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Abstract— Data mining results about fault detectors are typi-
cally assessed in terms of their predictive accuracy (PDs). While ;
interesting, such results may not convince a project manager that
they should reallocate their scarce resources to implementing a @
new technology on their project.

This article proposes a methodology for assessing the merits of B
defect detectors learnt from software repositories of static code e
measures (Halstead and McCabe). Using process simulation, we
find situations where the use of such detectors is useful or useless.
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I. INTRODUCTION

Good research results are wasted unless there is a cemy-1. The MDP data repositohttp://mdp.ivv.nasa.gov
pelling business case to use them. Without such a case, a
project manager may not be convinced that they should,
for example, reallocate scarce resources to implement a nevOur study is in three parts. First, we present a related work
technology on their project. The aim of this article is to offesection That offers some background notes on the technologies
one example of how to combine research results (on learniaged in this paper.
defect detectors) with a business case (on why using thoseSecond, we report stable properties of defect detectors
detectors is a worthy idea). learned from software repositories. This second part will base

In a special issue on mining software repositories, it miglts conclusions from five public domain data sets from the
be suspected that our conclusions will be biased; i.e. tHdASA Metrics Data Program (MDP) (see Figure 1). The MDP
we would alwaysfind a good business case for data minindataset issanitizeddata and so an anonymous name is given
databases of software. We therefore take care to presenkach data set; e.g. the CM1,JM1,KC1,KC2,PC1 data sets
business cases that endorse mining repositories as wellsaswn in Figure 2. This data contains static code measures
others that identify situations where the mining of repositori€slalstead, McCabe, lines of code) and defect rates (which we
for defect detectors isot useful. These business cases includsonvert to booleansle fects € {true, false}). To be precise,
an IV&V case study (where test engineers study someowe will actually study 12 MDP datasets but Figure 3 shows
else’s code) and a V&V study (where test engineers stutlyat seven of those are sub-divisions of the KC1 dataset. While
their own code). In summary, in these first two case studies)arger sample than five (or 12) data sets would be preferred,
using repositories to find defect detectdrslps IV&V but  our corpus is much larger than those seen in many other high-
hurts V&V profile studies.

A third scenario is then run that demonstrates the utility The third and final part of our study will use the properties
of our methodology. This third scenario finds a change to tlgentified in the second part to reconfigurepecess simu-
V&V scenario that reverses the previous negative result. THation of the IEEE 12207 software development life cycle.
is, by using the process simulation we identify situations IMEEE 12207 is used at many sites, including NASA and the
which application of this new technology would be beneficiaDepartment of Defense (DoD). The process simulation model
We also find situations in which applying this technologwill then be used to determine the costs and benefits of using
would not be beneficial. Moreover, we can set performanagefect detectors mined from software repositories.
benchmarks for vendors of this type of technology, diagnose
problems associated with implementation and assess alterna-
tive approaches for applying the technology to the benefit of
the organization In this paper we propose a process change for software

engineers. In short, we would augment their current activity
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# % with | developed
project| file leve| modules defects| language at notes
PC1 | pcl.arff 1| 1107 6.8 ¢ location 1 | Flight software for earth orbiting satellite
M1 | jml.arff 1| 10885 19% [} location 2 | Real-time predictive ground system: Uses simulations to generate predic-
tions
CM1 | cml.arff 1 496 9.7% [} location 3 | A NASA spacecraft instrument
KC1 | kcl.arff 3| 2107 15.4% C++ |location 4 | Storage management for receiving and processing ground data
kel 1]2[3| 41 80..290 C++ [location 4 | 7 divisions of KC1
13/16|17|18.arff
KC2 | kc2.arff 4 523 20% C++ |location 4 | Science data processing; another part of the same project as KC1; different
personnel than KC1. Shared some third-party software libraries with KC1,
but no other software overlap.
Total | 15118

Fig. 2. Data sets used in this studyile denotes a data set file name availableARFF format from http://scant.org/2/eg/arff

level . o
g\l\l/lell key advantage to process simulation is that these models can
e capture the details associated with the development process
level2 and provide a systematic approach for incorporating metrics
level3 data and creating the necessary process level predictions along
level4 . . .
KCLk1 multiple measures of performance [6], [10], [11]. Simulation
level KC1k2 modeling tools (e.g. Arena, Extend, Stella, etc.) simplify
NASA KC1k3 ; L ”
KC1 KC1.k4 conducting sensitivity (or "what if") analyses. As a result,
ﬁgitg process simulation models can explicitly capture localized
KC1k7 changes to the process made by implementing a new tool,
technology or method and then predict the overall project-level
...... { KC2 impacts.
In this paper, we employ process simulation to assess
Fig. 3. Data sets used in this study. the impact of applying learned fault detectors under three

possible operational scenarios. The specific process simulation
model that will be used for this study is a model of the
A. Process Simulation IEEE 12207 systems development process [12]. This process

In order to make a business case for these learned deféctepresentative of the process used on large-scale NASA
detectors, we need to assess their impact on the performafgd US Department of Defense (DoD) projects. The model
of the project. There are many approaches that can be u§ggtains industry standard benchmark data from [13] for large-
to assess the business implications of process changes ggale systems development. Moreover, the model has been
[9]. One key question with all the methods is "Where do wBIned using a data set from 8 NASA projects over 100 KSLOC
get the numbers to assess the impact of the process chafgé&ize. Predictions made with the model provide similar
for the business case analysis?” Obtaining the numbers f§curacy to those obtained using COCOMO I (i.e. predictions
the business case analysis can be non-trivial. Data must'$'e within 30% of actual values, more than 70% of the time).

