
Why Mine Software Repositories?
Tim MenziesIEEE Member, David RaffoIEEE Member, Siri-on Setamanit, Justin DiStefano, Robert M. Chapman

Abstract— Data mining results about fault detectors are typi-
cally assessed in terms of their predictive accuracy (PDs). While
interesting, such results may not convince a project manager that
they should reallocate their scarce resources to implementing a
new technology on their project.

This article proposes a methodology for assessing the merits of
defect detectors learnt from software repositories of static code
measures (Halstead and McCabe). Using process simulation, we
find situations where the use of such detectors is useful or useless.

I. I NTRODUCTION

Good research results are wasted unless there is a com-
pelling business case to use them. Without such a case, a
project manager may not be convinced that they should,
for example, reallocate scarce resources to implement a new
technology on their project. The aim of this article is to offer
one example of how to combine research results (on learning
defect detectors) with a business case (on why using those
detectors is a worthy idea).

In a special issue on mining software repositories, it might
be suspected that our conclusions will be biased; i.e. that
we would alwaysfind a good business case for data mining
databases of software. We therefore take care to present
business cases that endorse mining repositories as well as
others that identify situations where the mining of repositories
for defect detectors isnot useful. These business cases include
an IV&V case study (where test engineers study someone
else’s code) and a V&V study (where test engineers study
their own code). In summary, in these first two case studies,
using repositories to find defect detectorshelps IV&V but
hurts V&V

A third scenario is then run that demonstrates the utility
of our methodology. This third scenario finds a change to the
V&V scenario that reverses the previous negative result. That
is, by using the process simulation we identify situations in
which application of this new technology would be beneficial.
We also find situations in which applying this technology
would not be beneficial. Moreover, we can set performance
benchmarks for vendors of this type of technology, diagnose
problems associated with implementation and assess alterna-
tive approaches for applying the technology to the benefit of
the organization

Tim Menzies is with the Department of Computer Science, Portland State
University, P.O. Box 751 Portland, Oregon 97207-0751tim@menzies.us .
Dr. Menzies’ web site ishttp://menzies.us

David Raffo and Siri-on Setamanit are with the School of Business Admin-
istration, Portland State University, Portland, Oregon:raffod@pdx.edu ;
setamanit@comcast.net .

Justin DiStefano and Robert Chapman are with Galaxy Global Corporation,
Fairmont West Virginia,justin@lostportal.net and {Robert.M.
Chapman@ivv.nasa.gov}.

Fig. 1. The MDP data repository.http://mdp.ivv.nasa.gov .

Our study is in three parts. First, we present a related work
section That offers some background notes on the technologies
used in this paper.

Second, we report stable properties of defect detectors
learned from software repositories. This second part will base
its conclusions from five public domain data sets from the
NASA Metrics Data Program (MDP) (see Figure 1). The MDP
dataset issanitizeddata and so an anonymous name is given
to each data set; e.g. the CM1,JM1,KC1,KC2,PC1 data sets
shown in Figure 2. This data contains static code measures
(Halstead, McCabe, lines of code) and defect rates (which we
convert to booleans:defects ∈ {true, false}). To be precise,
we will actually study 12 MDP datasets but Figure 3 shows
that seven of those are sub-divisions of the KC1 dataset. While
a larger sample than five (or 12) data sets would be preferred,
our corpus is much larger than those seen in many other high-
profile studies1.

The third and final part of our study will use the properties
identified in the second part to reconfigure aprocess simu-
lation of the IEEE 12207 software development life cycle.
IEEE 12207 is used at many sites, including NASA and the
Department of Defense (DoD). The process simulation model
will then be used to determine the costs and benefits of using
defect detectors mined from software repositories.

II. RELATED WORK

In this paper we propose a process change for software
engineers. In short, we would augment their current activity
with defect detectors built bydata minersfrom static code
measures. This new process is assessed viaprocess simulation.
This section offers some background on process simulation,
data mining and the merits of static code measures.

1e.g. A recent report on software defect detectors inIEEE Transactions on
Software Engineeringused just 2 data sets [1].

MENZIES,RAFFO,SETAMNIT,DISTEFANO,CHAPMAN, WHY MINE SOFTWARE REPOSITORIES?; SUBMITTED TO IEEE TSE, OCTOBER 23, 2004 2

% with developed
project file level modules defects language at notes

PC1 pc1.arff 1 1107 6.8 C location 1 Flight software for earth orbiting satellite
JM1 jm1.arff 1 10885 19% C location 2 Real-time predictive ground system: Uses simulations to generate predic-

tions
CM1 cm1.arff 1 496 9.7% C location 3 A NASA spacecraft instrument
KC1 kc1.arff 3 2107 15.4% C++ location 4 Storage management for receiving and processing ground data

kc1 1|2|3|
13|16|17|18.arff

4 80..290 C++ location 4 7 divisions of KC1

KC2 kc2.arff 4 523 20% C++ location 4 Science data processing; another part of the same project as KC1; different
personnel than KC1. Shared some third-party software libraries with KC1,
but no other software overlap.

Total 15118

Fig. 2. Data sets used in this study.File denotes a data set file name available inARFF format fromhttp://scant.org/2/eg/arff .

level0
NASA

8>>>>>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

level1
CM1
JM1
PC1

. . .

8>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>:

level2

. . .

8>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>:

level3

KC1

8>>>>>>>>><>>>>>>>>>:

level4
KC1.k1
KC1.k2
KC1.k3
KC1.k4
KC1.k5
KC1.k6
KC1.k7

.

8<: KC2

Fig. 3. Data sets used in this study.

A. Process Simulation

In order to make a business case for these learned defect
detectors, we need to assess their impact on the performance
of the project. There are many approaches that can be used
to assess the business implications of process changes [2]–
[9]. One key question with all the methods is ”Where do we
get the numbers to assess the impact of the process change
for the business case analysis?” Obtaining the numbers for
the business case analysis can be non-trivial. Data must be
collected from the project or provided using a collection of in-
dustry benchmarks or expert opinion obtained through surveys
or interviews. Models must then be developed to assess the im-
pact of the process changes usually along multiple dimensions
of performance (such as cost, quality and schedule). These
models must be developed to predict process level performance
and the results must also be provided at the project level. Most
cost estimating tools including COCOMO and SLIM do not
explicitly include the details of the development process. They
only provide project-level outputs and are therefore not well
suited for this purpose.

Process simulation is commonly used in many industries
including manufacturing and service operations to address
these kinds of issues. In recent years, process simulation
has been applied to software development processes2. The

2See the proceedings of theProSim International Workshops, at http:
//www.prosim.pdx.edu/ and special issues of theJournal of Systems
and Software(Vol 46, No 2/3, Vol. 47, No. 9 and Vol, 59, No. 3), and the
international journal ofSoftware Process: Improvement and Practice, Vol 5,
No. 2/3, Vol. 7, No. 3/4 and Vol 9, No. 2) on this topic.

key advantage to process simulation is that these models can
capture the details associated with the development process
and provide a systematic approach for incorporating metrics
data and creating the necessary process level predictions along
multiple measures of performance [6], [10], [11]. Simulation
modeling tools (e.g. Arena, Extend, Stella, etc.) simplify
conducting sensitivity (or ”what if”) analyses. As a result,
process simulation models can explicitly capture localized
changes to the process made by implementing a new tool,
technology or method and then predict the overall project-level
impacts.

In this paper, we employ process simulation to assess
the impact of applying learned fault detectors under three
possible operational scenarios. The specific process simulation
model that will be used for this study is a model of the
IEEE 12207 systems development process [12]. This process
is representative of the process used on large-scale NASA
and US Department of Defense (DoD) projects. The model
contains industry standard benchmark data from [13] for large-
scale systems development. Moreover, the model has been
tuned using a data set from 8 NASA projects over 100 KSLOC
in size. Predictions made with the model provide similar
accuracy to those obtained using COCOMO I (i.e. predictions
were within 30% of actual values, more than 70% of the time).

