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Abstract

Software repositories plus defect logs are useful for learning
defect detectors. Such defect detectors could be a useful resource
allocation tool for software managers. One way to view our detec-
tors is that they are a V&V tool for V&V; i.e. they can be used to
assess if ”too much” of the testing budget is going to ”too little”
of the system. Finding such detectors could become the business
case that constructing a local repository is useful.

Three counter arguments to such a proposal are (1) no gen-
eral conclusions have been reported in any such repository despite
years of effort; (2) if such general conclusions existed then there
would be no need to build a local repository; (3) no such general
conclusions will ever exist, according to many researchers. This
article is a reply to these three arguments.

Submitted to the International Workshop on Mining Software
Repositories (co-located with ICSE 2004) May 2004;http://
msr.uwaterloo.ca .

1 Introduction

To make the most of finite resources, test engineers typically
use their own expertise to separate critical from non-critical soft-
ware components. The critical components are then allocated
more of the testing budget than the rest of the system. A con-
cern with this approach is that the wrong parts of the system might
get the lions-share of the testing resource.

Defect detectors based on static code measures of components
in repositories are a fast way of surveying the supposedly non-
mission-critical sections. Such detectors can be a V&V tool for
V&V; i.e. they can be used to assess iftoo muchof the testing
budget is going totoo little of the system. As shown below, sat-
isfactory detectors can be learnt from simple static code measures
based on the Halstead [2] and Mccabes [3] features1. Such mea-
sures are rapid and simple to collect from source code. Further,

1Elsewhere, we summarize those metrics [4]. Here we just say that
Halstead measures reflect the density of thevocabularyof a function while
Mccabe measures reflect the density ofpathwaysbetween terms in the
vocabulary.

the detectors learnt from these measures are easy to use.
Our experience with detect detectors has been very positive.

Hence, we argue that organizations should routinely build and
maintain repositories of code and defect logs. When we do so, we
often hear certain objections to creating such repositories. This
paper is our reply to three commonly-heard objections. For space
reasons, the discussion here is brief. For full details, see [5,6].

The first objection concerns alack of external validity . De-
spite years of research in this area, there has yet to emerge standard
static code defect detectors with any demonstrable external valid-
ity (i.e. applicable in more than just the domain used to develop
them). Worse still, many publications argue that building detectors
from static code measures is a very foolish endeavor [1,7].

To counter the first argument, there has to be some demon-
stration from somewhere that at least once, another organization
benefited from collecting such an endeavor. Paradoxically, mak-
ing such a demonstration raises a second objection against local
repository construction. If detectors are externally valid then or-
ganizations don’t neednew data. Rather, they can justimport data
from elsewhere. To refute thisbuy not build objection, it must be
shown that detectors built from local data arebetter thandetectors
built from imported data.

Finally, if the proposal to build a repository survives objections
one on two, then a third objection remains. Why is it that we
make such an argumentnowwhen so many others havepreviously
argued the opposite for so long? That is, it must be explained the
source of oppositionto static defect detectors.

The rest of this paper addresses these objections using the
NASA case study described in the next section. Using that data,
we show that external valid detectors can be generated. Next, we
show that these detectors can be greatly improved using detectors
tuned to a local project. Finally, we identity potential sources of
systematic errors that may have resulted in prior negative reports
about the merits of static code defect detectors.

2 Case Study Material

Our case study material comes from data freely available to
other researchers via the web interface to NASA’s Metrics Data
Program (MDP) (see Figure 1). MDP contains around two dozen



Figure 1. The MDP repository:http://mdp.ivv.

nasa.gov .

static code measures for thousands of modules based on the Hal-
stead and McCabe measures. The data also include defect counts
seen in up to eight years of project data.

From that data, variousdata mining[9] techniques have been
applied to automatically build detectors. The output of these learn-
ers were compare to detectors generated by a DELPHI approach;
i.e. asking experienced test engineers what thresholds they use to
identify problematic code. These DELPHI predictors return “true”
or “false” if some code measure passes some value.