collected from the project or provided using a collection of in- Figure 4 shows a top-level view of the software development
dustry benchmarks or expert opinion obtained through surveyg,del used for this study. As can be seen in that figure, the
or interviews. Models must then be developed to assess the ki life cycle phases of the IEEE 12207 process are:

pact of the process changes usually along multiple dimensions

of performance (such as cost, quality and schedule). These. Process implementation
models must be developed to predict process level performance Svst d soft . ¢ vsi
and the results must also be provided at the project level. Most Sy?tv(\a/m an ﬁp ware reqduw:me_ln; Zna_yys
cost estimating tools including COCOMO and SLIM do not ° Software ar((:j-necturde an.t’t ?.ta' ed design
explicitly include the details of the development process. They: SgﬁwZi ;adlr;?/satlgm lf:tlegfztilgg planning
only provide project-level outputs and are therefore not well . e :
suited for this purpose. . Integrat!on and qualification testing
Process simulation is commonly used in many industries® Integration and acceptance support
including manufacturing and service operations to address
these kinds of issues. In recent years, process simulatiodigure 4 shows that we have augmented IEEE 12207

has been applied to software development procdsdgse With an additional IV&V layer that models the actions of
external consultants auditing software artifacts. In the sequel,
23ee the proceedings of tHeroSim International Workshopst http: our conclusions will be based on a comparison of different
Z‘r’]\’(‘j’v"s\’ﬁ\?\g&\fﬁ;&d% o 213 acgl Sf;’cﬁ(')isguaensdo\‘;;r‘k;gmsl)Og)sysrt]z”:ﬁesimulations of this 12207+IV&V process model: a baseline
international journal 'oSoftwa’re P'roce,ss: I'mprovemerylt ar,1d P?aqtiklel 5, AS-IS simulation; and a TO-BE simulation where the IV&V
No. 2/3, Vol. 7, No. 3/4 and Vol 9, No. 2) on this topic. and V&V work is informed by data mining.
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B. Data Mining are independent. In practice [21], the absolute values of the

range of techniques taken from statistics and artificial intellRrobabilities is adequate for the purposes of classification.
gence [14]-[16]. We use such data miners here to learn defecBayes classifiers can be extended to numeric attributes
detectors from defect logs. For the purposes of comparisét§ing kemel estimatiormethods. For this study, we use John
this Study will emp|0y two data mining methods: entropy and Langley’s Gaussian summation kernel estimation method
based decision tree learning and a Naive Bayes classifier. ffgplemented in the WEKAs Bayes classifier [14]. Other,
the purposes of repeatability, we will use the public-domaffiore sophisticated methods are well-established [22], [23],
implementations of those algorithms available in the WEKRUt several studies report that even simple methods suffice for
tool [14]. adapting Bayes classifiers to numeric variables [20], [24].

In decision tredearning, the whole training set &plit into
subsets based on some attribute value test. The process #eRtatic Code Measures
repeats recursively on the subsets. Each splitter value become

o ; this study, our data miners learn from static code
the root of a sub-tree. Splitting stops when either a subse or e
gets so small that further splitting is superfluous, or a subdBfasures defined by McCabe [25] and Halstead [26]. McCabe

contains examples with only one classification. Henogoad (and Halstead) are “module”-based metrics where a module is

split decreases the percentage of different classifications iljihg smallest unit ?f func_tlo?ahty‘.‘ In C or”SmaIItaIk_, ‘modules’
subset. Such good splitensures that smaller subtrees will b quld be_called function” or "method” respectively. For a
generated since less further splitting is required to sort out t gef tutorial on the Ha!stead and McCabe measures, see [27]
subsets. Various schemes have been described in the literatut¥® study these static code measures since they are:
for finding good splits. For example, the CART [17] decision « Useful see the business case made in this article;
tree learner uses the GINA index while the C4.5 [18] decision « Easy to usestatic code measures (e.g. lines of code,
tree algorithm uses an information theoretic measure (entropy) the McCabe/Halstead measures) can be automatically and
to find its splits. J48 is version eight of C4.5, ported to JAVA.  cheaply collected;

A Naive Bayes classifietunes past knowledge to new e« Andwidely usedMany researchers use static measures to

evidence using Bayes’ Theorem: guide software quality predictions; e.g. [27]-[34]. Verifi-
cation and validation (V&V) textbooks (e.g. [35]) advise

using static code complexity measures to decide which
modules are worthy of manual inspections. Further, we
know of several large government software contractors
that won't review software moduleanlesstools like

PUH ) = 3o TP 1)

That is, given fragments of evidendg; and a prior prob-
ability for a classP(H), a posterior probabilityP(H | E)

is calculated for the hypothesis given the evidence. The
Bayes classifier returns the class with highest probability.
Many studies (e.g. [19], [20]) have reported that, in many

McCabe predict that they are fault prone. Hence, defect
detectors have a major economic impact when they may
force programmers to rewrite code.

domains, this simple Bayes classification scheme exhibitsStatic code measures are hardly a complete characterization
excellent performance compared to other learners. This i®fathe internals of a function. Fenton offers an insightful ex-

surprising result. Such classifiers are often calteidre [14],

ample wherghe samdunctionality is achieved usindifferent

since they assume that the frequencies of different attribufg®gramming language constructs resultingdifferent static
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dataset| kind | detector Let a; andp; denote some actual and predicted values respectively.
AN1 | Halstead| wunique operands >= 8.14 Let n and z denote the number of observations and the mean of
CM1 | Halstead I>167.94 the n. observations, respectively. Correlatioris then calculated as
M1 Halstead | unique operands >= 60.48 follows:
KC1 Halstead V > 1106.55 Spa = >i(pi—p)(a;—a)
— n—1
KC2 | McCabe ev(g) >= 4.99 ¢ B, o - Sueo?
T
1l i i T I y — — PA
Fig. 5. Best single measures found in five different defect logs. From [39]. correlation = ¢ = N

. Filg. 6. Correlation
measurements for that module [36]. Fenton uses this example

to argue the uselessness of static code measures.
An alternative interpretationof Fenton’s example is that

100

static measures can never be a definite and certain indicator 75
of the presence of a fault. Rather, defect detectors basedggp = 50
static measures are best viewed as probabilistic statements that 25 P S
the frequency of faults tends to increase in code modules N , , =
that trigger the detector. By definition, such probabilistic 01 045 065 1 2 3

statements will are not categorical claims with some a non-

ig. 7. Probability of detection seen usingefects; > T where
zero false alarm rate. We show below that false alarm r egfectsi is one of Equation 1 (the “LSR” curves) or Equation 2 (the

can be under 10% while still achieving a high probability 0fja| STEAD” curves) andT controls when the detector triggering.
detection. That is, on average, these static measures contain

some useful indications of the structure of a system.
Shepperd & Ince and Fenton & Pfleeger might rejectahe
ternative interpretationThey present empirical evidence th
(e.g.) the McCabe static measures offer nothing more than un-" =7 = -
informative measures such as lines of code. Fenton & Pfleege ruat|0ns.
note that the main McCabe’s measure (cyclomatic complexity,
or v(g)) is highly correlated with lines of code [36]. Also,
Shepperd & Ince remarks that “for a large class of software i

a f defects in modules described only in terms of lines of code
IEL_OC) or the Halstead (HAL) measures. This generated these

fiefects(LOC’) = 0.0164 4+ 0.0114 x LOC 1)