Figure 4 shows a top-level view of the software development
model used for this study. As can be seen in that figure, the
main life cycle phases of the IEEE 12207 process are:

• Process implementation
• System and software requirements analysis
• Software architecture and, detailed design
• Software coding and unit testing
• Software and system integration planning
• Integration and qualification testing
• Integration and acceptance support

Figure 4 shows that we have augmented IEEE 12207
with an additional IV&V layer that models the actions of
external consultants auditing software artifacts. In the sequel,
our conclusions will be based on a comparison of different
simulations of this 12207+IV&V process model: a baseline
AS-IS simulation; and a TO-BE simulation where the IV&V
and V&V work is informed by data mining.

MENZIES,RAFFO,SETAMNIT,DISTEFANO,CHAPMAN, WHY MINE SOFTWARE REPOSITORIES?; SUBMITTED TO IEEE TSE, OCTOBER 23, 2004 3

Fig. 4. IEEE 12207 process simulation model with an additional IV&V Layer.

B. Data Mining

Data mining is a summarization technique that reduces large
sets of examples to a small understandable pattern using a
range of techniques taken from statistics and artificial intelli-
gence [14]–[16]. We use such data miners here to learn defect
detectors from defect logs. For the purposes of comparison,
this study will employ two data mining methods: entropy -
based decision tree learning and a Naive Bayes classifier. For
the purposes of repeatability, we will use the public-domain
implementations of those algorithms available in the WEKA
tool [14].

In decision treelearning, the whole training set issplit into
subsets based on some attribute value test. The process then
repeats recursively on the subsets. Each splitter value becomes
the root of a sub-tree. Splitting stops when either a subset
gets so small that further splitting is superfluous, or a subset
contains examples with only one classification. Hence, agood
split decreases the percentage of different classifications in a
subset. Such agood splitensures that smaller subtrees will be
generated since less further splitting is required to sort out the
subsets. Various schemes have been described in the literature
for finding good splits. For example, the CART [17] decision
tree learner uses the GINA index while the C4.5 [18] decision
tree algorithm uses an information theoretic measure (entropy)
to find its splits. J48 is version eight of C4.5, ported to JAVA.

A Naive Bayes classifiertunes past knowledge to new
evidence using Bayes’ Theorem:

P (H |E) =
P (H)
P (E)

∏
i

P (Ei |H)

That is, given fragments of evidenceEi and a prior prob-
ability for a classP (H), a posterior probabilityP (H |E)
is calculated for the hypothesis given the evidence. The
Bayes classifier returns the class with highest probability.
Many studies (e.g. [19], [20]) have reported that, in many
domains, this simple Bayes classification scheme exhibits
excellent performance compared to other learners. This is a
surprising result. Such classifiers are often callednäıve [14],
since they assume that the frequencies of different attributes

are independent. In practice [21], the absolute values of the
classification probabilities computed by Bayes classifiers are
often inaccurate. However, the relative ranking of classification
probabilities is adequate for the purposes of classification.

Bayes classifiers can be extended to numeric attributes
usingkernel estimationmethods. For this study, we use John
and Langley’s Gaussian summation kernel estimation method
implemented in the WEKA’s Bayes classifier [14]. Other,
more sophisticated methods are well-established [22], [23],
but several studies report that even simple methods suffice for
adapting Bayes classifiers to numeric variables [20], [24].

C. Static Code Measures

For this study, our data miners learn from static code
measures defined by McCabe [25] and Halstead [26]. McCabe
(and Halstead) are “module”-based metrics where a module is
the smallest unit of functionality. In C or Smalltalk, “modules”
would be called “function” or “method” respectively. For a
brief tutorial on the Halstead and McCabe measures, see [27].

We study these static code measures since they are:

• Useful: see the business case made in this article;
• Easy to use: static code measures (e.g. lines of code,

the McCabe/Halstead measures) can be automatically and
cheaply collected;

• And widely used. Many researchers use static measures to
guide software quality predictions; e.g. [27]–[34]. Verifi-
cation and validation (V&V) textbooks (e.g. [35]) advise
using static code complexity measures to decide which
modules are worthy of manual inspections. Further, we
know of several large government software contractors
that won’t review software modulesunless tools like
McCabe predict that they are fault prone. Hence, defect
detectors have a major economic impact when they may
force programmers to rewrite code.

Static code measures are hardly a complete characterization
of the internals of a function. Fenton offers an insightful ex-
ample wherethe samefunctionality is achieved usingdifferent
programming language constructs resulting indifferent static

MENZIES,RAFFO,SETAMNIT,DISTEFANO,CHAPMAN, WHY MINE SOFTWARE REPOSITORIES?; SUBMITTED TO IEEE TSE, OCTOBER 23, 2004 4

dataset kind detector
AN1 Halstead unique operands >= 8.14
CM1 Halstead I ≥ 167.94
JM1 Halstead unique operands >= 60.48
KC1 Halstead V ≥ 1106.55
KC2 McCabe ev(g) >= 4.99

Fig. 5. Best single measures found in five different defect logs. From [39].

measurements for that module [36]. Fenton uses this example
to argue the uselessness of static code measures.

An alternative interpretationof Fenton’s example is that
static measures can never be a definite and certain indicator
of the presence of a fault. Rather, defect detectors based on
static measures are best viewed as probabilistic statements that
the frequency of faults tends to increase in code modules
that trigger the detector. By definition, such probabilistic
statements will are not categorical claims with some a non-
zero false alarm rate. We show below that false alarm rate
can be under 10% while still achieving a high probability of
detection. That is, on average, these static measures contain
some useful indications of the structure of a system.

Shepperd & Ince and Fenton & Pfleeger might reject theal-
ternative interpretation. They present empirical evidence that
(e.g.) the McCabe static measures offer nothing more than un-
informative measures such as lines of code. Fenton & Pfleeger
note that the main McCabe’s measure (cyclomatic complexity,
or v(g)) is highly correlated with lines of code [36]. Also,
Shepperd & Ince remarks that “for a large class of software it
(cyclomatic complexity) is no more than a proxy for, and in
many cases outperformed by, lines of code” [37].

Our own experiments withfeature subset selection(FSS)
suggest that static measures can be more informative than
suggested by Shepperd & Ince and Fenton & Pfleeger. FSS
is the preferred method in the data mining community of find
good subsets of the available measures. Hall and Holmes offer
a good tutorial and experimental evaluation of seven different
FSS methods [19]. For example, the WRAPPER methods of
Kohavi and John [38] performs ahill-climbing searchthrough
the space of possible measures. At each step in the climb,
some data mining algorithm is used as anoracle to compare
the performance of a smaller to a larger set of features.

With Nikora and Ammar [39], we have applied seven differ-
ent FSS methods like WRAPPER on defect logs comprising
lines of code, McCabe and Halstead measures. Two different
data miners were used as oracles: the J48 decision tree learner
and a NaiveBayes classifier with kernel estimation. Figure 5
shows the detectors learnt using the most influential static
measure found by any of the seven FSS methods using either
of the two oracles. Note that in no case was lines of code the
most influential measure.

Why are we so optimistic about static measures and Shep-
perd & Ince and Fenton & Pfleeger are so pessimistic?
One possibility is that we use a different set ofassessment
criteria for detectors. A commonly used assessment criteria is
correlation(defined in Figure 6) and, as the following example
shows, correlation may be uninformative on the merits of a
measure for detecting a defect.