The LSR and M5 data miners build predictors for the number
of defects expected in new modules [9]. LSR uses linear stan-
dard regression to fit a single multi-dimensional linear model to
the continuous detect data. For example, LSR generates equation
such as Equation 1 below:

defects1 = 0.231 + (0.00344 ∗N) + (8.88e− 4 ∗ V )

−(0.185 ∗ L)− (0.0343 ∗D)− (0.00541 ∗ I)

+(1.68e− 5 ∗ E) + (0.711 ∗B) (1)

−(4.7e− 4 ∗ T )

c1 = −0.3616

Here, 〈N, V, L, D, I, E, B, T 〉 are thederived Halstead metrics
discussed in [4] andc1 is thecorrelationof defects1 to the actual
error per module count. Correlation is discussed further below.

While LSR generates one equation, the M5 data miner can gen-
erate systems of equations. M5 is an extension of LSR that divides
the data into a small number of regions and fits one linear model
to each region.

Two other data miners used in this study were the J48 [9]
ROCKY [4]. J48 is a standard decision tree learner and ROCKY is
a home-brew learner than used a Gaussian approximation to pro-
pose interesting divisions of numeric data. ROCKY generates de-
tector for each number attributea of the forma≥N where≥N
coversα% of the Gaussian area.N is set such that:

α ∈ {0.05, 0.1, 0.15, . . . , 0.95} (2)

module found in defect tracking log?
no yes

signal
no;
i.e. v(g) < 10

A = 395
LOCA = 6816

B = 67
LOCB = 3182

detected? yes
i.e. v(g) ≥ 10

C = 19
LOCC = 1816

D = 39
LOCD = 7443

Acc = accuracy = 83%

PF = Prob.falseAlarm = 5%

PD = Prop.detected = 37%

prec = Precision = 67%

E = effort = 48%

Figure 2. A ROC sheet assessing the detectorv(g) ≥ 10.
Each cell{A,B,C,D} shows the number of modules, and
the lines of code associated with those modules, that fall
into each cell of this ROC sheet.

ROCKY is a very simple learner that was run on subsets of the
available data; i.e. just on the Mccabes data; just on the Halstead
data; or just on simple lines of code (LOC) counts per module.

ROCKY and J48 processdiscretedefect classes. To generate
discrete defect data, we took numeric defect counts per module
and declared predicted defects “true” if#defects≥1. In order to
compare M5 and LSR to ROCKY and J48, the M5 and LSR output
was converted to discrete booleans as follows. If M5 or LSR’s
predictions passes some thresholdT , then predicted defects was
set to “true”. Our experiments repeated that test for:

T ∈ {0.3, 0.6, . . . , 3} (3)

The predictors generated by these methods were assessed via
several assessment metrics. Theaccuracy, orAcc, of a detector as
the number of true negatives and true positives seen over all events.
In terms of the cells〈A, B, C, D〉 shown in Figure 2, accuracy is
Acc = A+D

A+B+C+D
.

Apart from accuracy, several other measures are of interest.
The probability of detection, or “PD”, is the ratio of detected
signals, true positives, to all signals; i.e.PD = D

B+D
(PD is

also called therecall of a detector). Also, theprobability of a
false alarm, or “PF ”, is the ratio of detections when no signal
was present to all non-signals: i.e.PF = C

A+C
. Further, the

precision of a detector comments on its correctness when it is
triggered; i.e.prec = D

C+D
.

Another statistic of interest is theeffort associated with a
detector. If the detector is triggered, then some further assess-
ment procedure must be called. For the particular static code de-
fect detectors discussed in this paper, we will assume that this
effort is proportional to the lines of code in the modules. Un-
der that assumption, theeffort for a detector is what percentage
of the lines of code in a system are selected by a detector; i.e.
effort = E = LOCC+LOCD

LOCA+LOCB+LOCC+LOCD
.

Correlation is a statistic representing how closely two vari-
ables co-vary. Letai andpi denote some actual and predicted val-
ues respectively. Letn andx denote the number of observations
and the mean of then observations, respectively. Then:
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Figure 3. Between project stabilities in defect detectors. Meanµ and standard deviationσ of changes in defect detector statistics.
Dots denote mean (µ) values. Whiskers extend fromµ + σ to µ− σ.