(cyclomatic complexity) is no more than a proxy for, and in e(LOC) = 065
many cases outperformed by, lines of code” [37]. defects(HAL) = 0231+ (0.00344 x N)‘Jr (8.88¢c —4xV) ()
Our own experiments witlieature subset selectiofFSS) ~(0.185 % L) — (0.0343 x D) — (0.00541 % I)
suggest that static measures can be more informative than +(1.68¢ = 5+ ) + (0.711 » B)
suggested by Shepperd & Ince and Fenton & Pfleeger. FSS —(4.7e = 4xT)
c(HAL) = —0.36

is the preferred method in the data mining community of find
good subsets of the available measures. Hall and Holmes offer
a good tutorial and experimental evaluation of seven differepft first glance, the equations seem to endorse the thesis
FSS methods [19]. For example, the WRAPPER methods that seemingly sophisticated static measures are even more
Kohavi and John [38] performstill-climbing searchthrough useless than lines of code. The simple LOC-based predictor
the space of possible measures. At each step in the clirfbguation 1) correlates at = 0.65 to defects. This is much
some data mining algorithm is used asamacle to compare Sstronger that the correleation of= —0.36 seen in the the
the performance of a smaller to a larger set of features. Halstead-based detector (Equation 2). However, further study
With Nikora and Ammar [39], we have applied seven differshows that the correlation of these equationgralevant to
ent FSS methods like WRAPPER on defect logs comprisitigeir merits as a defect detector. Equation 1 and Equation 2
lines of code, McCabe and Halstead measures. Two differ@an be converted to a detector by combining them with
data miners were used as oracles: the J48 decision tree lea@gne threshold valug. If a module generates numbers from
and a NaiveBayes classifier with kernel estimation. FiguretBese equations that exceeds the threshold, then a detector is
shows the detectors learnt using the most influential statiiggered For all the modules, the probability of detection
measure found by any of the seven FSS methods using eittf¥P) is the percentage of modules with known defects that lead
of the two oracles. Note that in no case was lines of code tHea trigger. Figure 7 shows how PD changes as the threshold
most influential measure. changes 0.1 to 3 for the KC2 dataset from Figure 2. Note that
Why are we so optimistic about static measures and ShépP’D = 75% can be reached using either method by setting
perd & Ince and Fenton & Pfleeger are so pessimistid;?z 0.65 or T' > 0.45. That is,eitherequation can reach some
One possibility is that we use a different set adsessment desired level of detectioregardless of their correlationgust
criteria for detectors. A commonly used assessment criterial®y using different threshold values.
correlation (defined in Figure 6) and, as the following example Our conclusion from this example is thaeandidate mea-
shows, correlation may be uninformative on the merits of sures for defect detectors need to be assessed on more than
measure for detecting a defect. just correlation The next section offers several suspecific
Elsewhere [27], we have applied linear regression to logsteria and meta-criteria
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A B
[1l. I NSTEAD OF CORRELATION 1
. ) . accuracy
A. Specific Criteria ors LT E -
Particular measures can be assessed by combining them to Y
form detectors and then assess espébcificdetector using: £ 05} -
« PD: the probability of defecting faults (a.k.a. recall); offort
0.25 —

« Accuracy;
« The effort associated with the detector triggering;
« The probability of false alarm (PF).

To formally define the specific criteria, we say that a defect
detector hunts for aignal that a software module is defect
prone. Statistics on a detector can be kept in a 2-by-2 matfix o At each x-axis value, z describes the
of Figure 8. If a detector registers a signal, sometimes the pd. ef fort, accuracy of one detector. From [27].
signal is actually present (cell D) and sometimes it is absent
(cell C). Alternatively, the detector may be silent when the
signal is absent (cell A) or present (cell B). in the modules falling into each cell of Figure 8 I8DC 4,

If the detector registers a signal, there are two cases lofPCp, LOC¢, and LOCp, then:
interest. In one case, the detector has correctly recognized the

PD
PF
WM
0 P+t B

30 detectors, sorted by effort

signal. Thisprobability of detectionor “PD", is the ratio of 7, . ction E _ LOCc + LOCp
- ~ i pection Ef fort = (3)
detected signals, true positives, to all signals: LOC4 + LOCp 4+ LOCc + LOCp
D Often it is the larger modules trigger the detector and fall

probability detection= PD = 51D into cells C and D. Hence, while only; 25228 — 14%

+ of the modules fall into cells CD of Figure 8, these represent
In the other case, thprobability of a false alarmor “PF”, an Effort of 56% of the code. Such a result lends support
is the ratio of detections when no signal was present to &ifat lines of code is a good predictor for defects. However, as
non-signals: seen above in Figure 5 other static measures can be better.

C Ideally, a detector has a high probability of detection, a low

ArC effort, and a low false alarm rate. In practice, this is hard to
achieve. The general pattern of Figure 9 has been observed in
Another criteria of interest is the accuracy, oAcc”, of pyndreds of defect detectors generated from various subsets
a detector which is the number of true negatives and trye the available static measures from the Figure 2 data sets

probability false alarm= PF =

positives seen over all events:

accuracy= Acc =

A+D

using a wide variety of data miners including decision tree
learners, model tree learners, linear regression and a home
brew learner called “ROCKY” [27], [30]. Each x-value of that

A+B+C+D _ : _
le. th b in th s of Fi figure describes one detector. The y-values on that figure offer
For example, the numbers in the ABCD cells of Figure g, \ajyes for each detector: effort, PD, PF, and accuracy. The

show the number of KC2 modules that a Naive Bayes classifiglio ctors are sorted on effort. The salient features of Figure 9
allocated to each cell. Based on those numbers: are as follows:

PD = # = 60f48 = 44% « Not surprisingly, to deteanhorefaults, our detectors must
PE = aig = %8%2;?1% = 5% trigger onmore modules. HenceFE f fort hovers above
Ace = A+B+C+D 392+60+23+48 84% PD.

