation metric. The specific CBS studied by Hall and 
Holmes method finds the subset of features whose values 
divide the data into subsets with high class consistency 
(Almuallim & Dietterich, 1991; Liu & Setiono, 1996).  

WRP= Wrapper Subset Evaluation: Kohavi & John 
(1997) wrapped their target learner in a pre-processor that 
used a heuristic search to grow subsets of the available 
features from size 1. At each step in the growth, the target 
learner was called to find the accuracy of the model 
learned from the current subset. Subset growth was 
stopped when the addition of new features did not 
improve the accuracy.  In their experiments, 83% (on 
average) of the features in a domain could be ignored with 
only a minimal loss of accuracy.  The advantage of the 
wrapper approach is that it is simple to implement. The 
disadvantage of the wrapper method is that each step in 
the heuristic search requires another call to the target 
learner; i.e. it may be very slow. 

Hall and Holmes conclude their study by saying that there 
is no single approach that works for all situations. 

TAR2less=  Our method: We have explored FSS using 
the TAR2 weighted class learner. TAR2less ran TAR2 
many times, each time giving each successive class the 
highest weight. Each single run of TAR2 found features 
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that were most selected for one class. Over all the runs, 
TAR2less found the union of all the features that most 
selected for every class.. 

3. TAR2 

The FSS method discussed here is based on the TAR2 
treatment learner. This section is our standard description 
of  TAR2 (Menzies & Hu, 2002).   
 
TAR2 outputs a  rule of the form: 

If Feature1 = range1 ∧ Feature2 = range2 ∧.. 
 then good= more ∧ bad=less 

 
where good and bad are sets of classes that the learner 
likes and dislikes respectively; and more and less are the 
frequency of these classes, compared against the current 
situation, which we call the baseline. 
 
Formally, TAR2 is a weighted-class minimal contrast 
association rule learner that utilizes confidence-based 
pruning.  These terms are explained below. 
 
Association rule learning: Classifiers like C4.5 
(Quinlan, 1993) and CART (Breiman, Friedman,  Olshen, & 
Stone, 1998) learn rules with a single feature pair on the 
right-hand side; e.g. class= Z. Association rule learners 
like APRIORI (Agrawal & Srikant, 1994) and TAR2 
generate rules containing multiple feature pairs on both 
the left-hand side and the right-hand-side of the rules.  
 
General association rule learners like APRIORI input a 
set of D transactions of items I and return associations 
between items of the form LHS � RHS where LHS⊆ I 
and RHS ⊆  I and LHS ∩ RHS = ∅. Specialized 
association rule learners like CBA (Liu, Hsu & Ma, 1998) 
and TAR2 imposes restrictions on the right-hand-side. 
Specifically, TAR2 restricts the right-hand-side features 
to just those class features containing criteria assessment. 
These right-hand-sides show a prediction of the change in 
the class distribution if the constraint in the left-hand-side 
were applied.  
 
Weighted learning: Standard classifier algorithms such 
as C4.5 and CART have no concept of class weighting. 
That is, these systems have no notion of a good or bad 
class. Such learners therefore can’t filter their learnt 
theories to emphasize the location the good classes or bad 
classes. Association rule learners such MINWAL (Cai, Fu, 
Cheng &  Kwong , 1998), TARZAN (Menzies and Sinsel, 
2000)  and TAR2 explore weighted learning in which 
some classes are given a higher priority weighting than 
others. Such weights can focus the learning onto issues 
that are of particular interest to some audiences. 
 
Contrast sets: Instead of finding rules that describe the 
current situation, association rule learners like STUCCO 
(Bay & Pazzani, 1999) finds rules that differ meaningfully 

in their distribution across groups. TAR2’s variant on the 
STUCCO strategy is to combine contrast sets with 
weighted classes with minimality. That is, TAR2 
treatments can be viewed as the smallest possible contrast 
sets that distinguish situations with numerous highly-
weighted classes from situations that contain more lowly-
weighted classes. 
 
Confidence-based pruning: In the terminology of 
APRIORI, the  association X � Y  has support  s if s% of 
the D transactions contains X ∧ Y; i.e. s = |X ∧ Y| / |D|  
|(where |X ∧ Y| denotes the number of examples 
containing both X and Y). The confidence c of an 
association rule is the percent of transactions containing X 
which also contain Y; i.e. c= |X ∧ Y| / |X|  
 
Many association rule learners use support-based pruning 
i.e. when searching for rules with high confidence, sets of 
items Ii,... Ik are only be examined only if all its subsets 
are above some minimum support value.   Support-based 
pruning is impossible in weighted association rule 
learning since  with weighted items, it is not always true 
that subsets of interesting items (i.e. where the weights 
are high) are also interesting (Cai,  Fu,  Cheng, Kwong, 
1998). Another reason to reject support-based pruning is 
that it can force the learner to only miss features that 
apply to a small, but interesting subset of the examples 
(Wang, He, Cheung, Chin, 2001) 
 
Without support-based pruning, association rule learners 
rely on confidence-based pruning to reject all rules that 
fall below a minimal threshold of adequate confidence. 
TAR2 uses confidence based pruning. 

