
Baselines in Software Defect Detection

Tim Menzies
∗

Computer Science
Portland State University.

tim@menzies.us

ABSTRACT
The goal of the PROMISE workshop is to create a set of re-
producible software engineering experiments with the hope
that researchers will repeat and improve on prior results.
To show that something has improved, there must first be
some defined baseline. This paper lists the baselines known
for data mining results of defect detectors from static code
measures and defect logs found in the PROMISE data repos-
itory [6]. Many of these results have appeared previously [2]
but the stratification study at the end of this paper is a new
result.

1. EVALUATION CRITERIA
A defect detector hunts for a signal that a software module

is defect prone. In Figure 1, if a detector senses a signal,
sometimes the signal is present (cell D) and sometimes it is
not (cell C). Alternatively, the detector may be silent when
the signal is absent (cell A) or present (cell B).

If the detector registers a signal, there are two cases of
interest. In one case, the detector has correctly recognized
the signal. This probability of detection, or “PD”, is the
ratio of detected signals, true positives, to all signals:

probability detection (a.k.a. recall) = PD =
D

B + D

In the other case, the probability of a false alarm, or “PF”,
is the percentage of detections when no signal was present:

probability false alarm = PF =
C

A + C

Another criteria of interest is the accuracy, or “Acc”, of
a detector which is the number of true negatives and true
positives seen over all events:

accuracy = Acc =
A + D

A + B + C + D
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Figure 1: Statistics.

For example, the numbers in the ABCD cells of Figure 1
show the number of KC2 modules that a Naive Bayes clas-
sifier allocated to each cell. Based on those numbers:

PD = D
B+D

= 48
60+48

= 44%

PF = C
A+C

= 23
392+23

= 5%

Acc = A+C
A+B+C+D

= 392+48
392+60+23+48

= 84%

Yet another criteria of interest is the work required after a
detector is triggered. Based on cost-model developed by one
contractor at NASA’s IV&V facility [4], and a model from
Forrest Shull (personnel communication), our analysis will
assume that inspection Effort is linearly proportional to
lines of code. Under that assumption, the inspection Effort
for a detector is proportional to the percentage of the lines
of code in a system are selected by a detector. If the lines
of code in the modules falling into each cell of Figure 1 is
LOCA, LOCB , LOCC , and LOCD, then:

Inspection Effort =
LOCC + LOCD

LOCA + LOCB + LOCC + LOCD

(1)

Often it is the larger modules trigger the detector and fall
into cells C and D. Hence, while only 23+48

392+60+23+48
= 14%

of the modules fall into cells CD of Figure 1, these represent
an Effort of 56% of the code.

2. TRADE-OFFS WITHIN THE CRITERIA
Ideally, a detector has a high probability of detection, a

low effort, and a low false alarm rate. In practice, this is
hard to achieve. The general pattern of Figure 2 has been
observed in hundreds of defect detectors generated from
various subsets of the available static measures from the
PROMISE defect data sets using a wide variety of data min-
ers including decision tree learners, model tree learners, lin-
ear regression and a home brew learner called “ROCKY” [3,
5]. Each x-value of that figure describes one detector. The
y-values on that figure offer four values for each detector:
effort, PD, PF, and accuracy. The detectors are sorted on
effort. In that figure:
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Figure 2: At each x-axis value, x describes the

pf, pd, effort, accuracy of one detector. From [3].

• Not surprisingly, to find more faults, we need to trigger
on more modules. Hence, Effort hovers above PD.

• There exists a large number of detectors with very low
false alarm rates; i.e. PF≤10%.

• Very high probabilities of detection usually means trig-
gering many modules which, in turn, increases both the
false alarm rate and the effort. Hence, high PDs come
at the costs of high PF s and effort.

• Accuracy can be as uninformative for predicting detec-
tion, false alarms, and effort. Consider the detectors
marked A and B on Figure 2. These two detectors have
nearly the same accuracy, yet with efforts, PDs, and
PF s that can vary by a factor as large as 4.

3. VALIDATION STUDIES
If the goal is to generate detectors that have some useful

future validity, then we should test the detector on data not
used to generate it. Failing to do so can result in an excessive
over-estimate of the learned model- for example, Srinivasan
and Fisher report an 0.82 correlation between the predic-
tions generated by their learned decision tree and the actual
software development effort seen in their training set [7].
However, when that data was applied to data from another
project, that correlation fell to under 0.25. The conclusion
from their work is that a learned model that works fine in
one domain may not apply to another.