« There exists a large number of detectors with very low
false alarm rates; i.e? F'<10%.

Very high probabilities of detection usually means trig-
gering many modules which, in turn, increadesth the
false alarm rate and the effort. Hence, hifftbs come

Yet another criteria of interest is the work requirafter a
detector is triggered. Based on cost-model developed by one
contractor at NASAs V&V facility [40], and a model from
Forrest Shull (personnel communication), our analysis will
assume that inspectidiif fort is linearly proportional to lines at the costs of highPF's ande f fort.

of code. Under that assumption, the inspectiofifort fora | Accyracy can be as uninformative as correlation for
detector is proportional to the percentage of the lines of code predicting detection, false alarms, and effort. Consider
in a system are selected by a detector. If the lines of code the detectors marked! and B on Figure 9. These

two detectors have nearly the same accuracy, yet with

signal present? ef forts, PDs, and PF's that can vary by a factor as

_ no yes large as4.
signal no | A= true negative | B
392 60
detected?| yes S5 o fue positive B. Meta-Criteria and Sequence Studies

Apart from the criteria used to assess a specific detector, it

Fig. 8. Statistics for applying the specific criteria. is also insightful to consider certameta-criteria If the goal
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"ok e p and more of the data is used to train J48 and a Naive Bayes
HBwins | 1 classifier with kernel estimation.
. 100 [ A 100, ~—  The error bars in Figure 10 shawl standard deviations for
g8 777} 1 g 75 [ 1 the accuracies seen in tié repeats. Those standard deviation
g 50 | i % 50 | | values can be used in t-tests to generate the right-hand-side
o | | 2 | | sequence summary plof Figure 10. In a sequence summary
WIS m— plot, the display of the mean accuracy of a classifier only
or 32§ . 0y '}Eﬂé “ 1 changes if it is statistically difference (at the 95% level) to
1234567809 123456789 the last seen change; otherwise the displayed mean value is

the same as the value seen at the last change. The summary
plot shows that there was little significant improvement in
classification accuracy of Naive Bayes or J4.8 after using 20%
of the data. Further, there was no significant improvement in
either method after using 60% of the data.

: ... On top of the y-axis of the sequence summary plot are three
is to generate detectors that have some useful future validit arks:nbk wins tie; and J48 wins The plot to the right of

then an important meta-criteria is how well the detect K . £ th ‘ f the t
performs on datahot used to generate it. Failing to do s €s€ marks are a comparison ot the periormance ot the two
agﬁrners at eaclX value. One learnewins over the other if it

can result in an excessive over-estimate of the learned mo o . .
. 0,
for example, Srinivasan and Fisher report an 0.82 correlati'(?nbOth statistically different (using a t-test aF the 95% level)
d the mean performance of one learner is larger than the

between the predictions generated by their learned decis other. In the case of this study with the IRIS data set,

tree and the actual software development effort seen in th Ve B won over J48 four times: J48 never won- and
training set [34]. However, when that data was applied to d feIve bayes won over ou es, ever won; a
oth learners tied four times.

from another project, that correlation fell to under 0.25. Th

conclusion from their work is that a learned model that works In an sequence study, a learner is said to qu_lmsgued
fine in one domain may not apply to another when the curves in the summary plot stop changing; i.e. there

In order to apply this meta-criteria, a commonly-used mef[ero S'g{'(')f'cqm .?_han?ei to the tpetr;‘]orrlnance of the tl)earner.
criteria assessment is a M*N-way cross validation stu lgure 16, significant changes 1o the leamers can be seen

ice: a large change after training on 20% of the data and a

where, the data is sorted into a random order M times [14]. 4 .
For each order, the data is divided into N bins and the theo gry small change (in J48 only) after seeing 60% of the data.

learned on N-1 bins is tested on the remainiid-out bin. .A.Pha”tom _changis when the mean of one Iearnera@t.is
gjlgmﬂcantly different to a proceeding, changebut the win-

tie plots shows that the change is not significantly different to
me other learner. In Figure 10 J48’s second change at 60% is

: L o
a self-testthat can quickly and clearly recognizes when aﬂo_tl_f]l phanton]"nc Sr']’_“’e Ithe wm_tleFr_eport f(l)so fChaggS/S*fégf)g/g
old conclusion does not apply to a specific new situation. To e start o _t IS P atea_u (in igure after 70 B
implement that self-test, we modify the standard NWI_Waﬁxamples). defnjes the point at which further data is superflu-
procedure to find the lower-limit on how many examples ardss: At this point, we can report_ thee numpe_r of examples

- Qgeded to learn a detector. If thpgateau pointis small then

a sequence studgnd is defined by the tupleL,M,N,X>. In it would also be possible to quickly determine how data is
summary, a sequence study tests how WeII’ w’e ,can' learii€guired before we can assess if the detector will be adequate.

theory usingless and less data
« M times the data ordering is randomized. IV. RESULTS FORLEARNING DEFECTDETECTORS

bins used in training bins used in training

Fig. 10. Learning curves (left); summarized (right).

will perform on new data.
Any empirical conclusion, such as ours, should come wi

e The first L examples are divided into N bins. The class Figure 11 shows the results for a
distribution within the N bins is selected to be similar tac| =500, M=N=10, X=1...9>. sequence study on the

the class distribution in the original data set. Figure 2 data using a NaiveBayes (with kernel estimation)
o 2 x L of the data forX € {1,2,...N — 1} is used for ¢|assifi . isi

N ¥ ) 4 classifier to an entropy-based decision tree learner (J48) [14].

training and... In all, learning was conducted 2700 times. These calls divide

« The remaining®* « L of the data is used for testing. into 135 calls where the two learners were executed on the

The “L” in the sequence study is very important since this #ame data within a 10-way cross-validation experiment.
the upperimit on the number of examples processed M*N*X For space reasons, only the summary graphs for PD and PF
times. Such upper limits are required when processing veage shown. KC2's PD exhibits a phantom droprat 50%.
large data sets (e.g. the JM1 data set in Figure 2 which hEsat drop is a phantom since win-tie plot shows the change
10885 modules). is indistinguishable from the J48 plot.

