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OVERVIEW: When learning defect detectors from
static code measures, NaiveBayes learners are better than
entrophy-based decision-tree learners. Also, accuracy is not
a useful way to assess those detectors. Further, those learn-
ers need no more than 200-300 examples to learn adequate
detectors, especially when the data has beenheavily strati-
fied; i.e. divided up into sub-sub-sub systems (and by “ade-
quate”, we mean that those detectors perform nearly as well
slower, more expensive manual inspections).

The rest of this paper describes how we reached those
conclusions after (i) an analysis of known baselines in the
literature and (ii) a review of a assessment methods for de-
tectors learned from the NASA defect logs of Figure 1.

BASELINES: If defect detectors are interesting, they
must somehow be better than knownbaselinesin the lit-
erature. For example, consider manual code reviews. These
reviews are labor intensive; depending on the methods, 8 to
20 LOC/minute can be inspected and this effort repeats for
all members of the review team, which can be as large as
four or six [5]. These reviews can also be effective. A re-
cent panel atIEEE Metrics 2002[6] concluded that such
reviews can find≈60% of defects1. That defect detec-
tion rate has a wide variance. Raffo found that the defect
detection capability of industrial inspection methods can
vary fromTR(35, 50, 65)%2 for full Fagan inspections, to
TR(13, 21, 30) for some widely-used industrial practices.

PUBLIC DOMAIN PROBLEMS: The data used in
this study comes from the CM1, JM1, PC1, KC1 and KC2
NASA applications shown in Figure 1. This data con-

1That panel supported neither Fagan claim [3] that inspections can find
95% of defects before testing or Shull’s claim that specialized directed
inspection methods can catch 35% more defects that other methods [7]

2TR(a, b, c) is a triangular distribution with min/mode/max ofa, b, c.
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Figure 1. Data sets used in this study.

tains static code measures (Halstead, Mccabe, SLOC) and
defect rates (which we convert to booleans:defects ∈
{true, false}). This code is divided into levels for systems,
sub-systems, sub-sub-systems, etc; for example, CM1 is a
level1 system and KC2 is is a level4 sub-sub-sub-system.

Ideally, this data set should be larger than the five items
shown in Figure 1. Nevertheless, these five data sets are a
far larger corpus than seen in most studies3

ASSESSMENT MEASURES: Various assessment
measures exist for data miners including readability (neural
networks cannot succinctly report their theories in a human-
readable form); repeatability (genetic algorithms can return
different theories after different runs); just to name a few.
This study will use the assessment measures shown in Fig-
ure 2. This figure defines, amongst other things, the proba-
bility of detectionPD as the ratio of known defects found
divided by all known defects.

META-ASSESSMENT: If the goal of learning is to
generate models that have some useful future validity, then
the learned theory should be tested on data not used to build
it4. One standard meta-assessment method a N-way cross

3e.g. A recent report on software defect detectors inIEEE Transactions
on Software Engineeringused just 2 data sets [4].

4Failing to do so can result in a excessive over-estimate of the learned
model- for example, Srinivasan and Fisher report an 0.82 correlation be-
tween the predictions generated by their learned decision tree and the ac-
tual software development effort seen in their training set [8]. However,
when that data was applied to data from another project, that correlation
fell to under 0.25. The conclusion from their work is that a learned model
that works fine in one domain may not apply to another.



module in defect log?
NO YES

signal NO; i.e.v(g) < 10 A = 395 B = 67
detected? YES; i.e.v(g) ≥ 10 C = 19 D = 39

Acc = accuracy = A+D
A+B+C+D

= 83%

PF = falsealarm = C
A+C

= 5%

PD(a.k.a.recall) = detected = D
B+D

= 37%

prec = Precision = D
C+D

= 67%

Figure 2. Assessment statistics the binary
classifier v(g) ≥ 10. Each cell {A,B,C,D}
shows the number of modules that fall into
each cell.

M times the data ordering is randomized and then:

• The first L examples are divided into N buckets. The class distri-
bution within the N buckets is selected to be similar to the class
distribution in the original data set.