SPA =
P

i(pi−p)(ai−a)

n−1
; Sp =

P
i(pi−p)2

n−1
; Sa =

P
i(ai−a)2

n−1

correlation = c = SP A√
SpSa

Correlation varies from -1 (perfect negative correlation)
through 0 (no correlation) to +1 (perfect positive correlation). For
example, the following equation, found via LSR using just lines of
codeLOC counts, has a very different correlationc to Equation 1
shown above:

defects2 = 0.0164 + 0.0114 ∗ LOC (4)

c2 = 0.65

3 Lack of External Validity?

To test the external validity of our detectors, we took five
NASA applications, then learnt detectors from each of them using
〈DELHI, LSR, M5, J48, ROCKY 〉. Because of Equation 2
and Equation 3, this resulted in hundreds of detectors. All these
detectors were then applied to the other four applications.

As predicted by thelack of external validity objection, the
detectors behaved differently when applied to the different appli-
cations. Figure 3 shows the mean and standard deviation of the
differencesin the values whenthe samedetector was applied to
different applications. For some learners and some assessment
metrics, the observed standard deviations were quite large. For ex-
ample, precision varied wildly and the variance in detectors built
from modulelinesofcode was always large.

However, in stark contrast to thelack of external validity ob-
jection, the differences were mostly very small. For example, with
the exception of precision, most of the differences in the means
were≤0.1; and some learners consistently generated detectors
with a very small variances (e.g. LSR,J48,DELPHI). To place Fig-
ure 3 in perspective〈pd, pf, acc, effort, prec all vary from zero
to one so thedifferencebetween two (e.g.)pd values can vary
from -1 to +1.

4 Buy, not Build?

The results Figure 3 come from a very varied set of applica-
tions. While all the studied applications used C or C++, they were
built at four different locations around the country by five differ-
ent teams for five very different application areas (ground station
telemetry processing, flight software for earth orbiters, simulation
tools for making predictions about hardware behavior, etc).

If defect detectors are so stable across domains, then thebuy
not build objection states that we need not build our own local
repository. Instead, we need only reuse detectors learnt elsewhere.

Figure 4 is our reply to this objection. That figure shows re-
sults from learning detectors atdifferenttimes in the life cycle of
the sameapplication. Defect logs were extracted at 6,12,18,24,
and 48 months into the development of one of our applications.
Defect detectors learnt attime < X were applied to source code
developed attime ≥ X. Figure 4 shows the mean and standard
deviations of thedifferencesin 〈pd, pdf, effort, acc, prec〉 seen
when the samedetector was applied atdifferent timesto the the
sameapplication. Compared to Figure 3, the mean differences
and standard deviations are greatly reduced.
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Figure 4. Within-project stabilities in defect detectors (same format as Figure 3.

5 Source of Opposition?

Figure 3 showed that defect detectors from other applications
arestable; i.e. provide nearly the same results when applied to
the current applications. Further, Figure 4 shows that detect detec-
tors learnt from an historical record of the current application are
stabler. This report is hence very positive on the merits of using
repositories to build static code defect detectors.

Other researchers are not as positive. This section reviews
some of those critiques and offers several source of systematic er-
rors that may explain prior negative results in this area.

There are many reasons to doubt the merits of static code mea-
sures such as the Halstead/Mccabe metrics. Such metrics collected
from a single module know neither (a)how often that module will
be called nor (b)the severity of the problem resulting from the
module failing nor (c)the connectionsfrom this moduleto other
modules. Also, static code measures are hardly a complete char-
acterization of the internals of a function. Fenton offers an in-
sightful example wherethe samefunctionality is achieved using
different programming language constructs resulting indifferent
Mccabe measurements for that module [1]. Worse still, certain
empirical evidence suggests that the Mccabe metrics might be no
more informative than more simplistic measures. For example,
Fenton & Pleeger note that cyclomatic complexity is highly corre-
lated with lines of code [1]. Sheppard & Ince remarks that “for a
large class of software it is no more than a proxy for, and in many
cases outperformed by, lines of code” [7].

In reply to this pessimism, we take care to distinguish between
primary and secondarydetect detectors. We endorse standard
practice in which test engineersprimarily use their domain knowl-
edge and the available documentation to identify the modules that
require most of their attention. Our detectors are onlysecondary
tools to quickly survey the parts of the system that were ruled out
by the primary methods. If our secondary detectors trigger, then

we would suggest that test engineers divert a little of the resources
allocated by the primary method to check some other regions.