Elsewhere [27], we have applied linear regression to logs

Let ai andpi denote some actual and predicted values respectively.
Let n and x denote the number of observations and the mean of
the n observations, respectively. Correlationc is then calculated as
follows:

SPA =
P

i(pi−p)(ai−a)

n−1

Sp =
P

i(pi−p)2

n−1
; Sa =

P
i(ai−a)2

n−1

correlation = c = SP A√
SpSa

Fig. 6. Correlation

PD:

 0

 25

 50

 75

 100

 0.1 0.45 0.65 1 2 3

%

LSR
HALSTED’

Fig. 7. Probability of detection seen usingdefectsi ≥ T where
defectsi is one of Equation 1 (the “LSR” curves) or Equation 2 (the
“HALSTEAD” curves) andT controls when the detector triggering.

of defects in modules described only in terms of lines of code
(LOC) or the Halstead (HAL) measures. This generated these
equations:

defects(LOC) = 0.0164 + 0.0114 ∗ LOC (1)

c(LOC) = 0.65

defects(HAL) = 0.231 + (0.00344 ∗N) + (8.88e− 4 ∗ V) (2)

−(0.185 ∗ L)− (0.0343 ∗D)− (0.00541 ∗ I)

+(1.68e− 5 ∗ E) + (0.711 ∗B)

−(4.7e− 4 ∗ T)

c(HAL) = −0.36

At first glance, the equations seem to endorse the thesis
that seemingly sophisticated static measures are even more
useless than lines of code. The simple LOC-based predictor
(Equation 1) correlates atc = 0.65 to defects. This is much
stronger that the correleation ofc = −0.36 seen in the the
Halstead-based detector (Equation 2). However, further study
shows that the correlation of these equations isirrelevant to
their merits as a defect detector. Equation 1 and Equation 2
can be converted to a detector by combining them with
some threshold valueT . If a module generates numbers from
these equations that exceeds the threshold, then a detector is
triggered. For all the modules, the probability of detection
(PD) is the percentage of modules with known defects that lead
to a trigger. Figure 7 shows how PD changes as the threshold
changes 0.1 to 3 for the KC2 dataset from Figure 2. Note that
a PD = 75% can be reached using either method by setting
T ≥ 0.65 or T ≥ 0.45. That is,eitherequation can reach some
desired level of detectionregardless of their correlationsjust
by using different threshold values.

Our conclusion from this example is thatcandidate mea-
sures for defect detectors need to be assessed on more than
just correlation. The next section offers several suchspecific
criteria andmeta-criteria.

MENZIES,RAFFO,SETAMNIT,DISTEFANO,CHAPMAN, WHY MINE SOFTWARE REPOSITORIES?; SUBMITTED TO IEEE TSE, OCTOBER 23, 2004 5

III. I NSTEAD OFCORRELATION

A. Specific Criteria

Particular measures can be assessed by combining them to
form detectors and then assess eachspecificdetector using:

• PD: the probability of defecting faults (a.k.a. recall);
• Accuracy;
• The effort associated with the detector triggering;
• The probability of false alarm (PF).

To formally define the specific criteria, we say that a defect
detector hunts for asignal that a software module is defect
prone. Statistics on a detector can be kept in a 2-by-2 matrix
of Figure 8. If a detector registers a signal, sometimes the
signal is actually present (cell D) and sometimes it is absent
(cell C). Alternatively, the detector may be silent when the
signal is absent (cell A) or present (cell B).

If the detector registers a signal, there are two cases of
interest. In one case, the detector has correctly recognized the
signal. Thisprobability of detection, or “PD”, is the ratio of
detected signals, true positives, to all signals:

probability detection= PD =
D

B + D

In the other case, theprobability of a false alarm, or “PF ”,
is the ratio of detections when no signal was present to all
non-signals:

probability false alarm= PF =
C

A + C

Another criteria of interest is the accuracy, or “Acc”, of
a detector which is the number of true negatives and true
positives seen over all events:

accuracy= Acc =
A + D

A + B + C + D

For example, the numbers in the ABCD cells of Figure 8
show the number of KC2 modules that a Naive Bayes classifier
allocated to each cell. Based on those numbers:

PD = D
B+D = 48

60+48 = 44%
PF = C

A+C = 23
392+23 = 5%

Acc = A+C
A+B+C+D = 392+48

392+60+23+48 = 84%

Yet another criteria of interest is the work requiredafter a
detector is triggered. Based on cost-model developed by one
contractor at NASA’s IV&V facility [40], and a model from
Forrest Shull (personnel communication), our analysis will
assume that inspectionEffort is linearly proportional to lines
of code. Under that assumption, the inspectionEffort for a
detector is proportional to the percentage of the lines of code
in a system are selected by a detector. If the lines of code

signal present?
no yes

signal no A= true negative
392

B
60

detected? yes C
23

D= true positive
48

Fig. 8. Statistics for applying the specific criteria.

 0

 0.25

 0.5

 0.75

 1

%

30 detectors, sorted by effort

accuracy

PF
PD

effort

A B

Fig. 9. At each x-axis value, x describes the
pf, pd, effort, accuracy of one detector. From [27].

in the modules falling into each cell of Figure 8 isLOCA,
LOCB , LOCC , andLOCD, then:

Inspection Effort =
LOCC + LOCD

LOCA + LOCB + LOCC + LOCD
(3)

Often it is the larger modules trigger the detector and fall
into cells C and D. Hence, while only 23+48

392+60+23+48 = 14%
of the modules fall into cells CD of Figure 8, these represent
an Effort of 56% of the code. Such a result lends support
that lines of code is a good predictor for defects. However, as
seen above in Figure 5 other static measures can be better.

Ideally, a detector has a high probability of detection, a low
effort, and a low false alarm rate. In practice, this is hard to
achieve. The general pattern of Figure 9 has been observed in
hundreds of defect detectors generated from various subsets
of the available static measures from the Figure 2 data sets
using a wide variety of data miners including decision tree
learners, model tree learners, linear regression and a home
brew learner called “ROCKY” [27], [30]. Each x-value of that
figure describes one detector. The y-values on that figure offer
four values for each detector: effort, PD, PF, and accuracy. The
detectors are sorted on effort. The salient features of Figure 9
are as follows:

• Not surprisingly, to detectmorefaults, our detectors must
trigger onmore modules. Hence,Effort hovers above
PD.

• There exists a large number of detectors with very low
false alarm rates; i.e.PF≤10%.

• Very high probabilities of detection usually means trig-
gering many modules which, in turn, increasesboth the
false alarm rate and the effort. Hence, highPDs come
at the costs of highPFs andeffort.

• Accuracy can be as uninformative as correlation for
predicting detection, false alarms, and effort. Consider
the detectors markedA and B on Figure 9. These
two detectors have nearly the same accuracy, yet with
efforts, PDs, andPFs that can vary by a factor as
large as4.

B. Meta-Criteria and Sequence Studies

Apart from the criteria used to assess a specific detector, it
is also insightful to consider certainmeta-criteria. If the goal

MENZIES,RAFFO,SETAMNIT,DISTEFANO,CHAPMAN, WHY MINE SOFTWARE REPOSITORIES?; SUBMITTED TO IEEE TSE, OCTOBER 23, 2004 6

 0

 25

 50

 75

 100

 1 2 3 4 5 6 7 8 9

ac
cu

ra
cy

bins used in training

nbk
J48

 0

 25

 50

 75

 100

J48 wins
tie

nbk wins

 1 2 3 4 5 6 7 8 9

ac
cu

ra
cy

bins used in training

wins
nbk
J48

Fig. 10. Learning curves (left); summarized (right).

is to generate detectors that have some useful future validity,
then an important meta-criteria is how well the detector
performs on datanot used to generate it. Failing to do so
can result in an excessive over-estimate of the learned model-
for example, Srinivasan and Fisher report an 0.82 correlation
between the predictions generated by their learned decision
tree and the actual software development effort seen in their
training set [34]. However, when that data was applied to data
from another project, that correlation fell to under 0.25. The
conclusion from their work is that a learned model that works
fine in one domain may not apply to another.