In order to apply this meta-criteria, a commonly-used
meta-criteria assessment is a M*N-way cross validation study
where, the data is sorted into a random order M times [8].
For each order, the data is divided into N bins and the the-
ory learned on N-1 bins is tested on the remaining hold-out
bin. This procedure allows a prediction on how well the
learner will perform on new data.

Any empirical conclusion, such as ours, should come with
a self-test that can quickly and clearly recognizes when an
old conclusion does not apply to a specific new situation.
To implement that self-test, we modify the standard N*M-
way procedure to find the lower-limit on how many exam-
ples are required to learn a detector. Our modified proce-
dure is called a sequence study and is defined by the tuple
<L,M,N,X>. In summary, a sequence study tests how well
we can learn a theory using less and less data:

• M times the data ordering is randomized.
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Figure 3: Results (left); summarized (right).

• The first L examples are divided into N bins. The class
distribution within the N bins is selected to be similar
to the class distribution in the original data set.

• X
N
∗ L of the data for X ∈ {1, 2, . . . N − 1} is used for

training and...
• The remaining N−X

N
∗L of the data is used for testing.

The “L” in the sequence study is very important since
this it the upper limit on the number of examples processed
M*N*X times. Such upper limits are required when pro-
cessing very large data sets (e.g. the JM1 data set discussed
below has 10885 modules).

Figure 3 shows the results from a sequence study where
<L=150,M=N=10,X=1. . . 9> on the IRIS data set from the
UCI machine learning data repository [1]. The plot on the
left shows the mean classifier accuracy improving as more
and more of the data is used to train J48 and a Naive Bayes
classifier with kernel estimation.

The error bars in Figure 3 show ±1 standard deviations
for the accuracies seen in the M repeats. Those standard
deviation values can be used in t-tests to generate the right-
hand-side sequence summary plot of Figure 3. In a sequence
summary plot, the display of the mean accuracy of a classi-
fier only changes if it is statistically difference (at the 95%
level) to the last seen change; otherwise the displayed mean
value is the same as the value seen at the last change. The
summary plot shows that there was little significant im-
provement in classification accuracy of Naive Bayes or J4.8
after using 20% of the data. Further, there was no improve-
ment in either method after using 60% of the data.

On top of the y-axis of the sequence summary plot are
three marks: nbk wins; tie; and J48 wins. The plot to the
right of these marks are a comparison of the performance of
the two learners at each X value. One learner wins over the
other if it is both statistically different (using a t-test at the
95% level) and the mean performance of one learner is larger
than the the other. In the case of this study with the IRIS
data set, Naive Bayes won over J48 four times; J48 never
won; and both learners tied four times.

In an sequence study, a learner plateaus at X = α if
there is are no significant changes to the performance of
the learner after training on α examples. In Figure 3, sig-
nificant changes to the learners can be seen twice: a large
change after training on 20% of the data and a very small
change (in J48 only) after seeing 60% of the data.

A phantom change is when the mean of one learner at x2 is
significantly different to a proceeding x1 change but the win-
tie plots shows that the change is not significantly different



# % with developed
project file level modules defects language at notes
PC1 pc1.arff 1 1107 6.8 C location 1 Flight software for earth orbiting satellite
JM1 jm1.arff 1 10885 19% C location 2 Real-time predictive ground system: Uses

simulations to generate predictions
CM1 cm1.arff 1 496 9.7% C location 3 A NASA spacecraft instrument
KC1 kc1.arff 3 2107 15.4% C++ location 4 Storage management for receiving and pro-

cessing ground data
kc1 1|2|3|
13|16|17|18.arff

4 80..290 C++ location 4 7 divisions of KC1

KC2 kc2.arff 4 523 20% C++ location 4 Science data processing; another part of the
same project as KC1; different personnel
than KC1. Shared some third-party soft-
ware libraries with KC1, but no other soft-
ware overlap.

Total 15118

Figure 4: Data sets used in this study. File denotes a data set file name available in ARFF format from
http://promise.site.uottawa.ca/SERepository/datasets-page.html.

to the other learner. In Figure 3 J48’s second change at
60% is not a phantom since the win-tie report also changes
at 60%.

The start of this plateau (in Figure 3 after 60%*150=80
examples) defines the point at which further data is superflu-
ous. At this point, we can report the N number of examples
needed to learn a detector.