Primary detectors need a high probability of detection (pd). For
all the reasons listed by Fenton & Pleeger and Sheppard & Ince,
it is clear that defect detectors learnt from Halstead/Mccabe-style
static code measures may not yield highpds. However, static code
defect detectors are satisfactory secondary detectors. An impor-
tant property of a secondary detector is a low probability of false
alarmpf . Such low false alarms are required to ensure test en-
gineers are not inappropriate distracted from their inspections of
modules selected by the primary detectors. The bottom plot of

PD:

 0

 25

 50

 75

 100

 0.1  0.45        0.65  1  2  3

%

LSR
HALSTED’

PF:

 0
14
19

 50

 75

 100

 0.1  0.45        0.65  1  2  3

%

threshold (T)

LSR!
HALSTED’

Figure 5. Effort, probability of false alarm, and probabil-
ity of detection seen usingdefectsi ≥ T wheredefectsi

is one of Equation 1 (the “HALSTEAD” curves) or Equa-
tion 4 (the “LSR” curves) andT controls when the detector
triggering (see the discussion around Equation 3).
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Figure 6. Each x-axis point x describes the
pf, pd, effort, accuracy of one detector.

Figure 5 shows the range ofpf as a function of a detection thresh-
old constantT . Note that by selectingT appropriately, detectors
can be created with apf that are so low that, if they are triggered
by moduleX, then it becomes nearly certain that there is a defect
in moduleX.

Empirically, detectors with lowpfs also have lowpds. For
example, in Figure 5, a detector with apd = 75% has a pf of
around20% and higherpfs have higherpds. This is to be ex-
pected since, as discussed above, static code defect detectors are
ignorant of many features of an application. Hence, it is important
that secondary detectors are paired with primary detectors since
the latter has the greatest chance of finding bugs in the inspected
regions. Similarly, primary detectors should be paired with low
pf secondary detectors. While wehope test engineers are the
most effective defect detectors, the available empirical evidence
is, at best, anecdotal [8]. As shown here, much is known about the
〈pf, pd, accuracy, effort, precision〉 of static code measures.
Further, they are cheap to build and easy to run over large code
libraries. Hence, they are a useful way to check that aren’t test
engineers look in the wrong place.

As to Fenton & Pleeger’s and Sheppard & Ince’s comments
about the merits of lines of code vs more complex measures such
as Halstead/Mccabe, we saw above that lines of code can gen-
erate detectors with large variances across different applications
(recall the between-application results of Figure 3). Also, we
take issue with their use of correlation to assess detectors. Recall
that Figure 5 results come from two equations with very differ-
ent correlations to number of defects: -0.3616 and 0.65 for Equa-
tion 1 and Equation 4 and (respectively). Either equation can reach
some desired level of detection,regardless of their correlations,
merely by selecting the appropriate threshold value. For exam-
ple, apd = 75% can be reached using either method by setting
T ≥ 0.65 or T ≥ 0.45.

More generally, we have found several commonly use assess-
ment metrics to be uninformative about defect detectors. The prob-
lematic assessment measures are correlation, precision, and accu-
racy. Figure 3 showed that precision can vary wildly while other
measures are more stable. Figure 5 showed that correlation can be
insensitive to other measures likepd. Figure 6 shows a problem
with accuracy. In that figure, hundreds of our detectors are shown

sorted on increasing effort. Consider the detectors markedA and
B on Figure 6. These two detectors have nearly the same accuracy,
yet with efforts, PDs, andPFs that vary by factors as high as
4. That is, accuracy can be uninformative regarding issues ofpf ,
pd, andeffort.

In summary we are positive about static code defect detectors
and others are not for several reasons. Firstly, we as negative as
others about the merits of static code measures as aprimary de-
fect detection method. However, we are very positive about us-
ing static code defect detectors with lowpfs assecondary detec-
tors which canaugmentsome other detection method. Secondly,
we can demonstrate stablepf results across multiple applications.
That is, if our secondary detectors trigger then it is highly unlikely
that they are incorrectly reporting a detect. Thirdly, prior criti-
cisms may be passed on problematic assessment measures such as
correlation. We recommend usingpf , pd, andeffort to assess
detectors.

A drawback to this analysis is the sample size. While our work
is based on a larger sample that some other publications in this
area, more data is always better. We plan to frequently re-sample
NASA’s metrics data repositories to check our conclusions. This
ability to revisit and revise old conclusions about software en-
gineering is an important benefit of public domain code+defect
repositories such as NASA’s MDP program.
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