In order to apply this meta-criteria, a commonly-used meta-
criteria assessment is a M*N-way cross validation study
where, the data is sorted into a random order M times [14].
For each order, the data is divided into N bins and the theory
learned on N-1 bins is tested on the remaininghold-out bin.
This procedure allows a prediction on how well the learner
will perform on new data.

Any empirical conclusion, such as ours, should come with
a self-testthat can quickly and clearly recognizes when an
old conclusion does not apply to a specific new situation. To
implement that self-test, we modify the standard N*M-way
procedure to find the lower-limit on how many examples are
required to learn a detector. Our modified procedure is called
a sequence studyand is defined by the tuple<L,M,N,X>. In
summary, a sequence study tests how well we can learn a
theory usingless and less data:

• M times the data ordering is randomized.
• The first L examples are divided into N bins. The class

distribution within the N bins is selected to be similar to
the class distribution in the original data set.

• X
N ∗ L of the data forX ∈ {1, 2, . . . N − 1} is used for
training and...

• The remainingN−X
N ∗ L of the data is used for testing.

The “L” in the sequence study is very important since this it
the upper limit on the number of examples processed M*N*X
times. Such upper limits are required when processing very
large data sets (e.g. the JM1 data set in Figure 2 which has
10885 modules).

Figure 10 shows the results from a sequence study where
<L=150,M=N=10,X=1. . . 9> on the IRIS data set from the
UCI machine learning data repository [41]. The plot on the
left shows the mean classifier accuracy improving as more

and more of the data is used to train J48 and a Naive Bayes
classifier with kernel estimation.

The error bars in Figure 10 show±1 standard deviations for
the accuracies seen in theM repeats. Those standard deviation
values can be used in t-tests to generate the right-hand-side
sequence summary plotof Figure 10. In a sequence summary
plot, the display of the mean accuracy of a classifier only
changes if it is statistically difference (at the 95% level) to
the last seen change; otherwise the displayed mean value is
the same as the value seen at the last change. The summary
plot shows that there was little significant improvement in
classification accuracy of Naive Bayes or J4.8 after using 20%
of the data. Further, there was no significant improvement in
either method after using 60% of the data.

On top of the y-axis of the sequence summary plot are three
marks:nbk wins; tie; and J48 wins. The plot to the right of
these marks are a comparison of the performance of the two
learners at eachX value. One learnerwins over the other if it
is both statistically different (using a t-test at the 95% level)
and the mean performance of one learner is larger than the
the other. In the case of this study with the IRIS data set,
Naive Bayes won over J48 four times; J48 never won; and
both learners tied four times.

In an sequence study, a learner is said to haveplateaued
when the curves in the summary plot stop changing; i.e. there
are no significant changes to the performance of the learner.
In Figure 10, significant changes to the learners can be seen
twice: a large change after training on 20% of the data and a
very small change (in J48 only) after seeing 60% of the data.

A phantom changeis when the mean of one learner atx2 is
significantly different to a proceedingx1 changebut the win-
tie plots shows that the change is not significantly different to
the other learner. In Figure 10 J48’s second change at 60% is
not a phantom since the win-tie report also changes at 60%.

The start of this plateau (in Figure 10 after 60%*150=80
examples) defines the point at which further data is superflu-
ous. At this point, we can report theN number of examples
needed to learn a detector. If thisplateau pointis small then
it would also be possible to quickly determine how data is
required before we can assess if the detector will be adequate.

IV. RESULTS FORLEARNING DEFECTDETECTORS

Figure 11 shows the results for a
<L=500,M=N=10, X=1. . . 9>. sequence study on the
Figure 2 data using a NaiveBayes (with kernel estimation)
classifier to an entropy-based decision tree learner (J48) [14].
In all, learning was conducted 2700 times. These calls divide
into 135 calls where the two learners were executed on the
same data within a 10-way cross-validation experiment.

For space reasons, only the summary graphs for PD and PF
are shown. KC2’s PD exhibits a phantom drop atx = 50%.
That drop is a phantom since win-tie plot shows the change
is indistinguishable from the J48 plot.

We saw above in Figure 9 that accuracy can be uninforma-
tive for predicting false alarms (PF) and prediction (PD). The
same effect was seen in this experiment. For all our runs, the
accuracies hover between 75% and 85%. However, as seen in

MENZIES,RAFFO,SETAMNIT,DISTEFANO,CHAPMAN, WHY MINE SOFTWARE REPOSITORIES?; SUBMITTED TO IEEE TSE, OCTOBER 23, 2004 7

data PD (recall) PF

KC2

 0

 25

 50

 75

 100

J48 wins
tie

nbk wins

 1 2 3 4 5 6 7 8 9

pd

bins used in training

wins
nbk
J48

 0

 25

 50

 75

 100

J48 wins
tie

nbk wins

 1 2 3 4 5 6 7 8 9

pf

bins used in training

wins
nbk
J48

KC1

 0

 25

 50

 75

 100

J48 wins
tie

nbk wins

 1 2 3 4 5 6 7 8 9

pd

bins used in training

wins
nbk
J48

 0

 25

 50

 75

 100

J48 wins
tie

nbk wins

 1 2 3 4 5 6 7 8 9

pf

bins used in training

wins
nbk
J48

CM1

 0

 25

 50

 75

 100

J48 wins
tie

nbk wins

 1 2 3 4 5 6 7 8 9

pd

bins used in training

wins
nbk
J48

 0

 25

 50

 75

 100

J48 wins
tie

nbk wins

 1 2 3 4 5 6 7 8 9

pf

bins used in training

wins
nbk
J48

JM1

 0

 25

 50

 75

 100

J48 wins
tie

nbk wins

 1 2 3 4 5 6 7 8 9

pd

bins used in training

wins
nbk
J48

 0

 25

 50

 75

 100

J48 wins
tie

nbk wins

 1 2 3 4 5 6 7 8 9

pf

bins used in training

wins
nbk
J48

PC1

 0

 25

 50

 75

 100

J48 wins
tie

nbk wins

 1 2 3 4 5 6 7 8 9

pd

bins used in training

wins
nbk
J48

 0

 25

 50

 75

 100

J48 wins
tie

nbk wins

 1 2 3 4 5 6 7 8 9

pf

bins used in training

wins
nbk
J48

Fig. 11. PD and PF results from a sequence study for Figure 3 data.

Figure 11, these small changes in accuracy are associated with
large chances to PF and PD:

• PD change by a factor of five from 10% (PC1’s J48
results) to 50% (KC1 and KC2’s PD).

• PF change by a factor of four from 5% (in PC1’s J48
results) to 20% (in JM1’s nbk results).

Based on the Figure 9 and Figure 11 results, we henceadvise
against using accuracy to assess defect detectors.

Figure 11 also lets us assess the merits of different learning

methods. At the 95% level, Naive Bayes won 51 of those
90 cross-validations; J48 won once (see the KC2 PF curve
at bins = 8) , and in the remaining 90-51-1=48 times, the
two methods tied. This means that in90−1=89

90 ≈99% of the
cross-validation experiments, measured in terms of PD and PF,
Naive Bayes generated equivalent or better defect detectors
than J48. Hence,Naive Bayes is better than J48 for learning
defect detectors.

An interesting feature of Figure 11 are theearly plateaus
seen in all the runs. KC1’s PD plateaus after500 ∗ 6

10 = 300
modules. The other PD plots plateaus much earlier: i.e. after
only 500 ∗ 1

10 = 50 modules. Early plateau lets us implement
theself-testdescribed in the introduction: i.e. a quick and clear
recognition when a conclusion is failing. Such early plateaus
means thatafter sampling 50 modules it is be possible to
determine detector effectiveness for a particular data set.

