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Abstract

As software grows more complex, automatic verifi-
cation tools become increasingly important. Unfortu-
nately many systems are large enough that complete
verification requires a lot of time and memory, if it
is possible at all. In our preliminary studies, random
search, although not a complete technique, was able to
find most faults significantly faster and with less mem-
ory than would be required for full verification. Here
we present an experiment in which random search was
used to find faults in fault-seeded models of a large com-
mercial flight guidance system. To assess the perfor-
mance of random search we compared it to a full ver-
ification done by the model checker NuSMV. The ran-
dom search results were surprisingly complete, finding
nearly 90% of the faults reported by NuSMV—and these
results were generated faster and using less memory.
We suggest that random search be used in conjunction
with verification tools, perhaps as a fast debugging tool
during model development, or even as an alternative
model checking strategy on models for which the time
and memory requirements would make full verification
impossible.

1 Introduction

Automatic verification by model checking has been
effective in many domains including computer hard-
ware design, networking, security and telecommunica-
tions protocols, automated control systems and oth-
ers [4, 8, 14]. Many real-world software models, how-
ever, are large enough that full verification requires
much time and memory—if full verification is possi-
ble at all. Incomplete but faster state-space explo-

ration techniques, capable of finding errors but not for-
mally proving their absence, are useful for faster feed-
back during development. We have implemented one
such incomplete technique, random search of a com-
pact AND-OR graph representing the state space, in a
tool called LURCH.

In this paper we use LURCH to assess the perfor-
mance of a random search strategy on a commercial
flight guidance system model. First, we wanted to
make sure that the random search worked quickly and
without a large amount of memory for a large, real-
world software model, since in the past we have ob-
served the time and memory savings of random search
only in artificially generated (and often highly symmet-
ric) models [21]. Also, we wanted to determine whether
random search can accurately and consistently find a
significant portion of the actual faults reported by full
verification.

To this end, we applied random search (using
LURCH) and full verification (using the model checker
NuSMV) to a collection of faulty models of the full-
scale mode logic of a flight guidance system (FGS).1

Figure 1 shows the execution time of NuSMV for 45
FGS models (with seeded faults) using a verification
suite of 60 properties. The check usually took an hour
or two and, in the worst case, took over 36 hours. These
execution times are far too slow to support analysis of
a specification as it is being developed—a phase where
the specification is changing rapidly and the analysis is
routinely run many times per day.

The time needed to find a property violation us-
ing random search (with LURCH) is shown in Fig-

1We thank Dr. Steve Miller and Dr. Alan Tribble of Rockwell
Collins Inc. for the information on flight control systems and for
letting us use the RSML−e models they have developed using
the Nimbus tool from the University of Minnesota.
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Figure 1. Time (rounded to minutes) to find
violations using NuSMV.
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Figure 2. Time (rounded to minutes) to find
violations using LURCH.

ure 2 (the figure reports the 600 times a property viola-
tion was found—a detailed account of our experimen-
tal setup will be given later). In most cases property
violations were found very quickly; few violations re-
quired the full 30 minutes we allocated for the random
search. As to the accuracy and consistency of random
search, LURCH found property violations accounting
for nearly 90% of the faults found by full verification
with NuSMV, finding 75% of the property violations
reported by NuSMV in four out of five runs. Based
on these observations, we believe techniques based on
random search are effective debugging tools that should
be applied to get quick results and identify faults with
little effort.

The rest of this paper describes LURCH and the case
study reported in Figure 1 and Figure 2. Section 2 de-
scribes LURCH, and section 3 describes the experiment
done running LURCH on fault-seeded flight guidance
system models. The final section discusses the external
validity of our results.

1: next-state (state) {
2: Execute a transition for every machine in which there is

at least one whose input conditions are satisfied; if more
than one transition is possible for a machine, choose one
at random. }

3: path (state) {
4: while (¬(path-end OR cycle)) do
5: state← next-state (state); }

6: main () {
7: repeat
8: path (initial-state);
9: until (user-defined maximum reached) }

Figure 3. LURCH’s partial, random search
procedure.
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Figure 4. For Dining Philosophers problem
models, size of LURCH’s AND-OR graph vs.
states stored by the model checker SPIN [14].