3.1 Sequence Studies on PROMISE data sets
Figure 5 shows the results for a <L=500,M=N=10, X=1. . . 9>.

sequence study on the Figure 4 data using a NaiveBayes
(with kernel estimation) classifier to an entropy-based de-
cision tree learner (J48) [8]1 In all, learning was conducted
2700 times. These calls divide into 135 calls where the two
learners were executed on the same data within a 10-way
cross-validation experiment.

For space reasons, only the summary graphs for PD and
PF are shown. KC2’s PD exhibits a phantom drop at x =
50%. That drop is a phantom since win-tie plot shows the
change is indistinguishable from the J48 plot.

We saw above in Figure 2 that accuracy can be uninforma-
tive for predicting false alarms (PF) and prediction (PD).
The same effect was seen in this experiment. For all our
runs, the accuracies hover between 75% and 85%. However,
as seen in Figure 5, these small changes in accuracy are as-
sociated with large chances to PF and PD:

• PD change by a factor of five from 10% (PC1’s J48
results) to 50% (KC1 and KC2’s PD).

• PF change by a factor of four from 5% (in PC1’s J48
results) to 20% (in JM1’s nbk results).

Based on the Figure 2 and Figure 5 results, we hence advise
against using accuracy to assess defect detectors.

Figure 5 also lets us assess the merits of different learning
methods. At the 95% level, Naive Bayes won 51 of those 90
cross-validations; J48 won once (see the KC2 PF curve at
bins = 8) , and in the remaining 90-51-1=48 times, the two
methods tied. This means that in 90−1=89

90
≈99% of the cross-

validation experiments, measured in terms of PD and PF,
Naive Bayes generated equivalent or better defect detectors

1This study used the J48 and NaiveBayes implementations
that come with the WEKA toolkit.

than J48. Hence, Naive Bayes is better than J48 for learning
defect detectors.

An interesting feature of Figure 5 are the early plateaus
seen in all the runs. KC1’s PD plateaus after 500∗ 6

10
= 300

modules. The other PD plots plateaus much earlier: i.e.
after only 500 ∗ 1

10
= 50 modules. Early plateau lets us

implement the self-test described in the introduction: i.e.
a quick and clear recognition when a conclusion is failing.
Such early plateaus means that after sampling 50 modules it
is be possible to determine detector effectiveness for a par-
ticular data set.

In Figure 5, the height of the PD plateaus found by Naive
Bayes was 20%, 25%, 30%, 50% and 50% in PC1, JM1,
CM1, KC1 and KC2 respectively2. These PDs are reached
at a much lower cost than what is required for the equivalent
manual task. Menzies and Raffo [4] report one manual in-
spection cost model used by a NASA V&V contractor where
8 to 20 lines of code are inspected per minute. This effort
repeats for all four to six members of the review team, which
can be as large as four or six. Another cost model comes
from Shull (personnel communication) who allows 4 hours to
inspect 500 lines of code (2 hours for meeting preparation; 2
hours for the meeting); i.e. 2 LOC/minute- four times slower
than the cost model described above. By contrast, our de-
tectors can flag worrying modules in a fraction of that time3,
once from prior inspections has been collected into tables de-
scribing modules in terms of Halstead and McCabe metrics.
Hence, defect detectors learnt from static code measures can
operate at a fraction of the cost of manual inspections.

We hasten to add that by “operate” we mean only that
oracles that flag faulty modules can be automatically gen-
erated and applied very quickly. Once that operation com-
pletes, analysts still have to manually inspect the flagged
modules, thereby incurring the effort cost described above.

At the plateau point, the height of the plateau seems to
be determined by how stratified is the data set. Figure 5 is
sorted in according to maximum reached PD and this order

2KC2’s PD plateau is recorded at 50% since the drop in
that plot at bins=5 in Figure 5 is a phantom and, at bins=1
in Figure 5, Naive Bayes’s PD of 50% can be distinguished
from J48 (i.e. in that first bin, NaiveBayes wins over J4.8).
3For example, a ten-way cross-validation on KC2 using
Naive Bayes takes 5.3 seconds on our Solaris machines.
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Figure 5: PD and PF results from a sequence study
for Figure 6 data.

corresponds to how specialized was the code. KC2 and KC1
are shown on top and these have the highest PDs and pre-
cisions. JM1 and PC1 are shown at bottom and these have
the lowest PDs. This sort order corresponds to the direc-
tory structure where the source code was stored (see Fig-
ure 6). These datasets come from NASA repositories and
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Figure 6: Data sets used in this study.
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Figure 7: Naive Bayes PD plateaus.

