
Software Estimation Models:When is Enough Data Enough?

Tim Menzies
Department of Computer Science, Portland State University, Oregon

tim@menzies.us;http://menzies.us

June 8, 2004

1 Overview

Do you want to be the manager of a canceled software project?1 Do you know if your budget is adequate to the
task at hand? If a project’s costs are under-estimated then developers will be forced into many quality-threatening
cost-cutting measures as the project develops. Sometimes, “cost-cutting” becomes “project-canceling”:

To gain control over its finances, NASA last week scuttled a new launch control system for the space
shuttle. A recent assessment of the Checkout and Launch Control System, which the space agency
originally estimated would cost $206 million to field, estimated that costs would swell to between
$488 million and $533 million by the time the project was completed.
–Computer News:Wed June 11, 2003

One reason for poor cost estimation is that, all too often, software managers don’t have enough relevant data to
make accurate estimations. For example, consider how much work was required to tune the standard COCOMO-
II-2000 cost estimation model [2]:

• An initial regression analysis of 83 projects (this generated the COCOMO-I-1981 model [1]);
• Further data collection on 78 more projects;
• A DELPHI panel where experts offered their best judgment on factors controlling software costs;
• A Bayesian tuning phase that integrated the DELPHI results with data from the 83+78 projects.

Most industrial sites lack the resources to repeat the above process. Data collection from industry is notoriously
slow and the above process took nearly two decades to complete [1, 2].

To shortcut the development time of an effort estimation model, the COCOMO team offer certaintuning
parametersa andb in their model. They recommend

. . . having at least 5 data points for local calibrating the multiplicative constanta and at least 10 points
for calibrating both the multiplicative constanta and the baseline exponentb.[1, p175]

While the comment comes from a definitive source, the COCOMO teams offers no evidence for the claim
that data from 5 to 10 projects is enough. Curiously, the COCOMO team felt the need for 161 projects to gen-
erate COCOMO-II-2000. Perhaps there may be some drawback to tuning based on only 5 to 10 projects. To
check this speculation, we conducted two studies using data from 62 COCOMO-I-1981 projects and 60 projects

1A submission to the Pacific Northwest Software Quality Conference, Portland, Oregon, Fall, 2004;http://www.pnsqc.org/

 30

 40

 50

 60

 70

 80

 90

 100

 50 40 30 20 10 2

P
R

E
D

(3
0)

30 times, shuffle 60 JPL projects

max
mean

min

 30

 40

 50

 60

 70

 80

 90

 100

 50 40 30 20 10 2

P
R

E
D

(2
0)

train on (X) projects; test on (60-x) projects

max
mean

min

 30

 40

 50

 60

 70

 80

 90

 100

 50 40 30 20 10 2

P
R

E
D

(3
0)

30 times, shuffle 62 COCOMO-81 projects

max
mean

min

 30

 40

 50

 60

 70

 80

 90

 100

 50 40 30 20 10 2

P
R

E
D

(2
0)

train on (X) projects; test on (62-x) projects

max
mean

min

Figure 1:Sequence tuning.

from the Jet Propulsion Laboratory2. Sequence tuningexperiments were
performed where some learning device tuned an effort estimation model
using more and more data. The learning was then disabled and the estima-
tion model was tested on data not seen during training. Sequence tuning
was used since (a) it tests the theory on data not used in training (which is
good experimental design); and (b) it emulates standard business practice
where managers learn their own estimation models based on the projects
seen to date.

In order to study the variance in the effort predictions, this proce-
dure was repeated 30 times, each time with a different randomly selected
ordering of the projects. The tuning method was the TUNES tool de-
scribed later in this paper3. The results are shown in Figure 1 (JPL on
top, COCOMO-1-1981 below). As sequence tuning proceeds down the
x-axis, more data is available for training and performance improves. Per-
formance is measured in terms of PRED(N). For example, at a PRED(30)
of 69%, effort estimations for 69% of the projects in the test set are within
30% of the actual value. PRED(30)=69% was the best results achieved by
the COCOMO-II team This was ameanfigure seen in 15 of their test sets
and is shown in Figure 1 as solid horizontal lines.

