
Data Mining from Process Models:
Visualizations or Induction for Better Comprehension?

Tim Menzies
Department of Computer Science,

Portland State University,
P.O. Box 751

Portland, Oregon 97207-0751
tim@menzies.us

Siri-on Setamanit, David Raffo
Portland State University

School of Business
PO Box 751

Portland OR 97207 USA
david@sba.pdx.edu ssetaman@yahoo.com

An extended abstract for ProSim’04 - May 24-25, 2004
http://www.prosim.pdx.edu/prosim2004

A standard methodology in the process simulation com-
munity is to build simulations using high-endvisual pro-
gramming (VP) systemwith powerful graphical front-ends.
Many such VP tools exist including Vensim (see Figure 1),
the Statemate state-based simulation model by i-Logix1,
the Extend discrete event simulation tool2, just to name a
few. Various benefits come from these VP tools including
acceptance, debugging supportand increasedcomprehen-
sionof the models.

Acceptance: The visual appeal of these VP tools makes
it easier to get user buy-in for the models. This can
be especially important early in a fledging simulation
project when developers need to achieve early results
to gain the most interest from business users.

Debugging: The tracing capabilities of these VP tools
means that developers can fix erroneous parts of the
models, sooner.

Comprehension: Once the parts are fixed, the whole
model is engaged and emergent trends of the entire
system can be identified. These trends can be analyzed
to make business decisions about (e.g.) better resource
allocations at various points in times of the process be-
ing simulated.

We take no issue with the first benefit since we have seen
it all too often in our work with users. However, it is in-
sightful to carefully review claims two and three.

1Statemate and I-Logix are registered trademarksr of I-Logix Inc. (3
Riverside Drive; Andover, Massachusetts 01810 USA).

2Extend and Imagine That are registered trademarksr of Imagine
That, Inc. (6830 Via Del Oro, Suite 230, San Jose, California, 95119
USA).

Figure 1. A model displayed in the Vensim
environment.

An intuition that might follow from thedebuggingand
comprehensionbenefits shown above is that the VP tools
used to increased understandingpartsof the model during
debugging would also be useful for better comprehending
all of the model. We argue that this might not be so; that
while visualizations are useful forlocal effectsthey may not
assist in understanding emergent trends of theentire system.

Our argument will be in two parts. First, we review
the known benefits of visualization. Localization will fea-
ture predominately in that review. Second, we compare
visualization-based vs textual-based comprehension tools
for the emergent properties. At this stage, global effects
will be more important that local ones and non-visual tools
such asdata minerscan perform better than visual ones.

Visualization: The Theory

Many authors argue that VP tools are a better method for
users to interact with a program. For example:



Pictures are superior to texts in a sense that they
are abstract, instantly comprehensible, and uni-
versal.[2]

In order to analyze these claims, we need a core theory.
Larkin and Simon [3] oblige. They distinguish between:

• Sentential representationswhose contents are stored in
a fixed sequence; e.g. propositions in a text.

• Diagrammatic representationswhose contents are in-
dexed by their position on a 2-D plane.

While these two representations may contain the same in-
formation, their computational efficiency may be different.
Larkin and Simon present a range of problems modeled in
a diagrammatic and sentential representation using produc-
tion rules. Several effects were noted:

• Perceptual ease:Certain features are more easily ex-
tracted from diagrams than from sentential represen-
tations. For example, adjacent triangles are easy to
find visually, but require a potentially elaborate search
through a sentential representation.

• Locality aids search:Diagrams can group together re-
lated concepts. Diagrammatic inference can use the in-
formation in the near area of the current focus to solve
current problems. Sentential representations may store
related items in separate areas, thus requiring extensive
search to link concepts.

A common internal representation for a VP systems is
one that preserves physical spatial relationships. For ex-
ample, Narayanan et.al. [6] use Glasgow’s array representa-
tion [1] to reason about device behaviors. In an array repre-
sentation, physical objects are mapped into a 2-D grid. Ad-
jacency and containment of objects can be inferred directly
from such a representation. Inference engines can then be
augmented with diagrammatic reasoning operators which
execute over the array (e.g. boundary following, rotation).

Elsewhere, we have been perhaps too critical of the
claims for the superiority of visual programming [4]. Our
own work with process simulations suggests that adjacent
visual entities are typically causally connected. Hence,de-
bugging local interactionsis made easier by visualizations
since a human studying those effects visually gains much
from the perceptual ease and locality search of VP.

Non-Visual Analysis

Our introduction took care to distinguish betweendebug-
ging local interactions andcomprehendingglobal properties
that emerge when the whole system runs. Our thesis is that
local analysis can miss important interactions amongst the
global space.

To demonstrate this, we compared our comprehension
of process models using visual and non-visual tools. More
specifically: we developed a set of process models using
VPs. After debugging we had some sense that weunder-
stoodthose models. We called the things we thought we
understood ourpreconceptions.

Next, wesampledthe global interactions of the entire
model as follows:

1. Defined a utility function that summarized model out-
put;

2. Conducted thousands of Monte Carlo simulations
where the inputs were selected at random from known
ranges;

Finally, we summarizedthe sample using data miners.
The data miners generated textual output (sentential repre-
sentations to use Larkin and Simon’s terminology) which
we studied. When the data miners’ summary contradicted
our preconceptions, we experimented with the model to
confirm or deny the data miners’ summary.

A Quick Tutorial on Data Mining

Various learners were used in this study, as described
in this section. Learners for continuous classes (e.g. lin-
ear regression, regression tree learners) are well understood
by the process modeling community. Here, we offer some
notes on another class of learners- those that predict for dis-
crete classes.