2 LURCH

2.1 Implementation

Model checking is used to verify that finite-state sys-
tems satisfy specified temporal logic properties [7, 14].
The amount of memory required to store all possi-
ble behaviors of a finite-state system is, in the worst
case, an exponential function of the size of the orig-
inal model. Thus for many systems model checking
requires a large amount of memory and time. Our pro-
totype random search tool, LURCH, uses a memory-
saving AND-OR graph representation of the composite
system behavior and the partial, random search algo-
rithm summarized in figure 3 [18, 20]. Data shown in
figure 4, from a preliminary study, shows the efficiency
of the AND-OR graph for a range of models represent-
ing the Dining Philosophers problem; for these models
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Figure 5. LURCH output for a typical model:
quick saturation.

the number of states required for full verification by
the model checker SPIN [14] increases exponentially
with the number of philosophers, whereas the number
of nodes in Lurch’s AND-OR graph increases linearly.

Our random search algorithm is partial because, un-
like the full model checking technique, there is no guar-
antee that all possible behavior is explored; the algo-
rithm is random because the choice of which behavior
to explore (or ignore) is nondeterministic. Our basic
implementation is a Monte Carlo algorithm: the search
procedure runs again and again, each time increasing
the probability of finding a property violation.

In many cases we quickly find a violation, but for
those in which none is found, how do we know when
to stop? Figure 5 shows output from LURCH run-
ning on a typical input model. As LURCH runs, it ex-
plores the reachable state space, at first finding nearly
all new information, but after a little while most of
LURCH’s findings are redundant; Figure 5 illustrates
this: the percentage of the model explored which is
new (vs. redundant) starts out at 100%, but quickly
decreases to near zero. We use this quick saturation
effect in LURCH output (see [18]) to determine when
to stop: when some set saturation point is reached,
we assume that LURCH is unlikely to find any more
interesting information.

For very large input models, such as the flight guid-
ance system described below, it is not always practical
to wait for a low saturation percentage, so LURCH is
terminated at a reasonable time or memory cutoff. We
are continuing to experiment with different stopping
criteria, so that LURCH can run as quickly as possible
but with consistent results.

2.2 Additional Features of LURCH

To efficiently track which states have been reached
LURCH stores hash values based on the names of all
local states present in the state to be stored. Each state
gets one integer; these are all kept in a tree, which re-
mains approximately balanced because the hash values
are evenly distributed across the range of integers. So
in practice LURCH treats these hash collisions as re-
peat states although they are actually potential repeat
states. LURCH allows the user to limit the amount of
memory available for state storage.

LURCH’s basic search procedure returns one path
traced through the composite system behavior, ter-
minating whenever a dead end or cycle is found. In
practice we have found that LURCH is able to explore
a space more quickly if the cycle detection scheme is
somewhat relaxed. In the current version, LURCH con-
tinues even after the first repeat state in a path (i.e.,
when a cycle is first detected); instead, the while loop
in figure 3 is exited after n repeat states, where n is a
number input by the user. In this way LURCH is al-
lowed to pursue intersections, i.e., places where a path
may cross itself but then continue to find new informa-
tion.

LURCH simulates synchronous execution of finite-
state machines in the input model; that is, at each step
forward in time, every individual finite-state machine
that is able to execute a transition does, and the order
of these intra-time-step executions is considered irrele-
vant. Also, any side effects of a transition that would
interfere with the state of things at the start of the
time-step do not take effect until after all the machines
have had a chance to go forward.

By adding a simple modification we can simulate
asynchronous execution of the finite-state machines in
the input model. Instead of allowing an arbitrary num-
ber of transitions to be processed at each time step,
which would correspond to giving all machines a chance
to move forward, we allow only one machine to tran-
sition forward at each time step. Side effects of that
transition take effect before any other machines have
a chance to transition forward, and the particular in-
terleaving of machines’ transitions is considered signif-
icant, as in an asynchronous system. For example, in
the preliminary study associated with figure 4 we used
LURCH in asynchronous mode to find deadlocks in
models representing the Dining Philosophers problem.
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3 Flight Guidance System Experiment

To validate the performance and accuracy of
LURCH in a realistic situation, we conducted a large
experiment based on a model of the mode logic for
a commercial flight guidance system developed in col-
laboration between Rockwell Collins Inc. and the Uni-
versity of Minnesota. The mode logic is captured in
RSML−e [25], a fully formal synchronous specification
language, and automatically translated to NuSMV and
LURCH through Nimbus [23], the development envi-
ronment for RSML−e. The results of that study were
presented in brief in our introduction. Further details
are offered below.