• X
N

∗ L of the data forX ∈ {1, 2, . . . N − 1} is used for training a

• The remainingN−X
N

∗ L of the data is used for testing.

The sequence stops atN − 1 since training onN
N

of the data would leave

nothing for the test suite (1 − N
N

= 0).

Figure 3. An LMNX study.

validation study where, the data is sorted into a random or-
der M times. For each order, the data is divided into N
buckets and the theory learned on N-1 buckets is tested on
the remaining bucket. This procedure allows a prediction
on how well the learner will perform on new data.

LMNX STUDIES: In a commercial setting, accessing
data is difficult. Data miners need to know howlittle data
they need to achieve good results. Hence, we modify the
M*N procedure to explore how the learner’s performance
changes asless and less datais available.

Figure 3 defines an L*M*N*X study. In summary, the
procedure picks up to L items from a data set (selected at
random), divides those items into N buckets, then records
the performance of a learner as an increasing number of the
buckets is used for training. This process is repeated M-
times. The “L” in the LMNX study is very important since
this it the upper limit on the number of examples processed
M*N*X times. Such upper limits are required when pro-
cessing very large data sets (e.g. the JM1 data set in Fig-
ure 1 which has 10885 examples).

Figure 4 shows the results from a LMNX study where
<L=150,M=N=10,X=1. . . 9> on the IRIS data set from the
UCI repository [1]. The plot on the left shows the mean
classifier accuracy improving as more and more of the data
is used to train two classifiers from the WEKA toolkit [9]
(J48 and a Naive Bayes classifier with kernel estimation).

The error bars in Figure 4 show±1 standard deviations
for the accuracies seen in theM repeats. Those standard
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Figure 4. Learning curves (left); summarized
(right).

deviation values can be used in t-tests to generate the right-
hand-sideLMNX summary plotof Figure 4. In a LMNX
summary plot, the display of the mean accuracy of a classi-
fier only changes if it is statistically difference (at the 95%
level) to the last seen change (otherwise the displayed mean
value is the same as the value seen at the last change). The
summary plot shows that there was little significant im-
provement in classification accuracy of Naive Bayes or J4.8
after using 20% of the data. Further, there was no signifi-
cant improvement in either method after using 60% of the
data.

On top of a LMNX summary plot is a comparison of
the performance of the two learners at eachX value. One
learnerwinsover the other if it isbothstatistically different
(using a t-test at the 95% level)and the mean performance
of one learner is larger than the the other. In the case of this
study with the IRIS data set, Naive Bayes won over J48 four
times; and J48 never won; and both learners tied four times.

In an LMNX study, a learner is said to haveplateaued
when the accuracy/PD/PF/precision curves in the summary
plot stop changing; i.e. there are no significant changes to
the performance of the learner. The plateaus indicate when
enough data collection is enough. In Figure 4, the learners
plateaus after 40%*150= 60 examples

LMNX STUDIES ON DEFECT DATA: Figure 5
shows a LMNX study for the Figure 1 data compar-
ing a NaiveBayes (with kernel estimation) classifier to an
entropy-based decision tree learner (J48) [9]. In that study,
<L=500,M=N=10, X=1. . . 9>. Figure 5 shows 180 exper-
iments where, 10 times, NaiveBayes and J48 were trained
and tested on the same data. At the 95% level, NaiveBayes
won 61 times, J48 won 26 times, and in the remaning 180-
61-26=93 times, the two methods tied. This means that
in 180−26=154

180 ≈85% of cases, NaiveBayes would result in
equivalent or better defect detectors than J48.

Figure 5 is sorted in according to PD. KC2 and KC1 are
shown on top and these have the highest PDs and preci-
sions. JM1 and PC1 are shown at bottom and these have
the lowest PDs and precisions. Note that this sort order
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data level Accuracy PD (recall) PF Precision
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Figure 5. Accuracy, PD, PF, precision results from a LMNX study for Figure 1 data.

corresponds to the system/sub-system break up shown in
Figure 1. That is, defect detectors learnt from specialized
sub-sub-sub-systems have a higher PD and precision than
defect detectors learnt for an entire system. A similar effect
has been seen previously in the software cost estimation lit-
erature: better results are obtained from data that has been
stratifiedinto the specialized groups [2, p179]..