Figure 10 shows the results from a sequence study wheraVe saw above in Figure 9 that accuracy can be uninforma-
<L=150,M=N=10,X=1...9> on the IRIS data set from thetive for predicting false alarms (PF) and prediction (PD). The
UCI machine learning data repository [41]. The plot on theame effect was seen in this experiment. For all our runs, the
left shows the mean classifier accuracy improving as moaecuracies hover between 75% and 85%. However, as seen in
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datg __FD (recal) _PE____ . methods. At the 95% level, Naive Bayes won 51 of those
NS N\ nbkmtns . ”
Hswing [ 1 sewine [ M 90 cross-validations; J48 won once (see the KC2 PF curve
100 | 1 100 - 1 at bins = 8) , and in the remaining 90-51-1=48 times, the
- 75| 1] 75t 1 two methods tied. This means that #-=22~99% of the
= ) " ; 1 . 50 1 cross-validation experiments, measured in terms of PD and PF,
5p | 25 | Naive Bayes generated equivalent or better defect detectors
o nbk -eeeee 1 o [ nbk 1 than J48. HenceNaive Bayes is better than J48 for learning
M8 - 8 -
“““““““ defect detectors
123456789 123456789 . . .
KC2 bins used in training bins used in training An interesting feature of Figure 11 are tharlyﬁplateaus
bk wins " . bk wips [ seen in all the runs. KC1's PD plateaus afiep 75 = 300
HBwins 1 HBwins - 1 modules. The other PD plots plateaus much earlier: i.e. after
100 ¢ ] 100 ¢ ] only 500 * 5 = 50 modules. Early plateau lets us implement
g nr 1| = nr ] the self-testdescribed in the introduction: i.e. a quick and clear
O ™™ 50 f ] recognition when a conclusion is failing. Such early plateaus
2 i ] SR — means thatafter sampling 50 modules it is be possible to
0 Mok ] ol - S— ] determine detector effectiveness for a particular data set
123456789 123456789 At the plateau point, the height of the plateau seems to be
KC1 bins used in training bins used in training determined by how certain features of the data set. Figure 11
] e— ] ] a— is sorted in according to maximum reached PD and this
| ] el order corresponds to how specialized was the code. KC2 and
| | | KC1 are shown on top and these have the highest PDs and
B 6| | 5 ol precisions. JM1 and PC1 are shown at bottom and these have
) the lowest PDs. Note that this sort order corresponds to the
.l wins, = ] 2 ins m—_ | system/sub-system break up shown in Figure 3. That is, defect
O 38 ] O 38 ] detectors learnt from data coming from below the sub-system
123456789 123456789 level (e.g. KC1 and KC2) have a higher probabilities of finding
CcMI __ binsusedin training __ binsusedin training faults than defect detectors learnt for an entire system. Note
rﬁ;x:ﬁé —_—N r;zzx:ﬁé —_—N also the false alarm rate is largest at the system level (JM1,
100 | 100 - | PC1 PF < 25%) and smallest below the sub-system level
- | —_ | (KC1, KC2 PF < 10%). Hence, we recommenikdarning
B . | B . defect detectors from data sets divided below the sub-system
- 25 | | level We call this improvement in PD via learning from data
o | bk | 0 [ b ] specialized below the sub-system level teatification effect
e L B8 and will explore it further below.
b?“;;?f??*’ b?“'se‘(‘jjr’???g In Figure 11, the height of the PD plateaus found by Naive
M1 Bl e PO L Bayes was 20%, 25%, 30%, 50% and 50% in PC1, JM1, CML1,
tie [ N e —r" | ;
M8 wins | ] M8 wing [ ] KC1 and KC2 respectively These PDs are reached at a much
100 | 1 100 1 lower cost than what is required for the equivalent manual
- 75 ¢ 1 _ 75| 1 task. Menzies and Raffo [40] report one manual inspection
= 50 | 1 - 50 1 cost model used by a NASA V&V contractor where 8 to 20
25| : 25 b lines of code are inspected per minute. This effort repeats for
WINS - — WINS  — . . .
0 [ bk s 4 0 [ bk e 4 all four to six members of the review team, which can be as
“““““““ large as four or six. Another cost model comes from Shull
123456789 123456789 | . . h I 4 h t . t
pcil bis used in traiing bins used in traiing (personnel communication) who allows ours to inspec

500 lines of code (2 hours for meeting preparation; 2 hours
Fig. 11. PD and PF results from a sequence study for Figure 3 data. for the meeting); i.e. 2 LOC/minute- four times slower than
the cost model described above. By contrast, our detectors
can flag worrying modules in a fraction of that tifnence
Figure 11, these small changes in accuracy are associated Wigh prior inspections has been collected into tables describing
large chances to PF and PD: modules in terms of Halstead and McCabe metrics. Hence,

. PD change by a factor of five from 10% (PC1's J4§Iefect detectors learnt from static code measures can operate
results) to 50% (KC1 and KC2's PD) at a fraction of the cost of manual inspections

« PF change by a factor of four from 5% (in PC1l's J48 3KC2's PD platea | ded at 50% since the drop in that blot at binss
s (i , 's PD plateau is recorded a % since the drop in that plot at bins=
results) to 20% (in IM1's nbk results). in Figure 11 is a phantom and, at bins=1 in Figure 11, Naive Bayes's PD of
Based on the Figure 9 and Figure 11 results. we hadegse 50% can be distinguished from J48 (i.e. in that first bin, NaiveBayes wins
. . ' over J4.8).
against using accuracy to assess defect detectors )

) . i _ “For example, a ten-way cross-validation on KC2 using Naive Bayes takes
Figure 11 also lets us assess the merits of different learnifg seconds on our Solaris machines.
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60 — . . . meaning of PD (probability of detection). The above results
2 13 show PDs learned from defects logs containing issue reports
2 s} KClm KC2mwm 18 - : o )
o lum 2 from multiple sources: inspections, software tests, hardware
8 wl w17 4 tests, formal method results, etc. As a result of this extensive
3’3_’3 =_16 checking, we assert that the PDs shown above are equal to the
> 3oFm= JC'\'A\/'ll , T percentage of defeceverfound in the system.
= | | | | . . .
8 20lspa - 4 Another kind of PD, would be that seen in data miners
g executing on just the issue reports seen in the most recent

o — ' ' ' manual inspections. In this case, PD changes to a smaller value

system  sub-  sub-sub-  sub-sub- . . . "
system system  sub-system (which we denote PL) since our learners might only find a

certain percentage of the defects contained in the inspection
logs which, in turn, is some percentage of the total number of
defects.