3.1 Background

A Flight Guidance System (FGS) is a component
of the overall Flight Control System (FCS) in a com-
mercial aircraft. It compares the measured state of an
aircraft (position, speed, and altitude) to the desired
state, generating pitch and roll guidance commands to
minimize the difference between the measured and de-
sired state. The FGS can be broken into two parts: the
mode logic, which determines which lateral and vertical
modes of operation are active and armed at any given
time; and the flight control laws, which accept infor-
mation about the aircrafts current and desired state
and compute the pitch and roll guidance commands.
In this case study we check only the mode logic.

Figure 6 illustrates a graphical view of the FGS in
the Nimbus environment. The primary modes of inter-
est in the FGS are the horizontal and vertical modes.
The horizontal modes control the behavior of the air-
craft about the longitudinal, or roll, axis, while the ver-
tical modes control the behavior of the aircraft about
the vertical, or pitch, axis. In addition, there are a
number of auxiliary modes, such as half-bank mode,
that control other aspects of the aircraft’s behavior.

3.2 Nimbus and RSML−e

Figure 7 shows an overview of the Nimbus tools
framework. The user builds a behavioral model of the
system in RSML−e (see below). After evaluating the
functionality and behavioral correctness of the specifi-
cation using the Nimbus simulator, users can translate
the specifications to PVS (a theorem-proving system),
NuSMV, or LURCH input languages.

RSML−e is based on the Statecharts-like [11] Re-
quirements State Machine Language (RSML) [17].
RSML−e is a fully formal and synchronous data-flow

Figure 6. Flight Guidance System
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Figure 7. Verification Framework.
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STATE_VARIABLE ROLL : Base_State

PARENT : Modes.On

INITIAL_VALUE : UNDEFINED

CLASSIFICATION : State

TRANSITION UNDEFINED TO Cleared IF NOT Select_ROLL()

TRANSITION UNDEFINED TO Selected IF Select_ROLL()

TRANSITION Cleared TO Selected IF Select_ROLL()

TRANSITION Selected TO Cleared IF Deselect_ROLL()

END STATE_VARIABLE

MACRO Select_ROLL() :

TABLE

Is_No_Nonbasic_Lateral_Mode_Active() : T;

Modes = On : T;

END TABLE

END MACRO

MACRO Deselect_ROLL() :

TABLE

When_Nonbasic_Lateral_Mode_Activated() : T *;

When(Modes = Off) : * T;

END TABLE

END MACRO

Figure 8. A small portion of the FGS specifi-
cation in RSML −e .

language without any internal broadcast events (the
absence of events is indicated by the −e).

An RSML−e specification consists of a collection
of input variables, state variables, input/output inter-
faces, functions, macros, and constants; input variables
are used to record the values observed in the environ-
ment, state variables are organized in a hierarchical
fashion and are used to model various states of the
control model, interfaces act as communication gate-
ways to the external environment, and functions and
macros encapsulate computations, which provides in-
creased readability and ease of use.

Figure 8 shows a small portion of an RSML−e spec-
ification of the Flight Guidance System.2 The figure
shows the definition of a state variable, ROLL. ROLL is
the default lateral mode in the FGS mode logic.

The conditions under which the state variable’s
value changes are defined in the TRANSITION clauses
of the definition. The condition tables are encoded
in the macros Select ROLL and Deselect ROLL. The
tables are adopted from the original RSML notation—
each column of truth values represents a conjunction of
the propositions in the leftmost column (‘*’ represents
a “don’t care” condition). If a table contains several

2We use here the ASCII version of RSML−e since it is much
more compact than the more readable typeset version.

columns, we take the disjunction of the columns; thus,
the table is a way of expressing conditions in disjunc-
tive normal form.