PROBLEMS USING “ACCURACY”: Data miners
usually report their value in terms ofaverage accuracyseen
in a M*N study and mere accuracy measures can miss nu-
merous important effects. In Figure 5, accuracy is (nearly)

the same in all datasets even though other measures var-
ied wildly; e.g CM1 and KC2 have similar accuracies but
KC2’s PD are much higher than CM1’s PD.

Another drawback with accuracy is that these authors
can’t find in the literature baseline accuracy measurements
for software defect detectors. On the other hand, the in-
troduction to this paper reported PD’s for manual code in-
spection from the literature ranging from 13% to 30% (for
simple inspections) to 35% to 65% (for more elaborate in-
spection methods). The PDs shown in Figure 5 range up to
to 55% (in KC1) in the more stratified data sets. To the best
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of our knowledge, Figure 5 is the first report in the litera-
ture that static code detectors learnt from highly stratified
data work as well as middle to high-effort manual inspec-
tion methods. This is a significant result since automatically
data mining detectors are far cheaper and faster than man-
ual inspections that requires up to half a dozen participants
working for many days.

EARLY PLATEAUS: In 15
20

ths
of the Figure 5 plots,

there is no significant improvement after learning from

40%*500=400 examples. Further, in1920
ths

of the plots in
Figure 5, there is no improvement after 60%*500=300 ex-
amples5 Such anearly plateaueffect can have several ben-
efits.

If a learner plateaus early, then standard data mining
methods can scale to very large data sets. Our SAWTOOTH
learner (under development) finds the number of examples
N needed before plateau. SAWTOOTH then changes to
cruise modewhere learning is disabled and the system runs
down the rest of the data, testing the new examples on the
theory learned before entering cruise mode, all the while
maintaining a cache of the lastN examples. If the test per-
formance statistics ever significantly change, then the data
has fallen off the plateau and more learning is required.
SAWTOOTH then passes theN examples to a some learner
in order to find the next plateau. The process repeats till the
data is exhausted. Note that, at all times, SAWTOOTH only
needs the memory required to handleN examples.

SAWTOOTH can mine large data sets and handlecon-
cept drift. When collecting data, sometimes the data min-
ing team is unaware that the underlying distributions have
changed (e.g. when there are major personnel changes
amongst the programmers). These distribution changes can
imply that the learned theory needs to be changed.

In domains with early plateaus, SAWTOOTH can han-
dle concept drift. Suppose a domain generatesI instances
per timeT at the rateI

T . Suppose further that learners in
that domain stabilize afterS instances which takes timeSI

T

to collect. If concept drift takeslonger than stabilization
time, then concept drift can be detected by dividing the data
chronologically into units of sizeS and testingunitj us-
ing the theory learned fromunitj−1. If the domain is sta-
ble, then thesameperformance should be seen inunitj as
unitj−1. If concept drift has occurred then the performance
will be different.

CONCLUSIONS: Based on a LMNX analysis of the
Figure 1 data, we say that (1) measuring detector per-
formance in terms of accuracy can be uninformative;
(2) NaiveBayes is better than J48 at finding defect detectors;
(3) learners need only 200-300 examples to find defect de-

5J48’s precision results jumps 30% in PC1- but even after this jump,
J48’s mean is not significantly different to the NaiveBayes precision results
for PC1.

tectors; (4) stratification into sub-sub-systems (and below)
improves the probability of detection and precision; and for
stratified datasets, (5) defect detectors performing nearly as
well slower, more expensive manual inspections

FUTURE WORK: The generality of our conclusions
should be checked. We hence recommend the establishment
of a public domain database of data mining examples for
defect detection. These data sets should include stratifica-
tion information. For our part, the Figure 1 data is available
from NASA’s Metrics Data Program web site6 in normal-
ized table data format, or from the first author’s web site7,
in ARFF format.
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