Further research is required to determine #wtual value

We hasten to add that by “operate” we mean only thaf the PD learned from just inspection logs. While we await
oracles that flag faulty modules can be automatically generatéet data, we run two scenarios. In Scenario |, we will assume
and applied very quickly. Once that operation completeBD refers to a percentage of the total number of errors; i.e. the
analysts still have tonanually inspecthe flagged modules. IV&V situation where we are learning from rich defect logs.
The overall economic savings from this automatically-operabke Scenario I, we will assume PDO.e. the V&V situation
then manually-inspect-some modules is discussed in the nekiere we are only learning from the results of inspections.
section. Scenario I's conclusions will endorse using defect detectors

In order to assess the generality of the stratification eftile Scenario II's conclusions will be more negative. Hence,
fect, we extracted sub-divisions of the KC1 sub-systerwe also develop Scenario Il where we assess the root cause
Seven of these sub-sub-systems had defect logs and thofsthe findings in Scenario Il to find a remedy to reverse those
contained 101,124,127,193,240,264, and 385 modules. nAgative conclusions.
<L,M=N=10,X=1...9> study was conducted on each sub- \ye also make several other assumptions:
sub-sub-system with L set to the total number of modules

in each data set. The results of that study echo our abofdl: The project is 100,000 lines of code.
conclusions: A2: Figure 4 shows the assumed software process: i.e. IEEE

« Naive Bayes is better than J48 for learing defect de- 12207+IV&V model. _
tectors.In these seven sub-divisions of KC1, NaiveBayed'3: Figure 11 shows how many modules our data miners

won 16 of the 10-way cross-validation experiments; J4.8  Can use to learn defect detectors; i.e. 50 modules.
won 6 times and the two learners tied 32 times. A4: Equation 3 and Figure 9 shows the assumed effort asso-

« Detectors usually exhibit very early platealn. all sub- ciated with our detectors being triggered; iigf fort =
divisions of KC1, plateau was reached after 50 modules. P_D +5%...10%. )
« The PDs can rise to up to 50%he observed height A5: Figure 9 shows the assumed PF with our detectors;

of the PD plateaus in the KC1 sub-divisions were  ©F < 10%. There is additional support for this PF
25.35.40.45.45 50 50%. assumptionPF < 10% can also been seen in Figure 11

for defect detectors learned from below sub-system data

Fig. 12. Naive Bayes PD at plateau in Figure 2 data.

« Learning from data divided below the sub-system level
improves PD The PD plateaus points of the KC1 sub- _ (KC1 and KC2). _ _
division, and the PD plateau points generated above, aft: Figure 12 _shows the assumed PD associated with the
shown in Figure 12. The x-axis of that plot shows the _detectors; i.ePD = 40...50%.
level of the data set: from “system” on the left-hand-sidel7: Assumption A6 assumes, in turn, that defect detectors

to “sub-sub-system” on the right-hand-side. The plateaus &€ learnt from data divided below the sub-system level.

from sub-divisions of KC1 are marked, 2, ..., 18 etc. 8: Standard manual inspections find 40% to 60% of the
With the exceptions of2 and_16, the general trend in total defects.
Figure 12 is clear: sub-division improves PD. In principle, these assumptions can be checked and adjusted

As to 2 and_16, the early plateau effect seen in Figure 13s necessary. This is one of the strengths of process simulation.
shows that we can quickly check for software lik&and 16 Our current process model has been built and repeatedly
that generates low PD detectors. Specifically, if after sampligiecked over the last three years.

50 modules collected below the sub-system level, the detectors g 1o the other assumptions, AL and A8 are simply input

found by a Naive Bayes classifier do not achieve high PDSarameters to our model and can be easily changed prior to

then the conclusions of the next section do not hold. a new set of simulations. A3 is based on the early plateau
effect and that can be checked using sequence studies using as

V. BUSINESSIMPLICATIONS OF DEFECTDETECTORS little as 100 modules. If A3 holds, then checking assumptions

Before turning to the business case simulations, we needAd,A5,A6 is a simple matter: just use the procedure described
state some underlying assumptions. One important issue is #téhe end of the last section.



MENZIES,RAFFO,SETAMNIT,DISTEFANO,CHAPMAN, WHY MINE SOFTWARE REPOSITORIES?; SUBMITTED TO IEEE TSE, OCTOBER 23, 2004
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Fig. 13. Coding and unit test process showing Fagan inspections.

Total Total Total Total Average | Total Total Code In-
Size Effort Rework | Duration | Duration | Defect Latent spection

(KLOC) | (PM) Effort (Month) Cor- Defects | Effort

(PM) rected (PM)

Average | 99.79 781.41 160.56 32.81 28.51 5,907.08 | 507.81 9.67

Std Dev | 4.00 27.66 6.95 1.43 1.22 257.00 22.00 0.29

Fig. 14. AS-IS Baseline Process Performance predicted by the Simulation Model

A. Baseline Model Results

Baseline performance is predicted in terms of development
effort (or cost), effort devoted to rework, IV&V effort, project

procedure will select the modules falling into cell C (i.e.
modules where the signal is detected, but where defects
were not found).