3.3 Experimental Setup

For our experiments we used the largest FGS model
available to us—a model close to the production sys-
tems at Rockwell Collins Inc. The RSML−e FGS model
consists of 2,564 lines of RSML−e code defining 142
state variables. When translated to NuSMV, we get
2,902 lines of code, requiring 849 BDD variables for en-
coding. The translated LURCH state machine model
consists of 217 3-state machines, producing an AND-
OR graph with 1,923 nodes. This RSML−e model has
been extensively validated through testing and we have
previously verified close to 300 required properties us-
ing NuSMV.

To assess the performance and fault finding capabil-
ity of LURCH, we created a collection of faulty specifi-
cations and selected a subset of the 300 properties that
would reveal the faults. To create the faulty specifica-
tions, we first reviewed the revision history of the FGS
model to understand what types of faults were removed
during the original verification process. We then imple-
mented a random fault seeder to inject representative
faults to create a suite of faulty specifications. The
faults we seeded fell into the following four categories:

Variable Replacement: A variable reference was re-
placed with a reference to another variable of the
same type.

Condition Insertion: A condition that was previ-
ously considered a “don’t care” (*) in one of the
tables was changed to T (the condition is required
to be true).

Condition Removal: A condition that was previ-
ously required to be true (T) or false (F) in a table
was changed to “don’t care” (*).

Condition Negation: A condition that was previ-
ously required to be true (T) in a table was
changed to false (F), or vice versa.

We used our fault seeder to generate 100 faulty spec-
ifications (25 for each fault class). As an example,
Figure 9 shows a missing condition fault contained in
macro When LGA Activated, the fault was created by
changing the table from requiring the Boolean variable
Is This Side Active to be true to a “don’t care.”

To determine which faulty specifications contained
faults that our verification suite could reveal, we reran
the complete verification suite on the 100 faulty FGS

5



MACRO When_LGA_Activated() :

TABLE

Select_LGA() : T;

PREV_STEP(..LGA) = Selected : F;

Is_This_Side_Active : *; /* Was T */

END TABLE

END MACRO

Figure 9. An example fault seeded into the
FGS model.

models using NuSMV. This extraordinarily time con-
suming exercise revealed that 45 of our 100 faulty mod-
els contained faults that could be revealed by our suite
of properties. In addition, we found that 60 of the orig-
inal 300 properties were violated in at least one of the
faulty specifications. Therefore, for our experiment we
selected the 45 specifications with faults we could re-
veal and the 60 properties that we knew were violated
by at least one faulty specifications. Unfortunately, the
properties are currently considered proprietary Rock-
well Collins Inc. information and we can only para-
phrase their informal definitions in this report. Nev-
ertheless, the informal examples below should give the
reader some understanding of the type of properties we
used in this experiment.

Property 1: If the flight director cues are off, the
flight director cues shall not be turned on when
the Transfer Switch is pressed, (provided that no
lateral or vertical mode is selected and 〈some ad-
ditional conditions〉).

Property 2: If mode annunciation are off, auto pilot
engagement shall cause ROLL mode to be selected
(provided 〈some additional conditions〉).

To conduct the actual experiment we ran the ver-
ification suite on every specification using LURCH
and NuSMV. Note here that we did not need to run
NuSMV again to determine which properties were vi-
olated in which specification—this information was
available from our initial analysis to determine which
fault seeded specifications to use. The only reason to
re-run the NuSMV analysis was to collect performance
data using our 60 selected properties instead of the
full suite of close to 300. We ran NuSMV with com-
mand options -dynamic (dynamic variable reordering)
and -coi (cone of influence reduction). Without these
options, NuSMV was unable to build the symbolic rep-
resentation of the model. Furthermore, collecting the
peak memory usage of NuSMV over very long verifica-
tion runs was a nontrivial task. We ovserved memory
usage manually for some runs, and it ranged from ap-

Violations
found

Percentage
of total

Total property violations 155
LURCH found in all 5 runs 106 68.4%
Found in at least four runs 115 74.2%
Found in at least three runs 123 79.4%
Found in at least two runs 128 82.6%
Found in at least one run 131 84.5%