At the plateau point, the height of the plateau seems to be
determined by how certain features of the data set. Figure 11
is sorted in according to maximum reached PD and this
order corresponds to how specialized was the code. KC2 and
KC1 are shown on top and these have the highest PDs and
precisions. JM1 and PC1 are shown at bottom and these have
the lowest PDs. Note that this sort order corresponds to the
system/sub-system break up shown in Figure 3. That is, defect
detectors learnt from data coming from below the sub-system
level (e.g. KC1 and KC2) have a higher probabilities of finding
faults than defect detectors learnt for an entire system. Note
also the false alarm rate is largest at the system level (JM1,
PC1 PF ≤ 25%) and smallest below the sub-system level
(KC1, KC2 PF ≤ 10%). Hence, we recommendlearning
defect detectors from data sets divided below the sub-system
level. We call this improvement in PD via learning from data
specialized below the sub-system level thestratification effect
and will explore it further below.

In Figure 11, the height of the PD plateaus found by Naive
Bayes was 20%, 25%, 30%, 50% and 50% in PC1, JM1, CM1,
KC1 and KC2 respectively3. These PDs are reached at a much
lower cost than what is required for the equivalent manual
task. Menzies and Raffo [40] report one manual inspection
cost model used by a NASA V&V contractor where 8 to 20
lines of code are inspected per minute. This effort repeats for
all four to six members of the review team, which can be as
large as four or six. Another cost model comes from Shull
(personnel communication) who allows 4 hours to inspect
500 lines of code (2 hours for meeting preparation; 2 hours
for the meeting); i.e. 2 LOC/minute- four times slower than
the cost model described above. By contrast, our detectors
can flag worrying modules in a fraction of that time4, once
from prior inspections has been collected into tables describing
modules in terms of Halstead and McCabe metrics. Hence,
defect detectors learnt from static code measures can operate
at a fraction of the cost of manual inspections.

3KC2’s PD plateau is recorded at 50% since the drop in that plot at bins=5
in Figure 11 is a phantom and, at bins=1 in Figure 11, Naive Bayes’s PD of
50% can be distinguished from J48 (i.e. in that first bin, NaiveBayes wins
over J4.8).

4For example, a ten-way cross-validation on KC2 using Naive Bayes takes
5.3 seconds on our Solaris machines.

MENZIES,RAFFO,SETAMNIT,DISTEFANO,CHAPMAN, WHY MINE SOFTWARE REPOSITORIES?; SUBMITTED TO IEEE TSE, OCTOBER 23, 2004 8

 10

 20

 30

 40

 50

 60

sub-sub-
sub-system

sub-sub-
system

sub-
system

system

pr
ob

ab
ili

ty
 o

f
de

fe
ct

in
g

fa
ul

ts

PC1
JM1
CM1

KC1 KC2
_13

_18
_1 _2

_17

_2

_16

Fig. 12. Naive Bayes PD at plateau in Figure 2 data.

We hasten to add that by “operate” we mean only that
oracles that flag faulty modules can be automatically generated
and applied very quickly. Once that operation completes,
analysts still have tomanually inspectthe flagged modules.
The overall economic savings from this automatically-operate
then manually-inspect-some modules is discussed in the next
section.

In order to assess the generality of the stratification ef-
fect, we extracted sub-divisions of the KC1 sub-system.
Seven of these sub-sub-systems had defect logs and those
contained 101,124,127,193,240,264, and 385 modules. A
<L,M=N=10,X=1. . .9> study was conducted on each sub-
sub-sub-system with L set to the total number of modules
in each data set. The results of that study echo our above
conclusions:

• Naive Bayes is better than J48 for learning defect de-
tectors.In these seven sub-divisions of KC1, NaiveBayes
won 16 of the 10-way cross-validation experiments; J4.8
won 6 times and the two learners tied 32 times.

• Detectors usually exhibit very early plateau.In all sub-
divisions of KC1, plateau was reached after 50 modules.

• The PDs can rise to up to 50%.The observed height
of the PD plateaus in the KC1 sub-divisions were
25,35,40,45,45,50,50%.

• Learning from data divided below the sub-system level
improves PD. The PD plateaus points of the KC1 sub-
division, and the PD plateau points generated above, are
shown in Figure 12. The x-axis of that plot shows the
level of the data set: from “system” on the left-hand-side
to “sub-sub-system” on the right-hand-side. The plateaus
from sub-divisions of KC1 are marked1, 2, . . . , 18 etc.
With the exceptions of2 and 16, the general trend in
Figure 12 is clear: sub-division improves PD.

As to 2 and 16, the early plateau effect seen in Figure 11
shows that we can quickly check for software like2 and 16
that generates low PD detectors. Specifically, if after sampling
50 modules collected below the sub-system level, the detectors
found by a Naive Bayes classifier do not achieve high PDs,
then the conclusions of the next section do not hold.

V. BUSINESSIMPLICATIONS OF DEFECTDETECTORS

Before turning to the business case simulations, we need to
state some underlying assumptions. One important issue is the

meaning of PD (probability of detection). The above results
show PDs learned from defects logs containing issue reports
from multiple sources: inspections, software tests, hardware
tests, formal method results, etc. As a result of this extensive
checking, we assert that the PDs shown above are equal to the
percentage of defectsever found in the system.

Another kind of PD, would be that seen in data miners
executing on just the issue reports seen in the most recent
manual inspections. In this case, PD changes to a smaller value
(which we denote PD′) since our learners might only find a
certain percentage of the defects contained in the inspection
logs which, in turn, is some percentage of the total number of
defects.

Further research is required to determine theactual value
of the PD′ learned from just inspection logs. While we await
that data, we run two scenarios. In Scenario I, we will assume
PD refers to a percentage of the total number of errors; i.e. the
IV&V situation where we are learning from rich defect logs.
In Scenario II, we will assume PD′ i.e. the V&V situation
where we are only learning from the results of inspections.
Scenario I’s conclusions will endorse using defect detectors
while Scenario II’s conclusions will be more negative. Hence,
we also develop Scenario III where we assess the root cause
of the findings in Scenario II to find a remedy to reverse those
negative conclusions.

We also make several other assumptions:

A1: The project is 100,000 lines of code.
A2: Figure 4 shows the assumed software process: i.e. IEEE

12207+IV&V model.
A3: Figure 11 shows how many modules our data miners

can use to learn defect detectors; i.e. 50 modules.
A4: Equation 3 and Figure 9 shows the assumed effort asso-

ciated with our detectors being triggered; i.e.Effort =
PD + 5% . . . 10%.

A5: Figure 9 shows the assumed PF with our detectors;
PF ≤ 10%. There is additional support for this PF
assumption:PF ≤ 10% can also been seen in Figure 11
for defect detectors learned from below sub-system data
(KC1 and KC2).

A6: Figure 12 shows the assumed PD associated with the
detectors; i.e.PD = 40. . .50%.

A7: Assumption A6 assumes, in turn, that defect detectors
are learnt from data divided below the sub-system level.

A8: Standard manual inspections find 40% to 60% of the
total defects.

In principle, these assumptions can be checked and adjusted
as necessary. This is one of the strengths of process simulation.
Our current process model has been built and repeatedly
checked over the last three years.

As to the other assumptions, A1 and A8 are simply input
parameters to our model and can be easily changed prior to
a new set of simulations. A3 is based on the early plateau
effect and that can be checked using sequence studies using as
little as 100 modules. If A3 holds, then checking assumptions
A4,A5,A6 is a simple matter: just use the procedure described
at the end of the last section.

MENZIES,RAFFO,SETAMNIT,DISTEFANO,CHAPMAN, WHY MINE SOFTWARE REPOSITORIES?; SUBMITTED TO IEEE TSE, OCTOBER 23, 2004 9

Fig. 13. Coding and unit test process showing Fagan inspections.