From Figure 1, several conclusions follow. Firstly, and most impor-
tantly, in all our studies we agree with the recommendations of the CO-
COMO team. Eleven projects are enough to achieve COCOMO-II-2000
levels of performance ofPRED(30) = 69%. Secondly, the TUNES
method can achievebetter thanCOCOMO-II-2000 performance where
betteris defined in several ways:

• TUNES’s data requirements arebetter than COCOMO-II-2000.
COCOMO-II-2000 reached PRED(30)=69% after (i) adding five
new variables to the COCOMO-I-1983 model; (ii) analyzing 78
new projects; (iii) convening a DELPHI panel of experts; and
(iv) using Bayesian tuning to combine the results of the DELPHI
panel with data from the 78 new projects. In contrast, TUNES
needed only 11 new projects, no new variables, no panel of experts,
and no Bayesian tuning.

• TUNES can achievebetterPRED(N) levels. PRED(20) is a stricter
criteria than PRED(30) since PRED(20) requires project estimates
falling closer to the actual. After seeing 5 JPL projects and 20
COCOMO-I projects, TUNES can achieve a mean PRED(20) of
69% (see the PRED(20) plots of Figure 1).

Thirdly, it may not be enough to reportmeanPRED(N) if the variance
is large. Note that after tuning on just a few projects the variance in the
PRED(N) figures can be quite large: see the difference between maximum and minimum PRED(30) at lowX

2COCOMO data from [6], and downloaded fromhttp://www.vuse.vanderbilt.edu/˜dfisher/tech-reports/
raw-TSE-95 . JPL data courtesy of Dr. Jairus Hihn. Both data sets are available fromhttp://menzies.us/data.html

3Available fromhttp://scant.org/tunes/tunes.html

2

values in top plot of Figure 1. This is to be expected: when the training set is small, many mistakes are made
during testing. Therefore, we say that it is important to assess an effort estimation model not only on itsmean
result, but also on itsvariancewhen tested on unseen data.

rely: required software reliability
data: data base size
cplx: process complexity
time: time constraint for cpu
stor: main memory constraint
virt: machine volatility
turn: turnaround time
acap: analysts capability
aexp: application experience
pcap: programmers capability
vexp: virtual machine experience
lexp: language experience

modp: modern programing practices
tool: use of software tools
sced: schedule constraint

Figure 2: COCOMO-I-1981 effort multipli-
ers.

The vertical dashed lines of Figure 1 show where the variance
on the mean and minimum PRED(N) curves found by TUNES
seem to stabilize; i.e. after that point they seem to develop
smooth trends. Such stability was achieved atx = {11, 14} for
PRED(30) and PRED(20) respectively (these points are some-
what subjective and the reader might care to check our assertion
that the mean and minimum variance to the right of the dashed
lines of Figure 1 is larger and more changeable than on the right).
Once the variance stabalizes, then enough project data should
be collected to achievegood PRED(N) levels. If we use the
COOCMO-II benchmark of PRED(N)=69% to definegood, then
the points in Figure 1 where PRED(N) wasgoodand stable were
x = 11 for PRED(30) andx = {14, 20} for PRED(20).

The rest of this paper described exactly how Figure 1 was
generated. That description starts with more details on CO-
COMO, then some notes on the JPL and COCOMO-I data used
in these experiments. This is followed by a description of the
TUNES tool.

2 COCOMO

The COCOMO project aims at developing an open-source, public-domain software effort estimation model. The
project has collected information on 161 projects from commercial, aerospace, government, and non-profit organizations[3].
As of 1998, the projects represented in the database were of size 20 to 2000 KSLOC (thousands of lines of code)
and took between 100 to 10000 person months to build.