Figure 10. Summary of LURCH’s fault finding
capability.

proximately 25 megabytes to hundreds of megabytes.
In future studies we will modify NuSMV to allow us
to collect more accurate data on it memory usage. We
ran LURCH with the option to terminate a search path
after two hash collisions in the state space hash table
and a cutoff for the entire search of 1,800 seconds; that
is, if no violation was found within 1,800 seconds, the
search was terminated. Finally, due to the random na-
ture of LURCH, we ran each verification run five times
on each FGS model. In both NuSMV and LURCH, all
properties were grouped together in a batch.

3.4 Results

There were two objectives with our experiment;
first, to evaluate the fault finding capability of random
search as compared to full verification, and second, to
assess the performance of LURCH.

Regarding the effectiveness of LURCH, Table 10
summarizes the fault-finding capability of LURCH as
compared to the results achieved with full verification
in NuSMV. Each specification contained one fault, but
that fault may have led to the violation of more than
one property. Therefore, we report the total number
of property violations over all specifications—a total of
155. The rows in the table shows the number and per-
centage of property violations found by LURCH. The
property violations detected by LURCH identified 40
of the 45 faults seeded in our specifications (88.9%).

As can be seen in Figure 10, for some properties
LURCH either failed to find a counterexample or only
found it on some runs. This inaccuracy is not surpris-
ing given the incomplete searches in LURCH. In fact,
some sceptical members of the research team expected
LURCH to be much less accurate than what we ob-
served in this experiment. Furthermore, by extending
the search depth during “tinkering” with the search
parameters of LURCH, we have been able to find ad-
ditional property violations reliably3. Our experiences

3The results gathered while informally experimenting with
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lead us to believe that the performance of LURCH can
be improved by tuning its search parameters—in the
experiment we used settings that “seemed reasonable”
based on prior experience.

To better understand the characteristics of the faults
that LURCH never detected, we investigated the rela-
tionship between the properties and the seeded faults
that LURCH failed to detect. As one may expect, the
failure of LURCH to detect a fault is because the fault
affects only a small and difficult to reach portion of the
state space. As an example, we found that one fault af-
fected a portion of the FGS that is only invoked when
the pilot presses the ‘Transfer Switch’ that transfers
control of the aircraft from the pilot side FGS to the
co-pilot side FGS (or vice versa). This event occurs
when the ‘Transfer Switch’ variable changes from false
to true. In the FGS, however, the various input signals
are prioritized and the ‘Transfer Switch’ will only be
considered if none of 12 other input signals remain false
in two consecutive steps while the ‘Transfer Switch’
changes from false to true. Needless to say, the prob-
ability of this event occurring is astronomically small
(10−26) and, consequently, LURCH is highly unlikely
to ever reveal this fault. This kind of fault is exactly
the reason that random search methods like LURCH
will never replace complete verification methods. Nev-
ertheless, if we can better understand the nature of
faults unlikely to be revealed by LURCH, we may be
able to provide estimates of the number of faults re-
maining in a model after it has been ‘LURCHed’ as
well as of the probability of encountering such a fault.

To illustrate the efficiency of the fault finding ca-
pability of LURCH, Figure 11 shows time it took for
LURCH to find property violations. This graph is
based on the time it took LURCH to find a property
violation in one of the specifications and we are in-
cluding data for every instance where LURCH found
a violation—our experiments reported 600 property
violations when performing five runs with LURCH.
The graph shows that 386 violations (64%) were found
within 120 seconds. As the graph illustrates, the vast
majority of property violations are found quickly and
there seems to be little hope to find additional viola-
tions by extending the search time. This lends some
support for the hypothesis that if a fault is present it is
either very easy or very difficult to find. What we hope
to explore in future investigations is how many fault
really fall in the category of “very difficult to find,”
regardless of how LURCH’s adjustable parameters are
set. The results for this particular case study hints that
approximately 10% of the faults fall in this category,

LURCH are not in our results, since we wanted to keep the con-
ditions unchanged for the formal experiment.
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Figure 11. Number of violations LURCH found
in a given time period.

but more experimentation is necessary to support or
refute this claim.