Total
Size
(KLOC)

Total
Effort
(PM)

Total
Rework
Effort
(PM)

Total
Duration
(Month)

Average
Duration

Total
Defect
Cor-
rected

Total
Latent
Defects

Code In-
spection
Effort
(PM)

Average 99.79 781.41 160.56 32.81 28.51 5,907.08 507.81 9.67
Std Dev 4.00 27.66 6.95 1.43 1.22 257.00 22.00 0.29

Fig. 14. AS-IS Baseline Process Performance predicted by the Simulation Model

A. Baseline Model Results

Baseline performance is predicted in terms of development
effort (or cost), effort devoted to rework, IV&V effort, project
duration, corrected defects, and escaped (or delivered) defects.

Our baseline of the AS-IS process presumes that full Fagan
inspections [42] are done at all development phases- including
at the coding phase (see Figure 13). The actual baseline
performance for the AS-IS process (without using data miners
applied to defect detectors as part of IV&V activities) can be
seen in Figure 14.

B. Scenario I: Defect Detectors and IV&V

For the first TO-BE process scenario, we apply the defect
detectors as part of an independent verification and validation
(IV&V) step after coding and code inspections are complete
(see Figure 13). Is this TO-BE scenario, defect detectors are
utilized in IV&V work as follows:

• Defect logs and code modules that have completed code
inspections and other forms of testing are sent to IV&V.

• Defect detectors are learned on the logs and then applied
to 100% of the code. Once the logs are in a format
suitable for the learners, this can be done automatically
and quickly (a mere matter of seconds). In our simula-
tions we assume that preparing the input logs takes two
person days(or 16 hours of effort) for a large 100 KSLOC
project.

• The defect detectors identify code modules that are likely
to contain defects. Since the code modules will have gone
through code inspections and other assessment measures
during project level V&V, many of the modules that
are identified will already be known to contain defects.
These modules will not be looked at again. Instead, the
defect detectors will be used to identify modules where no
defects were found during their initial code inspections,
but whose characteristics indicate that these modules are
likely to have defects. From Figure 8, we see that this

procedure will select the modules falling into cell C (i.e.
modules where the signal is detected, but where defects
were not found).

• The modules that trigger the detectors are then re-
inspected. The re-inspection rate’s upper bound is PF;
i.e. 10% (from [A5]).

To assess the impact of learning data miners for defect
detectors, then using them in IV&V mode, the next parameter
required is an estimate of the percentage of the escaped
defects that will be found using the above procedure. At
present, more research is necessary to empirically determine
this percentage. While we await those results, we can use the
process simulation model to identify the minimum percent-
ages required in order to break even (where expenses equal
benefits). Moreover, the process simulation model can help
assess the risk of applying the defect detectors by assessing
the worst-case scenario (i.e. when no additional defects are
detected).

The results of these tests are shown in Figure 15 and, for the
purposes of this discussion, we focus on the cells marked with
a black triangle (�). These cells show the difference between
the baseline data of Figure 14 (repeated at the top of Figure 15)
and the results from Scenario I. As can be seen, using defect
detectors breaks-even (i.e. theDelta goes from negative to
positive) if the above approach can detect an additional 1 to 2%
of the latent defects in the code and starts showing a positive
benefit in both effort and latent defects at 3%. The worst case
is that an additional 1.16 person months would be expended
doing inspections that do not find any new defects.

Moreover, if 5% or 10% of the latent defects are found, the
quality of the code would be improved by an average 15.5
and 32.5 defects respectively and an an average 2.5 and 6.5
person months of effort respectively could be saved.

To repeat, theminimumperformance target for defect de-
tectors to be beneficial for IV&V would be 3% additional
defects detected and themaximumexposure would be 1.16
person months of effort. Based on our commercial work

MENZIES,RAFFO,SETAMNIT,DISTEFANO,CHAPMAN, WHY MINE SOFTWARE REPOSITORIES?; SUBMITTED TO IEEE TSE, OCTOBER 23, 2004 10

Total Size
(KLOC)

Total Effort
+ IV&V
(PM)

Total Effort
(PM)

Total
Rework
Effort (PM)

Total Dura-
tion (Month)

Average Du-
ration

Total Defect
Corrected

Total Latent
Defects

Code
Inspection
Effort (PM)

Baseline
Average 99.79 781.41 781.41 160.56 32.81 28.51 5,907.08 507.81 9.67
Std Dev 4.00 27.66 27.66 6.95 1.43 1.22 257.00 22.00 0.29
Case 1: detcap IV&V = 0
Average 99.79 782.57 781.41 160.56 32.85 28.51 5,907.08 507.81 10.83
Std Dev 4.00 27.67 27.66 6.95 1.43 1.22 257.00 22.00 0.30
Deltas -1.16 � 0.00 0.00 -0.05 0.00 0.00 0.00 � -1.16
Case 2: detcap IV&V = 0.01
Average 99.79 782.06 780.90 160.05 32.85 28.50 5,928.55 505.79 10.83
Std Dev 4.00 27.67 27.65 6.93 1.43 1.22 258.00 22.00 0.30
Deltas -0.65 � 0.51 0.51 -0.04 0.00 -21.47 2.02 � -1.16
Case 3: detcap IV&V = 0.02
Average 99.79 781.27 780.11 159.29 32.83 28.49 5,931.95 502.40 10.83
Std Dev 4.00 27.66 27.64 6.89 1.43 1.22 258.00 21.00 0.30
Deltas 0.14 � 1.30 1.27 -0.03 0.02 -24.87 5.41 � -1.16
Case 4: detcap IV&V = 0.03
Average 99.79 780.48 779.32 158.53 32.82 28.47 5,935.34 499.00 10.83
Std Dev 4.00 27.64 27.63 6.86 1.43 1.22 258.00 21.00 0.30
Deltas 0.93 � 2.09 2.03 -0.01 0.03 -28.26 8.81 � -1.16
Case 5: detcap IV&V = 0.04
Average 99.79 779.68 778.52 157.77 32.80 28.46 5,938.73 495.61 10.83
Std Dev 4.00 27.64 27.62 6.83 1.43 1.22 258.00 21.00 0.30
Deltas 1.72 � 2.88 2.79 0.00 0.05 -31.65 12.20� -1.16
Case 6: detcap IV&V = 0.05
Average 99.79 778.89 777.73 157.01 32.79 28.44 5,942.13 492.22 10.83
Std Dev 4.00 27.63 27.61 6.80 1.43 1.21 259.00 21.00 0.30
Deltas 2.51 � 3.67 3.55 0.02 0.06 -35.05 15.59� -1.16
Case 7: detcap IV&V = 0.10
Average 99.79 774.94 773.78 153.21 32.72 28.37 5,959.10 475.24 10.83
Std Dev 4.00 27.58 27.57 6.63 1.43 1.21 259.00 20.00 0.30
Deltas 6.47 � 7.63 7.35 0.09 0.14 -52.02 32.57� -1.16

Fig. 15. Operational Scenario I: Using Defect Detectors in IV&V Mode

with companies exploring re-inspections of their code, we are
confident that the 3% additional defects threshold can be easily
surpassed. However, in this forum, we cannot publish support-
ive evidence for this claim since it is based on proprietary data.

C. Scenario II: Defect Detectors and Inspection-based V&V

Scenario II is the case where analysts have amuch weaker
training set; i.e.only the results of internal inspections. This is
the PD′ case where the data miners only findsomethe defects
in defect logs which contain onlysomeof the project defects.

One situation where this could happen would be when a
team declines to wait for the IV&V team to report issues.
Instead, they use their own experience of, say, their code
inspections to build defect detectors. For example:

• A minimum set of code was inspected. From assumption
A3, 50 modules per sub-sub-system, or 11.5% of the
code, would be required to achieve plateau performance.

• Using the defect logs from these inspections and the
inspected modules, defect detectors were learned using
data miners and applied to the rest of the code.