duration, corrected defects, and escaped (or delivered) defects. The modules that trigger the detectors are then re-
Our baseline of the AS-IS process presumes that full Fagan nspected. The re-inspection rate’s upper bound is PF;
inspections [42] are done at all development phases- including -€- 10% (from [AS]).
at the coding phase (see Figure 13). The actual baselifie assess the impact of learning data miners for defect
performance for the AS-IS process (without using data minegigtectors, then using them in IV&V mode, the next parameter
applied to defect detectors as part of IV&V activities) can beequired is an estimate of the percentage of the escaped
seen in Figure 14. defects that will be found using the above procedure. At
present, more research is necessary to empirically determine
B. Scenario |- Defect Detectors and V&V this percentage._ While we awgit thqse result.s,. we can use the
process simulation model to identify the minimum percent-
For the first TO-BE process scenario, we apply the defegges required in order to break even (where expenses equal
detectors as part of an independent verification and validatipanefits). Moreover, the process simulation model can help
(IV&V) step after coding and code inspections are completgsess the risk of applying the defect detectors by assessing
(see Figure 13). Is this TO-BE scenario, defect detectors afe worst-case scenario (i.e. when no additional defects are
utilized in IV&V work as follows: detected).
« Defect logs and code modules that have completed codeThe results of these tests are shown in Figure 15 and, for the
inspections and other forms of testing are sent to IV&\purposes of this discussion, we focus on the cells marked with
« Defect detectors are learned on the logs and then appl@dlack triangle 4). These cells show the difference between
to 100% of the code. Once the logs are in a formdite baseline data of Figure 14 (repeated at the top of Figure 15)
suitable for the learners, this can be done automaticaliyd the results from Scenario |. As can be seen, using defect
and quickly (a mere matter of seconds). In our simulaletectors breaks-even (i.e. tligelta goes from negative to
tions we assume that preparing the input logs takes twositive) if the above approach can detect an additional 1 to 2%
person days(or 16 hours of effort) for a large 100 KSLOGf the latent defects in the code and starts showing a positive
project. benefit in both effort and latent defects at 3%. The worst case
« The defect detectors identify code modules that are likely that an additional 1.16 person months would be expended
to contain defects. Since the code modules will have godeing inspections that do not find any new defects.
through code inspections and other assessment measurédoreover, if 5% or 10% of the latent defects are found, the
during project level V&V, many of the modules thatquality of the code would be improved by an average 15.5
are identified will already be known to contain defectsand 32.5 defects respectively and an an average 2.5 and 6.5
These modules will not be looked at again. Instead, thperson months of effort respectively could be saved.
defect detectors will be used to identify modules where no To repeat, theminimumperformance target for defect de-
defects were found during their initial code inspectionsectors to be beneficial for IV&V would be 3% additional
but whose characteristics indicate that these modules defects detected and thmaximumexposure would be 1.16
likely to have defects. From Figure 8, we see that thjgerson months of effort. Based on our commercial work
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Total Size | Total Effort | Total Effort | Total Total Dura- | Average Du- | Total Defect | Total Latent | Code
(KLOC) + V&V (PM) Rework tion (Month) | ration Corrected Defects Inspection
(PM) Effort (PM) Effort (PM)
Baseline
[ Average [ 99.79 [ 781.41 [ 78141 [ 160.56 [ 3281 [ 2851 [ 5,907.08 [ 507.81 [ 9.67 |
[ StdDev | 4.00 | 2766 | 2766 [ 6.95 | 143 122 | 257.00 [ 22.00 [0.29 ]

Case 1: detcap IV&V =0
Average 99.79 782.57 781.41 160.56 32.85 28.51 5,907.08 507.81 10.83
Std Dev 4.00 27.67 27.66 6.95 1.43 1.22 257.00 22.00 0.30
Deltas -1.16 « 0.00 0.00 -0.05 0.00 0.00 0.00 « -1.16
Case 2: detcap IV&V = 0.01
Average 99.79 782.06 780.90 160.05 32.85 28.50 5,928.55 505.79 10.83
Std Dev 4.00 27.67 27.65 6.93 1.43 1.22 258.00 22.00 0.30
Deltas -0.65 « 0.51 0.51 -0.04 0.00 -21.47 2.02 « -1.16
Case 3: detcap IV&V = 0.02
Average 99.79 781.27 780.11 159.29 32.83 28.49 5,931.95 502.40 10.83
Std Dev 4.00 27.66 27.64 6.89 1.43 1.22 258.00 21.00 0.30
Deltas 0.14 « 1.30 1.27 -0.03 0.02 -24.87 541 < -1.16
Case 4: detcap IV&V = 0.03
Average 99.79 780.48 779.32 158.53 32.82 28.47 5,935.34 499.00 10.83
Std Dev 4.00 27.64 27.63 6.86 1.43 1.22 258.00 21.00 0.30
Deltas 0.93 « 2.09 2.03 -0.01 0.03 -28.26 8.81 « -1.16
Case 5: detcap IV&V = 0.04
Average 99.79 779.68 778.52 157.77 32.80 28.46 5,938.73 495.61 10.83
Std Dev 4.00 27.64 27.62 6.83 1.43 1.22 258.00 21.00 0.30
Deltas 172« 2.88 2.79 0.00 0.05 -31.65 12.20 = -1.16
Case 6: detcap IV&V = 0.05
Average 99.79 778.89 777.73 157.01 32.79 28.44 5,942.13 492.22 10.83
Std Dev 4.00 27.63 27.61 6.80 1.43 1.21 259.00 21.00 0.30
Deltas 251« 3.67 3.55 0.02 0.06 -35.05 15.59 « -1.16
Case 7: detcap IV&V = 0.10
Average 99.79 774.94 773.78 153.21 32.72 28.37 5,959.10 475.24 10.83
Std Dev 4.00 27.58 27.57 6.63 1.43 1.21 259.00 20.00 0.30
Deltas 6.47 « 7.63 7.35 0.09 0.14 -52.02 32.57 « -1.16

Fig. 15. Operational Scenario I: Using Defect Detectors in IV&V Mode

with companies exploring re-inspections of their code, we apeocess. Figure 16 shows the baseline results and results of
confident that the 3% additional defects threshold can be easiving an expected defect detection capability of 47% will
surpassed. However, in this forum, we cannot publish suppactuse the process using defect detectors during project V&V
ive evidence for this claim since it is based on proprietary data. break even on effort (but have an overall poorer quality).

If we are learning on an inspection log containing 50% of
C. Scenario II: Defect Detectors and Inspection-based v&\@ll defects (the expected case), then such a 47% overall defect
_ _ detection rate is only possible if a data miner can learn near-
Scenario Il is the case where analysts havaueh weaker_gerfect detectors with a PD of 98% (i.80% * 98% — 47%).

training set; i.eonly the results of internal inspections. This is.; A - .
) . ince this is highly unlikely (to say the least), the conclusion
the PD case where the data miners only f ethe defects of Scenario Il must be to doubt the value of defect detectors

in defect logs which contain onlgomeof the project defects. for i :
Lo . or improving V&V.
One situation where this could happen would be when a P 9
team declines to wait for the V&V team to report issues.
Instead, they use their own experience of, say, their coBe Scenario lll: Fixing Scenario Il

inspections to build defect detectors. For example: If our process simulation methodology is rich enough, we

« A minimum set of code was inspected. From assumptigiould be able to query our models to find some repair to
A3, 50 modules per sub-sub-system, or 11.5% of tt&cenario II. This section searches for such a repair.
code, would be required to achieve plateau performancewe diagnosed the problem identified in Scenario llezsn-

« Using the defect logs from these inspections and theg from impoverished training exampléess discussed above,
inspected modules, defect detectors were learned usifg effectiveness of the learned defect detectors approach
data miners and applied to the rest of the code. depends upon the training examples used. If the training

« Modules were identified as likely candidates for defectgxamples themselves are not effective at detecting defects, the

« Only those portions of the code that are tagged as likelyarned defect detectors will not be either.