To summarize, the results from our experiment in-
dicate that techniques based on random search can
find the vast majority of faults (close to 90% in this
experiment) much faster (seconds and minutes as op-
posed to hours) and with a fraction of the memory
(single digits to 10s of megabytes as opposed to 10s
to 100s of megabytes) compared to a symbolic model
checker. Based on these observations, we believe tech-
niques based on random search are very effective de-
bugging tools that should be applied to get quick re-
sults and identify faults with little effort. Furthermore,
when our models become so large that formal veri-
fication becomes impossible we may have to rely on
LURCH’s approximate search.

4 Related Work

Any coverage of a topic area as broad as state space
analysis, verification, and refutation will by necessity
be incomplete. Here we only cover the work most re-
lated to the random search strategy performed in the
LURCH tool.

4.1 Random Search in AI

Our experiments with LURCH have a repeated and
curious feature: if an error state is reachable, then it
is likely to be found quickly. Conversely, if LURCH
does not reach an error state quickly, it is likely that
LURCH would never find one, no matter how long it
ran.

A related effect has been seen in the AI literature.
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The satisfiability community explores models in con-
junctive normal form (CNF), that is, propositional
clauses such as:

(A ∨B ∨ C) ∧ (¬A ∨ E ∨ F )

These models combine N variables into L clauses
of size K literals per clause (in our example, K = 3,
N = 5, L = 2). Finding assignments to the variables
that satisfy the clauses is a theoretically intractable
task when K = 3. However, empirically, solving 3CNF
problems is only slow in a very narrow region, when
L ≈ 4.3N [22].

This effect is usually illustrated by something like
the phase-transition diagram of Figure 12. In that fig-
ure, problems are placed on the x-axis according to the
number of constraints per variable. When there are few
constraints, problems are easy to solve, but when there
are many no solution is possible. Note that in either
case, it is quick to conclude that a solution exists or is
impossible.

Increasingly Constrained Problems −→
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show impossible)

?

Easy
Easy to Show

Impossible

Figure 12. Hard problems exhibit a phase tran-
sition.

An often repeated empirical result for 3CNF models
is that search only becomes difficult in a very narrow
zone between the solvable and unsolvable problems-
an effect first reported by Cheeseman [2]. This phase
transition region, in the words of Cheeseman et.al., is
“where the really hard problems are.” For 3CNF, this
zone is when L ≈ 4.3N .

The phase transition effect has only been seen in ar-
tificially generated problems and not in real-world for-
mal models like our flight guidance systems Neverthe-
less, the phase transition effect inspired a whole family
of successful random search engines. The phase transi-
tion effect promises that most problems can be solved
or found to be impossible using very simple search en-
gines such as LURCH. In AI, since the early 1990s, this
possibility has been explored by the GSAT family of al-
gorithms. GSAT is a hill-climbing algorithm that starts

by assigning a truth-value to every variable. At every
iteration GSAT picks a variable and “flips” its value
from true to false or vice versa. With good heuristics
for selecting the variable to be flipped, these algorithms
work amazingly well and scale to theories much larger
than what can be processed by complete search [16].

4.2 Bounded Model Checking

Success in SAT solving has enabled the develop-
ment of a symbolic search technique known as bounded
model checking [1]. Bounded model checking uses a
SAT solver to represent Boolean formulas to address
the potentially exponential growth of the BDD repre-
sentation in a traditional symbolic model checker such
as NuSMV. Given a system model, a system property,
and a pre-defined execution length, bounded model
checking tries to find a witness of the negation of the
given property by searching the system state space
up to the predefined execution length (search depth).
Bounded model checkers have been very effective in
practice. Nevertheless, bounded model checking can-
not be used for verification purposes since a search is
limited to a depth of k steps—if no witness can be
found, all we know is that there is no property viola-
tion within the predefined search depth. The random
search strategy implemented in LURCH is not limited
by search depth—LURCH can perform searches to an
arbitrary depth—but it only samples the state spaces
along these searches.