COCOMO measures effort in calendar months where one month is 152 hours (and includes development and
management hours). The core intuition behind COCOMO-based estimation is that as systems grow in size, the
effort required to create them grows exponentially, i.e.effort ∝ KSLOCx. More precisely:

months = a ∗
(
KSLOCb

)
∗

∏
j

EMj

 (1)

wherea andb are domain-specific parameters; KSLOC is estimated directly or computed from a function point
analysis; andEMj is one of a set ofeffort multipliers. In COCOMO-I, the exponent on KSLOC was a single value
ranging from 1.05 to 1.2. In COCOMO-II, the exponent was divided into a constant, plus the sum of fivescale
factorswhich modeled issues such as “have we built this kind of system before?”. This TUNES study used the
COCOMO-I model since the data available to this study did not contain scale factors

The effort multipliers in COCOMO-I are listed in Figure 2. The COCOMO-II effort multipliers are similar but
COCOMO-II dropped one of the Figure 2 parameters; renamed some others; and added a few more (for “required
level of reuse””, “multiple-site development”, and “schedule pressure”).

The numeric values of the effort multipliers are shown in Figure 3. These were learnt by Boehm after a regres-
sion analysis of the projects in the COCOMO-I data set [1]. The last column showsEMmax

EMmin
and shows the overall

3

very very extremely productivity
low low nominal high high high range

acap 1.46 1.19 1.00 0.86 0.71 2.06
rely 0.75 0.88 1.00 1.15 1.40 1.87
cplx 0.70 0.85 1.00 1.15 1.30 1.65 1.86
pcap 1.42. 1.17 1.00 0.86 0.70 1.67
aexp 1.29 1.13 1.00 0.91 0.82 1.57
tool 1.24 1.10 1.00 0.91 0.83 1.49
virt 0.87 1.00 1.15 1.30 1.49
vexp 1.21 1.10 1.00 0.90 1.34
modp 1.24. 1.10 1.00 0.91 0.82 1.34
turn 0.87 1.00 1.07 1.15 1.32
time 1.00 1.11 1.30 1.66 1.30
data 0.94 1.00 1.08 1.16 1.23
sced 1.23 1.08 1.00 1.04 1.10 1.23
stor 1.00 1.06 1.21 1.56 1.21
lexp 1.14 1.07 1.00 0.95 1.20

Figure 3:COCOMO-I-1981 effort multipliers.

effect of a single effort multi-
plier. For example,acap(an-
alyst experience) is most im-
portant andlexp(language ex-
perience) is least important.

There is much more to
COCOMO that the above de-
scription. Equation 1 is only
the effort model and CO-
COMO comes with a sched-
ule model as well. The
COCOMO-II text [2] is over
500 pages long and offers all
the details needed to imple-
ment data capture and analy-
sis of COCOMO in an indus-
trial context. For example, that text includes the templates, definitions and training material needed to deploy
COCOMO in an industrial setting. That text also describes numerous details such as how to apply COCOMO very
early in the life cycle; and how to handle multi-component systems or systems with significant amounts of auto-
matic code generation. Further, Chapter Five of that text describes numerous emerging extensions of COCOMO
including models for rapid prototyping, COTS integration, quality and risk assessment.

 10

 100

 1000

 1 10 100 1000

ef
fo

rt
 (

m
on

th
s)

KSLOC

JPL data
COCOMO81 data

Figure 4:LOC,effort for JPL & COCOMO81

This current study is very relevant to those emerging
models. When those COCOMO extensions are validated
and calibrated to local sites, it will be vital to know how
much data is required for that validation and calibration.

3 The Data

A curious feature of Figure 1 is that TUNES worked
faster on the JPL data than the COCOMO-I data. The
reason for this is simple: the JPL project data comes
from one organization and the COCOMO-I project data
comes from many organizations. Figure 4 plots source
lines of code vs development effort (in months) for our
two data sets. Note that theintra-organizationalJPL data
has much less variance than theinter-organizationaldata
from the COCOMO-I data set (e.g. at KSLOC=10, the
COCOMO-I efforts vary by an order of magnitude which
is much more than the KSLOC=10 JPL efforts). TUNES
works better on intra-organizational data since it is less of
a struggle to tunea andb to data with less variance.