• Modules were identified as likely candidates for defects.
• Only those portions of the code that are tagged as likely

”hot spots” were inspected.

Under this scenario, the defect detectors would select 61.5%
of the code for further inspection. This would result in 38.5%
reduction in inspection effort (approximately 3.7 person-
months) and inspection schedule savings. However, process
simulation shows that the savings in inspection effort would
not offset the increase in defect detection and rework costs
associated with finding these defects later in the development

process. Figure 16 shows the baseline results and results of
having an expected defect detection capability of 47% will
cause the process using defect detectors during project V&V
to break even on effort (but have an overall poorer quality).

If we are learning on an inspection log containing 50% of
all defects (the expected case), then such a 47% overall defect
detection rate is only possible if a data miner can learn near-
perfect detectors with a PD of 98% (i.e.50% ∗ 98% = 47%).
Since this is highly unlikely (to say the least), the conclusion
of Scenario II must be to doubt the value of defect detectors
for improving V&V.

D. Scenario III: Fixing Scenario II

If our process simulation methodology is rich enough, we
should be able to query our models to find some repair to
Scenario II. This section searches for such a repair.

We diagnosed the problem identified in Scenario II aslearn-
ing from impoverished training examples. As discussed above,
the effectiveness of the learned defect detectors approach
depends upon the training examples used. If the training
examples themselves are not effective at detecting defects, the
learned defect detectors will not be either.

If a diagnosis is useful, it should suggest a repair. To
repair the problem we explored ways to improve the training
set. One possibility would be toimprove the methods used
to generate the inspection reports. A candidate technology
for that improvement is Shull’sperspective-basedinspection
methods [43] where each reviewer explores the code with
different goals; e.g. one reviewer might only check for ter-
mination on looping constructs while another might check

MENZIES,RAFFO,SETAMNIT,DISTEFANO,CHAPMAN, WHY MINE SOFTWARE REPOSITORIES?; SUBMITTED TO IEEE TSE, OCTOBER 23, 2004 11

Total Size
(KLOC)

Total Effort
(PM)

Total
Rework
Effort (PM)

Total Dura-
tion (Month)

Average Du-
ration

Total Defect
Corrected

Total Latent
Defects

Code
Inspection
Effort (PM)

Baseline
Average 99.79 781.41 160.56 32.81 28.51 5,907.08 507.81 9.67
Std Dev 4.00 27.66 6.95 1.43 1.22 257.00 22.00 0.29
Case 1: detcap 2 = 0.48
Average 99.79 780.24 163.24 32.74 28.44 5,895.33 519.56 5.52
Std Dev 4.00 27.52 7.07 1.43 1.21 257.00 22.00 0.14
Deltas 1.17 � -2.68 0.07 0.07 11.75 -11.75� 4.15
Case 2: detcap 2 = 0.47
Average 99.79 781.53 164.58 32.78 28.47 5,889.45 525.43 5.42
Std Dev 4.00 27.54 7.13 1.43 1.22 256.00 22.00 0.14
Deltas -0.13 � -4.02 0.03 0.03 17.63 -17.62� 4.24

Fig. 16. Operational Scenario II: Using Defect Detectors in V&V Mode.

that they have enough information to divide system input
into equivalent classes. Shull’s key argument is that having
such specific goals (which he calls “perspectives”) means that
a reviewer can work faster and more effectively since their
attention is not distracted by numerous side-issues. Further,
since multiple reviewers are looking at multiple different
issues, there is less likelihood for the different reviewers to
discover the same issues.

Perspective-based inspections (PBR) have been shown to
detect approximately 85% of latent defects [43]. Using these
highly effective inspections for the training data set, and
assuming that the PDs of the learned theories remain at 50% of
the defects in the training set, then enables the learned defect
detectors to achieve PD′ = 85% ∗ 50% = 42.5%.

The benefit of using process simulation models is the
ability to quickly do ”what if” analysis and to optimize the
implementation of new technologies so that they achieve good
results. In addition, using the simulation model, the break-even
point for this operational scenario can also be found.

Hence, in situations where code inspections achieve 47%
defect detection capability (effectiveness) or less, the com-
bined approach of using perspective-based inspections on
approximately 12% of the code coupled with learned defect
detectors can provide a payoff in terms of reduced effort and
reduced delivered defects. The farther the baseline inspections
are below the 47% break even point, the stronger the benefit
with perspective-based methods.

VI. CONCLUSION

We are not the first to use data mining to develop defect
detectors. Prior work in this area includes [31]–[34]. However,
with the exception of Porter and Selby [31], much of the prior
work has focused on the technical details of the defect detec-
tors and not the business implications of the technology. Our
belief is that this report is a far more detailed analysis of the
properties of defect detectors learned for metrics repositories
than has appeared previously.

An important part of our analysis was process simulation.
Process simulation is a powerful tool for conducting what-if
queries on software processes. We have shown above two such
what-ifs: in Scenario I we did not know the impact of applying
data miners to IV&V yet, in Figure 15, we could still identify
the break even point where such mining was useful. Also, in
Scenario III, we could repair the negative result of Scenario

II by finding a break even point in the knowledge content of
our defect logs, after which data mining helped V&V.

Apart from process simulation, we also offer several spe-
cific conclusions about data mining and software repositories.
Firstly, Naive Bayes classifiers seem better suited to handling
noisy real-world defect logs than J48.

Secondly, prior pessimism on the utility of static code
measures may be incorrect. Halstead and McCabeare more
informative than mere lines of code (recall Figure 5). Perhaps
we need to assess static code measures on more than just
correlation or accuracy. We have seen above (in Figure 7) that
correlation can be an orthogonal measure to the probabilities
of defect detection and false alarm rates. A similar disconnect
between accuracy and PD/PF was seen in Figure 9.

Thirdly, our analysis of the NASA data sets found several
important effects that are worth checking for in other data sets:

• The stratification effectof Figure 12 where learning on
data divided below the sub-system level improved PDs;

• The early plateau effectof Figure 11 where the conclu-
sions from our data miners stabilized after seeing only
50 modules.

If these effects repeat in other data sets then they promise that
good defect detectors can be learned from surprisingly little
data.

More generally, we see this kind of analysis as being very
beneficial for more than just assessing defect detectors learned
from software repositories. The above process simulation is an
example of a general technological assessment process where
we can:

• Identify the conditions under which application of a new
technology would be beneficial.

• As importantly, we can identify situations when applying
this technology wouldnot be beneficial.

• We have can performance benchmarks or criteria that
vendors of a new technology would need to achieve
in order for an organization to consider investing and
adopting their technology.

• We can diagnose problems associated with implementing
a new tool or technology and identify new and creative
ways to apply the technology to the benefit of the
organization (and the vendors)

• Finally, we can do all thisbefore the technology is pur-
chased or applied and therefore can save scarce resources
available for process improvement.

MENZIES,RAFFO,SETAMNIT,DISTEFANO,CHAPMAN, WHY MINE SOFTWARE REPOSITORIES?; SUBMITTED TO IEEE TSE, OCTOBER 23, 2004 12

ACKNOWLEDGMENTS

This research was conducted at West Virginia University,
Portland State University, partially sponsored by the NASA
Office of Safety and Mission Assurance under the Software
Assurance Research Program led by the NASA IV&V Fa-
cility. Reference herein to any specific commercial product,
process, or service by trade name, trademark, manufacturer,
or otherwise, does not constitute or imply its endorsement by
the United States Government.

REFERENCES

[1] N. Fenton and N. Ohlsson, “Quantitative analysis of faults and
failures in a complex software system,”IEEE Transactions on Software
Engineering, pp. 797–814, August 2000.

[2] W. Curtis, “Building a cost-benefit case for software process improve-
ment, notes from tutorial given at the seventh Software Engineering
Process Group Conference, Boston, MA,,” May 1995.