Confidence-based pruning: TAR2 seeks the features 
that “nudge” a system away from undesired classes and 
towards desired classes.  TAR2's score for each range is 
the   confidence1 measure. This value is high if a range 
occurs frequently in desired situation and infrequently in 
undesired situations. That is, if we were to impose this 
range as a constraint, then it would tend to “nudge” the 
system into better behavior. 

To find confidence1, we assume that we can access some 
numeric value assigned to each class. The class with the 
highest value is the best class.  The lesser classes are the 
set of all classes, less the best class.  To compute 
confidence1, TAR2 sums the difference in the frequencies 
of feature/range pairs seen in the best and all the lesser 
classes (weighted by the difference in the value between 
the lesser and the best class). This weighed sum is 
normalized by the total frequency count of the feature in 
all classes. 

TAR2 prunes all feature/range pairs with a confidence1 
value below some user-specified threshold min-
confidence. From the remaining feature/ranges, a set of 
candidate treatments are generated by extracting all 
combinations of size N. Each candidate selects some 
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subset of the training instances (i.e. all instances that are 
not inconsistent with the candidate). Each such subset 
awards a score to the candidate that created it: the larger 
the frequency of the preferred classes, the higher the 
score. The highly-score candidates are then assessed via   
an N-way cross validation. 

Theoretically, TAR2 is impractically slow. Recall that 
treatments are generated by exploring all combinations of 
size N of the available feature/range pairs. If X pairs are 
found above min-confidence, then the number of such 
pairs to be searched is: 
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(This calculation is actually an over-estimate since it 
ignores the value exclusion property; i.e. different values 
of the same feature such as F1=a and F1=b can never be 
contained in the same treatment. Nevertheless, it gives a 
sense of how large this search can grow.) 
 
These theoretical concerns have yet to be realized in 
practice. In studies with dozens of domains, TAR2 
usually found effective treatments from N<4 features and 
never with features N>8 (Menzies & Hu, 2002).  The 
success of TAR2 is not too surprising. Holte’s 1R study 
(Holte, 1993) and numerous FSS experiments (Kohavi & 
John, 1997; Hall and Holmes, in press) all concur that 
effective models can be learnt using only a small N subset 
of the available features.   Nevertheless, we’d prefer some 
better reason, grounded in a general theory, for trusting 
TAR2. “Small backbones” are such a reason. 

4. Small Backbones 

Defining small backbones, and understanding their 
implications, requires a little background. We begin by 
noting that learners try to summarize theories which, in 
the usual case, they can’t access. Instead, learners usually 
work from a log of instances of the behavior of that 
theory.   
 
Logically, theories can be viewed as a set of constraints. 
Each instance used by a learner is a set of feature/value 
pairs showing one solution to the constraints of a theory.  
In the case of weighted class learning, some oracle adds a 
class symbol to each solution. This class symbol shows 
how much the oracle approves of that solution.  

A recent empirical observation from the constraint 
satisfaction community is that, for solvable constraint 
satisfaction problems (CSPs), there exists a set of critical 
feature/value pairings called the backbone. This backbone 
holds the pairings that always appear in the best solutions. 
The effort required to solve a CSP is a function of the 

backbone size: the larger the backbone, the greater the 
effort (Parkes, 1997).     

Our explanation for the success of TAR2 is that most 
instances contain small backbones. There are several 
reasons for believing that this might be so. Firstly, if we 
assume that  the instances used in machine learning come 
only from solvable problems, then we could also assume 
that machine learners usually contains small backbone 
instances. Secondly, Menzies & Singh (2001) offer an 
analytical argument that, for under-constrained problems, 
it is thousands to millions of times more likely that 
problems in the under-constrained zone contain very 
small backbones (which they call “funnels”). 

Note that, in terms of understanding a theory, the features 
outside the backbone are less important that the features 
in the backbone. These less important features might 
therefore be ignorable by a learner. In instances with 
small backbones, many variables could be ignored. That 
is, small backbones explain not only the success of TAR2 
but also explain the repeated success of FSS. 

5. Using TAR2 for FSS 

TAR2 relies on small backbones. Many features within 
instances with small backbones are ignorable. Ignoring 
features is a synonym for FSS. This line of reasoning 
suggests that TAR2 could be a useful FSS device. This 
section describes a test of that speculation. 
 