4

4 The TUNES Tool

Our previous experiments with COCOMO [4, 5] allowed for variation in all the effort multipliers of Figure 3, and
the scale factors. This is a large space of options.

This large problem can be converted to a much simpler problem as follows:

• Ignore the scale factors; i.e. use COCOMO-I and not COCOMO-II);
• Freeze the effort multipliers;
• Just seek values ofa andb that minimize the difference between theactual the estimated development

effort; i.e. (actual − estimated)/actual.

This simpler problem is small enough to enable a search over the entire range ofa andb. GivenN projects, the
test function of the TUNES tool shown in Figure 5 inputsa andb parameters and calls COCOMO-I for the
projects numberedstart to stop (start ≤ stop ≤ N). Thelearn function callstest for projects 1 toi (i≤N)
to find thea andb parameters that minimizes thetest failure count. These besta andb values are thentest ed
on the projects numberedi + 1 to N . All the plots in this paper and reports of the test run, repeated 30 times (with
the project numbering randomized before each repeat).

TUNES is a very simple system and could be improved. For example, Equation 1 shows thata andb effect
effort monotonically and continuously. Hence, the exhaustive search on lines 5 and 6 oflearn might be
replaced with a binary search. Secondly, TUNES is implemented in an interpreted C-like language (awk) and a
reimplementation in “C” would make it run faster. Nevertheless, given that this sub-optimal exhaustive search
implemented in an interpreted language takes just a few minutes to generate Figure 1, we are not motivated to
explore optimizations. Further, the exhaustive nature of the search makes it hard to argue that some other method
might do better than TUNES.

Figure 6 show how TUNES changeda and b for the PRED(20) runs on the JPL and COCOMO-I data.
For all the experiments reported here, thea values were explored from 2 to 5 in increments of 0.2; i.e.a ∈
{2, 2.2, ..., 4.8, 5.0}. Theb values were explored from 0.9 to 1.2 in increments of 0.02; i.e.b ∈ {0.9, 0.92, ..., 1.18, 1.2}.
The whiskers in Figure 1 are 2 standard deviations wide, centered on the mean value. As seen before in Figure 1,
the variances tend to decrease as more training data is used. Note that the JPL runs converge to significantly
much highera andb values that offered by standard COCOMO-I and COCOMO-II (those standard values are

function test(start,stop,a,b,pred) {
1. failures=0
2. for(i=start;i<=stop;i++) {
3. est = cocomo(i,a,b)
4. act = actual(i)
5. delta = (act-est)/act
6. if (abs(delta)>pred) failures++}
7. return failures}

function learn() {
1. Repeats=30
2. while(Repeats--) {
3. randomizeOrderOfProjects()
4. for(i=2;i<=N;i += 3) {

#Training stage
5. for(a=AMin; a <=AMax; a += AInc) {
6. for(b=BMin; b<=BMax; b += BInc) {
7. sum=test(1,i,a,b,Pred)
8. if (sum < least) { least=sum
9. BestA=a

10. BestB=b }}}

#Testing stage
11. failures = test(i+1,N,BestA,BestB,Pred)
12. print Repeats " " i " " failures}}}

Figure 5:The TUNES tool: pseudo-code.

5

JPL COCOMO-I

 2

 2.5

 3

 3.5

 4

 4.5

 5

 50 40 30 20 10 2

a

train on (X) projects; test on (60-x) projects

max
min

mean
 2

 2.5

 3

 3.5

 4

 4.5

 5

 60 50 40 30 20 10 2

a

train on (X) projects; test on (62-x) projects

max
mean

min

 0.8

 0.85

 0.9

 0.95

 1

 1.05

 1.1

 1.15

 1.2

 50 40 30 20 10 2

b

train on (X) projects; test on (60-x) projects

max
mean

min
 0.8

 0.85

 0.9

 0.95

 1

 1.05

 1.1

 1.15

 1.2

 60 50 40 30 20 10 2

b

train on (X) projects; test on (62-x) projects

max
mean

min

Figure 6:Tuning a and b in a PRED(20) run on JPL data (top) and COCOMO-I data (bottom).