4.3 Explicit State Model Checking

SPIN, and other explicit state model checkers, suf-
fer from the state space explosion problem. Elaborate
techniques have been developed to tame the state space
explosion problem during verification, for example,
clustering [6], exploiting symmetries in the model [5],
and semantic minimization [9]. Although these tech-
niques are useful, they are unlikely to solve the state
space problem in general.

The notion of random search has been explored to
some extent in this domain. Holzmann investigated
random search, called scatter search, in an early ver-
sion of his SPIN tool [15], but he did not perform any
studies of its effectiveness. Anecdotal evidence, how-
ever, indicated that if there was a fault in the model, it
was likely to affect a large portion of the state space—
an observation that coincides with our conclusions from
this experiment.

Instead of exploring random search strategies within
existing model checkers implemented for full verifica-
tion, we have opted to implement a simple tool custom
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made for this type of search—our current version of
LURCH is less than 1000 lines of C code. By way
of contrast, other researchers report that augmenting
standard model checkers with heuristic search is quite
difficult. For example, Edelkamp et.al. [10] report that
the internals of SPIN are so complex it took nearly a
year and the advice of a hard-to-reach expert before to
add a simple A* heuristic search.

5 Future Work

The effect of parameter tuning is largely unknown
at this time; for example: will we get better perfor-
mance through many shallow searches as opposed to
a few long searches? Understanding and limiting the
inaccuracy of LURCH on realistic models is a critical
issue if random search techniques are to be used as an
approximation for full verification where the size of the
model precludes full verification—this issue will be the
subject of future investigations.

It would be ideal if we could characterize what kinds
of models can be adequately searched by LURCH. The
phase transition effect offers us one line of inquiry.
An alternate line of inquiry is the relative size effect.
Whether a violation can be easily detected or not may
be a function of the nature of the fault causing it. If
the random search is viewed as a Monte Carlo simula-
tion on the composite state space, the experiments are
evaluating the relative size of the faulty state space.
Further work is required to investigate this possibility.

The 45 faulty models used in our experiment were
seeded with classes of faults observed in the older FGS
versions. To a large degree, they reflect the errors
that a human specifier tends to make when writing
an RSML−e model. 40 of them lead to at least one
property violation that is easy to find. Although our
experiment is quite extensive, we cannot conclude that
most software errors affect a large portion of the state
space—our experiences are limited to the FGS model
and it constitutes only one data point in a wide spec-
trum of possible models. Clearly, we need to test
LURCH on more models. To facilitate this, we are
working towards a distribution of LURCH (complete
with tutorial training material). We also are adding
LURCH into the Nimbus toolkit from the University
of Minnesota. Both these distributions will be made
freely available to researchers.4

4To access Nimbus+LURCH, email heimdahl@cs.umn.edu.
To download LURCH, go to www.menzies.us/lurch.html.

6 Conclusion

Based on our observations in this experiment, we be-
lieve techniques based on random search are very effec-
tive debugging tools that should be applied to get quick
results and identify faults with little effort. The mod-
eling activities advocated in, for example, specification
centered development [3,23], SCR [13], and KAOS [24],
all use model checking routinely during development.
We believe tools based on random search would be a
more effective fault identification tool until all but the
toughest faults have been removed.

We also believe that LURCH can have an impor-
tant role in supporting the full verification process.
Most specifications are too large for full verification un-
less they are abstracted to a simpler model—hopefully
an abstract model retaining all interesting behaviors.
We propose to use LURCH on the full model and if
LURCH’s incomplete search can find faults in the origi-
nal model, while the verification on the abstraction suc-
ceeds, then the abstraction has skipped important de-
tails. Hence, we advise always running LURCH on the
current version of the original model as an additional
check increasing the confidence in the verification pro-
cess.

Finally, when models become so large that formal
verification becomes impossible we may have to rely
on LURCH’s approximate search. The experiments re-
ported here, and elsewhere [19], give us some confidence
that while LURCH’s search is incomplete, it can still
find a majority of the faults in these larger models.
With more experiments and a better understanding of
how to tune the search parameters, we may even be
able to provide boundaries on the expected number of
remaining faults in a model searched by LURCH and
possibly provide reliability predictions.
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