5.1. TAR2less 
 
Figure 1 shows TAR2less: our adaptation of TAR2 to 
FSS. TAR2less executes as follows: 
 
• For various target learners: 

• Initialize the SELECTED features to nil.  
• For each class in turn, declare it to be TAR2’s “best” 

class. Then enter the following loop: 
• Set treatment size N to 1 
•  Find the “best” treatment of size N via TAR2.  
• If the score of the best treatment is no better than 

that of the best treatment of size N-1, then… 
• Add the features seen in the best treatment 

to SELECTED. 
• Else, N++ and loop. 

• Collect the average accuracy seen in a  10-way cross 
validation of the target learner using  

• just the features seen in SELECTED 
• all features 

 
 
 
 
 
 
 

 

original 
data Set 

union of all  
features  
seen in  
TAR2’s 

treatments  
 
TAR2 

Target 
learner 

change 
the class 

preference 
ordering Repeat  

several times 

Figure1: TAR2less 
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5.2. Support Tools 

To test TAR2less, we compared it to the results seen in a 
recent state-of-the-art survey of FSS methods (Hall and 
Holmes, in press). Our study used the same target learners 
as used in that survey: a decision tree learner and a Naïve 
Bayes classifier. These two learners were deliberately 
selected  by Hall and Holmes to assess the utility of FSS 
on radically different learning schemes: 

• Recall from the introduction that decision tree learners 
recursively split instances by ranking feature ranges 
according to how much they decreases the diversity of 
the classes in the split sets.  Hall & Holmes used C4.5, 
a decision tree that uses an entropy measure to rank 
feature ranges. 

• Naïve Bayes classifiers work in a very different 
manner. Statistics are collected on the distribution of 
feature ranges in different classes. Those statistics are 
used to estimates the probability that some new 
combination of features belongs to a certain class.    

Like Hall and Holmes, we used the implementation of 
C4.5 and Naïve Bayes classifier found in WEKA: the 
Waikato Environment for Knowledge Analysis (Witten & 
Frank, 1999). The WEKA is a free, JAVA-based, open 
source, GUI tool that provides a rich variety of machine 
learners, preprocessing tools, and visualization tools.   
Figure 2 shows the WEKA user interface. 

 
 

 

 

 

 

 

 

 

 

Figure 2. WEKA tool 

5.3. Datasets 

Our experiments were run on 10 of the datasets analyzed 
by Hall and Holmes. These datasets, described in Table 2, 
originally come from the UCI (University of California at 
Irvine) repository. These datasets had a wide range of 
nominal and numeric features. The size of these datasets 
varied from a few hundred to a few thousand instances. 

 
 

Table 2. Data sets used 
DATASET INSTANCES NUMERIC NOMINAL CLASSES 

anneal 898 6 32 5 
breast-c 286 0 9 2 

credit-g 1000 7 13 2 

diabetes 768 8 0 2 

horsecolic 368 7 15 2 

ionosphere 351 34 0 2 

lymph 148 3 15 4 

segment 2310 19 0 7 

soybean 683 0 35 19 

vote 435 0 16 2 

 
5.4. Results 
 
Table 3 show the average accuracies seen in 10-way cross 
validation by the two target learners. The colored cells in 
Table 3 show where the classification accuracy changed 
by more than 1% (gray indicates an improvement and 
black indicates a decrease).  
 
The features rejected by TAR2less changed classification 
accuracy very little.. The largest difference seen in Table 
3 was the 4.8% loss seen for “vote”.  This large difference 
was not the usual case. On average, the classification 
accuracies changed by less than 1%. More specifically: 

• a 0.97% average decrease for C4.5  
• a 0.87% average increase for Naïve Bayes 

 
Tables 4 and 5 compare the size of the features selected 
by the FSS methods described in section 2 and TAR2less. 
The TAR2less results come from our work. The results 
from the other FSS methods come from Hall & Holmes 
(in press). The two tables show results from our two 
target learners: a decision tree learner and a Naïve Bayes 
classifier. In these tables, gray cells denote the smallest 
subset of features found by any method.  