[3] R. Dion, “Process improvement and the corporate balance sheet,”IEEE
Software, pp. 28–35, July 1993.

[4] W. Harrison, D. Raffo, J. Settle, and N. Eickelmann, “Adapting financial
measures: Making a business case for software process improvement,”
Software Quality Journal, vol. 8, no. 3, 1999.

[5] T. McGibbon, “A business case for software process improvement, data
analysis center for software state-of-the-art report, prepared for rome
laboratory,,” September 1996, Available fromhttp://www.dacs.
dtic.mil/techs/roi.soar/soar.html .

[6] D.M. Raffo, “Modeling software processes quantitatively and assessing
the impact of potential process changes of process performance,” May
1996, Ph.D. thesis, Manufacturing and Operations Systems.

[7] D. Raffo and M. Kellner, “Impact of potential process changes: A
quantitative approach to process modeling,” inElements of Software
Process Assessment and Improvement, K. El Emam and N. Madhavji,
Eds. 199, IEEE Computer Society.

[8] D. Harter S. Slaughter and M. Krishnan, “Evaluating the cost of software
quality,” Communications of the ACM, pp. 67–73, August 1998.

[9] R. Vienneau, “The present value of software maintenance,”Journal of
Parametrics, pp. 18–36, April 1995.

[10] G.A. Hansen, Automating Business Process Reengineering, Prentice
Hall, 1997.

[11] M. Laguna and J. Marklund,Business Process Modeling, Simulation,
and Design, Pearson Prenctice Hall, 2004.

[12] Institute of Electrical and Inc. Electronics Engineers, “Iso/iec 12207
standard for information technology - software lifecycle process,” 1998.

[13] C. Jones, Applied Software Measurement (second edition), McGraw
Hill, 1991.

[14] I. H. Witten and E. Frank,Data Mining: Practical Machine Learning
Tools and Techniques with Java Implementations, Morgan Kaufmann,
1999.

[15] D.E. Goldberg, Genetic Algorithms in Search, Optimization, and
Machine Learning, Addison-Wesley, 1989.

[16] G. Boetticher, “An assessment of metric contribution in the construction
of a neural network-based effort estimator,” inSecond International
Workshop on Soft Computing Applied to Software Engineering, En-
schade, NL, 2001, Available from:http://nas.cl.uh.edu/
boetticher/publications.html .

[17] L. Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone, “Clas-
sification and regression trees,” Tech. Rep., Wadsworth International,
Monterey, CA, 1984.

[18] R. Quinlan,C4.5: Programs for Machine Learning, Morgan Kaufman,
1992, ISBN: 1558602380.

[19] M.A. Hall and G. Holmes, “Benchmarking attribute selection techniques
for discrete class data mining,”IEEE Transactions On Knowledge And
Data Engineering, vol. 15, no. 6, pp. 1437– 1447, 2003.

[20] James Dougherty, Ron Kohavi, and Mehran Sahami, “Supervised and
unsupervised discretization of continuous features,” inInternational
Conference on Machine Learning, 1995, pp. 194–202.

[21] Z. Z. Zheng and G. Webb, “Lazy learning of bayesian rules,”Machine
Learning, vol. 41, no. 1, pp. 53–84, 2000, Available fromhttp://
www.csse.monash.edu/˜webb/Files/ZhengWebb00.pdf .

[22] G.H. John and P. Langley, “Estimating continuous distributions in
bayesian classifiers,” inProceedings of the Eleventh Conference on
Uncertainty in Artificial Intelligence Montreal, Quebec: Morgan Kauf-
mann, 1995, pp. 338–345, Available fromhttp://citeseer.ist.
psu.edu/john95estimating.html .

[23] U M Fayyad and I H Irani, “Multi-interval discretization of continuous-
valued attributes for classification learning,” inProceedings of the
Thirteenth International Joint Conference on Artificial Intelligence,
1993, pp. 1022–1027.

[24] Ying Yang and Geoffrey I. Webb, “A comparative study of discretization
methods for naive-bayes classifiers,” inProceedings of PKAW 2002: The
2002 Pacific Rim Knowledge Acquisition Workshop, 2002, pp. 159–173.

[25] T.J. McCabe, “A complexity measure,”IEEE Transactions on Software
Engineering, vol. 2, no. 4, pp. 308–320, Dec. 1976.

[26] M.H. Halstead,Elements of Software Science, Elsevier, 1977.
[27] T. Menzies, J. Di Stefano, K. Ammar, K. McGill, P. Callis, R. Chapman,

and Davis J, “When can we test less?,” inIEEE Metrics’03, 2003,
Available fromhttp://menzies.us/pdf/03metrics.pdf .

[28] Tim Menzies, Justin S. DiStefeno, Mike Chapman, and Kenneth Mcgill,
“Metrics that matter,” in 27th NASA SEL workshop on Software
Engineering, 2002, Available fromhttp://menzies.us/pdf/
02metrics.pdf .

[29] T. Menzies, J.S. Di Stefano, and M. Chapman, “Learning early lifecycle
IV&V quality indicators,” in IEEE Metrics ’03, 2003, Available from
http://menzies.us/pdf/03early.pdf .

[30] Tim Menzies and Justin S. Di Stefano, “How good is your blind
spot sampling policy?,” in2004 IEEE Conference on High Assurance
Software Engineering, 2003, Available fromhttp://menzies.us/
pdf/03blind.pdf .

[31] A.A. Porter and R.W. Selby, “Empirically guided software development
using metric-based classification trees,”IEEE Software, pp. 46–54,
March 1990.

[32] J. Tian and M.V. Zelkowitz, “Complexity measure evaluation and
selection,” IEEE Transaction on Software Engineering, vol. 21, no.
8, pp. 641–649, Aug. 1995.

[33] T.M. Khoshgoftaar and E.B. Allen, “Model software quality with
classification trees,” inRecent Advances in Reliability and Quality
Engineering, H. Pham, Ed. 2001, pp. 247–270, World Scientific.

[34] K. Srinivasan and D. Fisher, “Machine learning approaches to estimating
software development effort,”IEEE Trans. Soft. Eng., pp. 126–137,
February 1995.

[35] S.R. Rakitin,Software Verification and Validation for Practitioners and
Managers, Second Edition, Artech House, 2001.

[36] N. E. Fenton and S.L. Pfleeger,Software Metrics: A Rigorous &
Practical Approach, International Thompson Press, 1997.

[37] M. Shepped and D.C. Ince, “A critique of three metrics,”The Journal
of Systems and Software, vol. 26, no. 3, pp. 197–210, September 1994.

[38] Ron Kohavi and George H. John, “Wrappers for feature subset
selection,” Artificial Intelligence, vol. 97, no. 1-2, pp. 273–324, 1997.

[39] T. Menzies, K. Ammar, A. Nikora, and Justin Di Stefano, “How
simple is software defect detection?,” inTech report, Computer Science,
Portland State University, 2004, Available fromhttp://menzies.
us/pdf/03simpled.pdf .

[40] Tim Menzies, David Raffo, Siri on Setamanit, Ying Hu, and Sina Tootoo-
nian, “Model-based tests of truisms,” inProceedings of IEEE ASE 2002,
2002, Available fromhttp://menzies.us/pdf/02truisms.
pdf .

[41] C.L. Blake and C.J. Merz, “UCI repository of machine learning
databases,” 1998, URL:http://www.ics.uci.edu/˜mlearn/
MLRepository.html .

[42] M. Fagan, “Design and code inspections to reduce errors in program
development,”IBM Systems Journal, vol. 15, no. 3, 1976.

[43] F. Shull, I. Rus, and V.R. Basili, “How perspective-based reading
can improve requirements inspections,”IEEE Computer, vol. 33, no.
7, pp. 73–79, 2000, Available fromhttp://www.cs.umd.edu/
projects/SoftEng/ESEG/papers/82.77.pdf .