〈a, b〉 = 〈2.94, 0.91〉 respectively). Hence, JPL would be advised not to use un-tuned COCOMO-I for its effort
estimations.

5 Conclusions

In summary, and in answer the question in the title of this paper, Figure 1 shows that the TUNES method can:

• Find stable PRED(30) predictions with low variances after 11 new projects.
• Find stable PRED(20) predictions with low variances after 14 to 20 new projects.

It would be an error to summarize this study as (say) “here are newa,b parameters for COCOMO-I”. The
large variances in theinter-organizational data(COCOMO-I) of Figure 6 show that we can’t just offer a single
point estimate for COCOMO-I tunings (at least, if those tunings are learnt by TUNES). The conclusions of this
paper have to be interpreted within the context of TUNES. Figure 1 is the preferred format and such plots can be
summarized as follows:

Based on sequence tuning experiments onN past projects, we predict that we can estimate effort on
future projects within such-and-such intervals.

(those intervals being read off the min-max curves of Figure 1). Further, a sequence tuning experiment might also
conclude that:

6

Based on the history of projects seen to date, we predict that the variance in our effort estimations will
reduce bythis muchif we can collect data fromthese manymore projects.

Lest this reports appears too critical of COCOMO, it is important to note that TUNES is an extension to
COCOMO-I-1981 and could not work without it. As to COCOMO-II-2000, the TUNES results offer a simpler
method of obtaining the same, or even better, results:

• One of the main motivations for the Bayesian analysis of COCOMO-II was the regression results from
the 83+78 projects had slopes that contradicted certain expert intuitions. For example regression of the
COCOMO data concluded that building reusable componentsdecreaseddevelopment costs. Most experts
believe that the extra effort required to generalize a design actuallyincreasesthe cost of building such
components. This anomaly was explained as follows: the 83+78 projects did not contain enough samples of
projects that make heavy use of reuse. To DELPHI panel and the subsequent Bayesian tuning was used to
fill in the gaps in the project data with expert knowledge. This combination of DELPHI+Bayesian methods
proved successful: COCOMO-II-2000 had much higher PRED(N) levels than COCOMO-I.

• Given the TUNES results, a much simpler method for incorporating expert knowledge is possible. Recall
that TUNES can find reach good PRED(20) after 23 projects. This number of projects could be artificially
generated from, say, 4 experts each asked to describe 5 exemplar projects showing the range of projects
typically done at their company. If those descriptions were made in terms of the COCOMO-I parameters,
then TUNES could then tune an effort model to that expert option using those 20 expert-generated examples.

Acknowledgments

This research was conducted at Portland State University, partially sponsored by the NASA Office of Safety and
Mission Assurance under the Software Assurance Research Program led by the NASA IV&V Facility. Refer-
ence herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or
otherwise, does not constitute or imply its endorsement by the United States Government.

References cited

[1] B. Boehm.Software Engineering Economics. Prentice Hall, 1981.

[2] B. Boehm, E. Horowitz, R. Madachy, D. Reifer, B. K. Clark, B. Steece, A. W. Brown, S. Chulani, and C. Abts.
Software Cost Estimation with Cocomo II. Prentice Hall, 2000.

[3] S. Chulani, B. Boehm, and B. Steece. Bayesian analysis of empirical software engineering cost models.IEEE
Transaction on Software Engineerining, 25(4), July/August 1999.

[4] T. Menzies, D. Raffo, S. on Setamanit, Y. Hu, and S. Tootoonian. Model-based tests of truisms. InProceedings
of IEEE ASE 2002, 2002. Available fromhttp://menzies.us/pdf/02truisms.pdf .

[5] T. Menzies and E. Sinsel. Practical large scale what-if queries: Case studies with software risk assessment. In
Proceedings ASE 2000, 2000. Available fromhttp://menzies.us/pdf/00ase.pdf .

[6] K. Srinivasan and D. Fisher. Machine learning approaches to estimating software development effort.IEEE
Trans. Soft. Eng., pages 126–137, February 1995.

7