standard practice at NASA is to use directories to repre-
sent system/sub-systems/sub-sub-systems (etc). Note that
defect detectors learnt from data coming from below the
sub-system level (e.g. KC1 and KC2) have a higher proba-
bilities of finding faults than defect detectors learnt for an
entire system. Note also the false alarm rate is largest at the
system level (JM1, PC1 PF ≤ 25%) and smallest below the
sub-system level (KC1, KC2 PF ≤ 10%). Hence, we recom-
mend learning defect detectors from data sets divided below
the sub-system level. We call this improvement in PD via
learning from data specialized below the sub-system level
the stratification effect and will explore it further below.

4. STRATIFICATION
In order to assess the generality of the stratification effect,

we extracted sub-divisions of the KC1 sub-system. Seven
of these sub-sub-systems had defect logs and those con-
tained 101,124,127,193,240,264, and 385 modules. A <L,
M=N=10, X=1. . .9> study was conducted on each sub-sub-
sub-system with L set to the total number of modules in each
data set.

The results of that study echo our above conclusions:

• Naive Bayes is better than J48 for learning defect de-
tectors. In these seven sub-divisions of KC1, Naive-
Bayes won/lost/ties 16/6/32 times against J4.8.

• Detectors usually exhibit very early plateau. In all sub-
divisions of KC1, plateau was reached at 50 modules.

• The PDs can rise to up to 50%. The observed height



of the PD plateaus in the KC1 sub-divisions were 25,
35, 40, 45, 45, 50, 50%.

• Learning from data divided below the sub-system level
improves PD. The PD plateaus points of the KC1 sub-
division, and the PD plateau points generated above,
are shown in Figure 7. The x-axis of that plot shows
the level of the data set: from “system” on the left-
hand-side to “sub-sub-system” on the right-hand-side.
The plateaus from sub-divisions of KC1 are marked
1, 2, . . . , 18 etc. With the exceptions of 2 and 16,

sub-division improves PD.

5. SUMMARY
Using public domain datasets and public domain learners,

this paper has defined a set of baseline results for learning
defect detectors. The challenge to the reader is now to re-
peat and improve (or refute) these results.

Acknowledgments
This research was conducted at Portland State University,
partially sponsored by the NASA Office of Safety and Mis-
sion Assurance under the Software Assurance Research Pro-
gram led by the NASA IV&V Facility. Reference herein to
any specific commercial product, process, or service by trade
name, trademark, manufacturer, or otherwise, does not con-
stitute or imply its endorsement by the United States Gov-
ernment.

6. REFERENCES
[1] C.L. Blake and C.J. Merz. UCI repository of machine

learning databases, 1998. URL: http:
//www.ics.uci.edu/~mlearn/MLRepository.html.

[2] T. Menzies, J. DiStefano, A. Orrego, and R. Chapman.
Assessing predictors of software defects. In Proceedings,
workshop on Predictive Software Models, Chicago, 2004.

[3] T. Menzies, J. Di Stefano, K. Ammar, K. McGill,
P. Callis, R. Chapman, and Davis J. When can we test
less? In IEEE Metrics’03, 2003. Available from
http://menzies.us/pdf/03metrics.pdf.

[4] Tim Menzies, David Raffo, Siri on Setamanit, Ying Hu,
and Sina Tootoonian. Model-based tests of truisms. In
Proceedings of IEEE ASE 2002, 2002. Available from
http://menzies.us/pdf/02truisms.pdf.

[5] Tim Menzies and Justin S. Di Stefano. How good is
your blind spot sampling policy? In 2004 IEEE
Conference on High Assurance Software Engineering,
2003. Available from
http://menzies.us/pdf/03blind.pdf.

[6] J. Sayyad Shirabad and T.J. Menzies. The PROMISE
Repository of Software Engineering Databases. School
of Information Technology and Engineering, University
of Ottawa, Canada, 2005. Available from
http://promise.site.uottawa.ca/SERepository.

[7] K. Srinivasan and D. Fisher. Machine learning
approaches to estimating software development effort.
IEEE Trans. Soft. Eng., pages 126–137, February 1995.

[8] I. H. Witten and E. Frank. Data Mining: Practical
Machine Learning Tools and Techniques with Java
Implementations. Morgan Kaufmann, 1999.