"hot spots” were inspected. If a diagnosis is useful, it should suggest a repair. To

Under this scenario, the defect detectors would select 61.5&fpair the problem we explored ways to improve the training

of the code for further inspection. This would result in 38.5%et. One possibility would be tonprove the methods used
reduction in inspection effort (approximately 3.7 persorto generate the inspection reports. A candidate technology
months) and inspection schedule savings. However, procé&ssthat improvement is Shull'perspective-basethspection
simulation shows that the savings in inspection effort woulthethods [43] where each reviewer explores the code with
not offset the increase in defect detection and rework coslifferent goals; e.g. one reviewer might only check for ter-
associated with finding these defects later in the developmemnation on looping constructs while another might check
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Total Size | Total Effort | Total Total Dura- | Average Du- | Total Defect | Total Latent | Code
(KLOC) (PM) Rework tion (Month) | ration Corrected Defects Inspection
Effort (PM) Effort (PM)
Baseline
[ Average [ 99.79 [ 781.41 [ 160.56 [ 32.81 [ 2851 [ 5,907.08 [ 507.81 [ 9.67
[ StdDev | 4.00 | 2766 6.95 [ 143 122 | 257.00 [ 22.00 [0.29
Case 1: detcap 2 = 0.48
Average 99.79 780.24 163.24 32.74 28.44 5,895.33 519.56 5.52
Std Dev 4.00 27.52 7.07 1.43 1.21 257.00 22.00 0.14
Deltas 117 « -2.68 0.07 0.07 11.75 -11.75« 4.15
Case 2: detcap 2 = 0.47
Average 99.79 781.53 164.58 32.78 28.47 5,889.45 525.43 5.42
Std Dev 4.00 27.54 7.13 1.43 1.22 256.00 22.00 0.14
Deltas -0.13 « -4.02 0.03 0.03 17.63 -17.62 « 4.24

11

Fig. 16. Operational Scenario II: Using Defect Detectors in V&V Mode.

that they have enough information to divide system inplit by finding a break even point in the knowledge content of
into equivalent classes. Shull's key argument is that havimgir defect logs, after which data mining helped V&V.
such specific goals (which he calls “perspectives”) means thatApart from process simulation, we also offer several spe-
a reviewer can work faster and more effectively since thatific conclusions about data mining and software repositories.
attention is not distracted by numerous side-issues. Furthérstly, Naive Bayes classifiers seem better suited to handling
since multiple reviewers are looking at multiple differenhoisy real-world defect logs than J48.
issues, there is less likelihood for the different reviewers to Secondly, prior pessimism on the utility of static code
discover the same issues. measures may be incorrect. Halstead and McGabemore
Perspective-based inspections (PBR) have been shownntormative than mere lines of code (recall Figure 5). Perhaps
detect approximately 85% of latent defects [43]. Using thesee need to assess static code measures on more than just
highly effective inspections for the training data set, ancbrrelation or accuracy. We have seen above (in Figure 7) that
assuming that the PDs of the learned theories remain at 50%cofrelation can be an orthogonal measure to the probabilities
the defects in the training set, then enables the learned defgfutlefect detection and false alarm rates. A similar disconnect
detectors to achieve PB- 85% * 50% = 42.5%. between accuracy and PD/PF was seen in Figure 9.
The benefit of using process simulation models is the Thirdly, our analysis of the NASA data sets found several
ability to quickly do "what if" analysis and to optimize theimportant effects that are worth checking for in other data sets:

implementation of new technologies so that they achieve good, The stratification effectof Figure 12 where learning on

point for this operational scenario can also be found. « Theearly plateau effecbf Figure 11 where the conclu-
Hence, in situations where code inspections achieve 47% Sions from our data miners Stab”ized after Seeing On'y
defect detection capability (effectiveness) or less, the com- 50 modules.
bined approach of using perspective-based inspections
approximately 12% of the code coupled with learned defe
detectors can provide a payoff in terms of reduced effort al
reduced delivered defects. The farther the baseline inspectioqﬁ/lc')re generally, we see this kind of analysis as being very
are below thg 47% break even point, the stronger the ben%@heficial for more than just assessing defect detectors learned
with perspective-based methods. from software repositories. The above process simulation is an
example of a general technological assessment process where

we can:

Identify the conditions under which application of a new
technology would be beneficial.

As importantly, we can identify situations when applying
this technology wouldhot be beneficial.

We have can performance benchmarks or criteria that
vendors of a new technology would need to achieve
in order for an organization to consider investing and
adopting their technology.

IPthese effects repeat in other data sets then they promise that
od defect detectors can be learned from surprisingly little

VI. CONCLUSION

We are not the first to use data mining to develop defecte
detectors. Prior work in this area includes [31]-[34]. However,
with the exception of Porter and Selby [31], much of the prior
work has focused on the technical details of the defect detec-
tors and not the business implications of the technology. Oure
belief is that this report is a far more detailed analysis of the
properties of defect detectors learned for metrics repositories
than has appeared previously.

An important part of our analysis was process simulation. « We can diagnose problems associated with implementing
Process simulation is a powerful tool for conducting what-if & new tool or technology and identify new and creative
queries on software processes. We have shown above two such Ways to apply the technology to the benefit of the
what-ifs: in Scenario | we did not know the impact of applying ~ organization (and the vendors)
data miners to IV&V yet, in Figure 15, we could still identify « Finally, we can do all thiseforethe technology is pur-
the break even point where such mining was useful. Also, in  chased or applied and therefore can save scarce resources
Scenario 1, we could repair the negative result of Scenario available for process improvement.
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