To generate discrete classes from continuous output, the
usual method is to define someutility functionthat summa-
rizes important simulation values into a single simulation
value. This distribution of this value is then studied and di-
vided into (e.g.) five equal percentile bands. Each band is
then tagged with some symbolic name; e.g. lolo, lo, med,
hi, hihi.

Classifiers try to find combinations ofnon-classat-
tributes that predict for a discrete class value. One classifier
is J48part [9]. For example:

if wage-increase-first-year > 2.5 AND
longterm-disability-assistance = yes AND
statutory-holidays > 10

then class=good

if wage-increase-first-year <= 4 AND
working-hours > 36

then class=bad

Another classifier is the C45 decision tree learner where
each branch is a conjunction and alternate branches are dis-
junctions [7]. C45 prints its decision trees as follows.

wage-increase-first-year <= 2.5: class=bad
wage-increase-first-year > 2.5
| statutory-holidays <= 10: class=bad
| statutory-holidays > 10: class=good

2



Association rule learnersgrant no special meaning to
some class attribute. These learners try to find sets of at-
tribute values that occur other. APRIORI is one such as-
sociational rule learner [8]. It only executes on discrete at-
tributes. Here’s what that learner generates on a data set
with 19 classes. Note that no class attribute appears in the
output and more than one attribute value can appear after
the “==>” symbol (e.g. see association 5).

1. int-discolor=none ==> sclerotia=absent
2. mycelium=absent int-discolor=none ==> sclerotia=absent
3. leaves=abnorm sclerotia=absent ==> mycelium=absent
4. sclerotia=absent ==> mycelium=absent
5. int-discolor=none ==> mycelium=absent

sclerotia=absent
6. int-discolor=none sclerotia=absent ==> mycelium=absent
7. int-discolor=none ==> mycelium=absent
8. leaf-malf=absent ==> mycelium=absent
9. mycelium=absent ==> sclerotia=absent

10. leaves=abnorm mycelium=absent ==> sclerotia=absent

Association rule learners can run slower than classifiers
since the latter have a very small target concept (the single
class attribute) while learners like APRIORI struggle to find
associations that predict for any number of attributes.

Lift learners seek combinations of non-class attributes
that most improve (or “lift”) the weighted distribution of the
classes over some baseline distribution. Calculating such
a weighted distribution requires users attaching weights to
each class; e.g. this class is better than that class. This
is easy for data mining from class data tagged using the
process described above: each class has a weight equal to
the average utility value that falls into that class.

TAR3 is a lift learner that seeks the smallest number
of attributes that most lift the baseline [5]. For example,
consider a data set describing houses containing 506 ex-
amples of great houses (29%), good houses (29%), poor
houses (21%) and bad houses (21%). If we assume that
great > good > poor > bad then TAR3 learns the rule:

6.7 <= rooms < 9.8 AND
12.6 <= parent teacher ratio < 15.9

This rule, when applied as a constraint to the housing
data, removes all but 39 houses which contain 97% great
houses and 3% good houses, and no poor or bad houses.
This is called thecontrol rulesince it offer a policy of what
to do to make things better.

Conversely, if we assume that
bad > poor > good > great then TAR3 learns the
rule:

0.6 <= nitrous oxide level < 1.9 AND
17.16 <= living standard < 39.0

This rule, when applied as a constraint to the housing
data, removes all but 81 houses which contain 98% bad
houses and 1% poor houses and 1% good houses and no
great houses. This is called the monitor rule since it de-
scribes what to watch for to detect the worst situation.

TAR3 can be particularly powerful for summarizing
complex learners. The experience with that tool has been
that it generally produces much smaller output that the
above learners. Our experience is that TAR3’s succinct
rules are more acceptable to business users.

Results

This work is proceeding and full results will be give an
PROSIM. In the meantime, we can say that our data min-
ersare surprising us and we have examples were we have
learnt more from the sentential outputs of the data min-
ers than from the local effects explored during debugging.
For example, in one model, TAR3 found a single attribute
that tripled the average output of the utility function- a very
strong effect (to say the least) and one that had not be seen
before even after months of working with a VP version of
that process model.

References

[1] J. Glasgow, H. Narayanan, and B. C. (eds).Diagrammatic
Reasoning : Cognitive and Computational Perspectives. MIT
Press, 1995.

[2] M. Hirakawa and T. Ichikawa. Visual language studies - a per-
spective.Software- Concepts and Tools, pages 61–67, 1994.

[3] J. Larkin and H. Simon. Why a diagram is (sometimes) worth
ten thousand words.Cognitive Science, pages 65–99, 1987.

[4] T. Menzies. Evaluation issues for visual programming lan-
guages. In S. Chang, editor,Handbook of Software En-
gineering and Knowledge Engineering, Volume II. World-
Scientific, 2002. Available fromhttp://menzies.us/
pdf/00vp.pdf .

[5] T. Menzies and Y. Hu. Data mining for very busy people.
In IEEE Computer, November 2003. Available fromhttp:
//menzies.us/pdf/03tar2.pdf .

[6] N. H. Narayanan, M. Suwa, and H. Motoda. Behaviour hy-
pothesis from schematic diagrams. In J. Glasgow and B. C.
N.H. Narayanan, editors,Diagrammatic Reasoning, pages
501–534. The AAAI Press, 1995.

[7] R. Quinlan. Induction of decision trees.Machine Learning,
1:81–106, 1986.

[8] R.Agrawal, T.Imeilinski, and A.Swami. Mining association
rules between sets of items in large databases. InProceed-
ings of the 1993 ACM SIGMOD Conference, Washington DC,
USA, 1993. Available fromhttp://citeseer.nj.nec.
com/agrawal93mining.html .

[9] I. H. Witten and E. Frank.Data Mining: Practical Machine
Learning Tools and Techniques with Java Implementations.
Morgan Kaufmann, 1999.

3