Table 3. Accuracy of C4.5 and Naïve Bayes before and after 
TAR2less (averages over a 10-way cross validation). Colored 
cells  indicate where accuracy changes greater 1%:  black 
denotes accuracy decrease and gray denotes accuracy increase. 
 C4.5 NAÏVE BAYES 
 DATA SETS 

ORIGINAL TAR2 ORIGINAL TAR2 
 anneal 98.2 98.2 86.6 84.3 
 breast-c 75.2 75.2 74.1 75.2 
 credit-g 73.9 72.3 75.9 74.3 

 diabetes 74.5 72.8 76.0 74.6 
 horsecolic 85.3 81.5 78.8 79.6 
 ionosphere 88.6 87.8 82.9 87.5 
 lymph 76.4 74.3 81.8 77.7 
 segment 97.1 96.6 79.8 86.3 
 soybean 92.4 93.0 92.7 93.0 
 vote 95.9 96.1 90.1 94.9 
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Table 4. Number of features selected by TAR2less and six other 
FSS methods using C4.5 as the target learner. Gray cells denote 
the smallest subsets found by any method. 

 
 

Data- 
Set O

ri
gi

na
l 

 IG
 

C
FS

 

C
B

S 

R
L

F 

W
R

P 

PC
 

T
A

R
2L

E
SS

 

Anneal 38 17 21 15 20 18 36 7 
breast-c 9 4 4 7 7 4 4 2 
credit-g 20 8 7 8 9 8 4 5 
Diabetes 8 33 3 4 4 4 6 1 

Horse 
colic 22 4 4 2 3 5 3 2 

Iono- 
sphere 34 12 7 9 9 7 10 2 

lymph 18 6.8 5.3 4 4 6 9 3 
Seg 

ment 19 16 12 9 13 9 16 4 

Soy 
bean 35 19 24 35 32 19 30 16 

vote 16 12 10 6 11 9 11 6 
 

Table 5. Number of features selected TAR2less and six other FSS 
methods using Naïve Bayes as the target learner. Gray cells denote 
the smallest subset found by any method. 
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 Anneal 38 10 4 5 39 7 25 7 
 breast-c 9 4 7 6 5 3 3 2 
 credit-g 20 13 14 14 20 12 11 5 
 Diabetes 8 3 4 4 6 3 4 1 
 Horse 

colic 22 9 4 4 23 6 6 2 

 Iono- 
sphere 34 8 8 11 18 13 12 2 

 lymph 18 17 13 14 15 2 13 3 
 Seg 

ment 19 11 11 5 15 8 9 4 

 Soy 
bean 35 31 31 33 36 26 21 16 

 Vote 16 1 2 3 15 1 3 6 

 
Note that, in Table 4 and Table 5, The subsets found by 
TAR2less were smaller than  any other method  here in 17 
of the 20 experiments. For decision tree target learners, 
TAR2less found the smallest subset in 9 of the 10 
experiments. For Naïve Bayes target learners, TAR2less 
found the smallest subsets in 8 of the 10 experiments.  
 
In summary, TAR2less was the best overall FSS method 
studied here; i.e. it found the smallest feature subsets and 
those subsets resulted in minimal or no change in 
classification accuracy. 
 
Hall & Holmes do not offer runtimes for their FSS 
methods. Hence, we can’t compare the runtimes of 
TAR2less with the other FSS methods shown in Tables 
2,3 and 4. However, we have some evidence that TAR2 

will be a much faster than some FSS methods. Kohavi & 
John (1997) report that their Wrapper method can take up 
to hundreds or thousands of seconds to terminate. 
TAR2less runtime for any of the domains shown in 
Tables 2,3 or 4 is much faster: i.e. less than ten seconds in 
most cases. 

8. Conclusion 

We have explored FSS using the TAR2 weighted class 
learner. TAR2less has been compared here with a recent 
state-of-the-art survey in feature subset selection. In that 
comparison, TAR2less almost always selected a smaller 
set of features than other FSS methods. Also, measured in 
terms of averages over a 10-way cross validation, the 
impact on accuracy was minimal. Further, we believe that 
TAR2less runs faster than other FSS methods, but the 
evidence for this last conclusion is very limited since run 
times for other FSS methods except for Wrapper were not 
available. The significance of our results is that unlike 
prior results in FSS our approach is a all-round performer 
both in terms of accuracy and number of features selected. 
 
We claim that small backbones explain the success of our 
method. Due to the backbone, certain feature/range 
frequencies will be unusually high amongst instances 
from the preferred classes.  Such feature ranges can be 
detected using TAR2’s confidence1 measure.  Further, 
due to small backbones, the total number of these critical 
features will be very small.  Hence, a practical method of  
selecting the most effective features is to explore all 
subsets  (of size, small N)  of feature ranges with very 
high confidence1 values. 
 
Kohavi & John have reported FSS studies on artificially 
generated data sets such as Monk1. We did not explore 
such data sets since our goal in this paper was to show 
how real world data sets have certain characteristics (i.e. 
small backbones) that simplify the learning process. 
Future work would also involve trying our approach on 
artificially generated datasets with backbones of varying 
sizes and more features.  
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