
3 8 I E E E S O F T W A R E P u b l i s h e d b y t h e I E E E C o m p u t e r S o c i e t y 0 7 4 0 - 7 4 5 9 / 0 5 / $ 2 0 . 0 0 © 2 0 0 5 I E E E

data. But what data should you use to build a
good cost model? Real-world data sets, such
as those coming from software engineering
projects, often contain noisy, irrelevant, or re-
dundant variables.

Before getting the data, it’s hard to know
what parts of the data are most important.
However, once a database is available, you
can use automatic tools to prune the data to
the most important values. Therefore, we pro-
pose a change to current practice. Often, cost
models are built using all available data. We
propose that cost modelers should perform
data-pruning experiments after data collection
and before model building. Such pruning ex-
periments are simple and fast.

The basic process
We start with a table of historical data di-

vided into columns and rows. Each column is

a different variable describing some aspect of
a software project. Each row shows data from
different software subsystems, so one project
can contribute many rows. For example, in
table 1, the Variables columns show 17 vari-
ables that can be collected from a software
project, and the rows refer to three subsystems
from two projects.

We can prune the data in such a table by re-
moving rows or columns. Row pruning (also
called stratification) collects rows from related
projects; different cost models are learned
from these different subsets.

Column pruning (also called feature subset
selection) first sorts the columns left to right
according to their usefulness—that is, how
well a column’s variable predicts for the target
variable (in our case, software development ef-
fort). The pruning then proceeds left to right
across the sorted columns, each time removing

focus
Finding the Right Data for
Software Cost Modeling

G
ood software cost models can significantly help software project
managers. With good models, project stakeholders can make in-
formed decisions about how to manage resources, how to con-
trol and plan the project, or how to deliver the project on time,

on schedule, and on budget.
Off-the-shelf “untuned” models have been up to 600 percent inaccurate

in their estimates.1 So, the wise manager uses a cost model built from local

Zhihao Chen, University of Southern California

Tim Menzies, Portland State University

Daniel Port, University of Hawaii

Barry Boehm, University of Southern California

Strange to say,
when building a
software cost model,
sometimes it’s
useful to ignore
much of the
available cost data.

predictor models

some less-useful left-hand columns. At each
pruning step, a cost model is learned from the
remaining columns.

Row pruning has demonstrable benefits.
For example, Martin Shepperd and Chris
Schofield report row-pruning experiments
that improved estimator performance up to 28
percent.2 However—and this is our point
here—we find that much larger improvements
result from pruning both rows and columns.
For example, our experiments include a data
set where estimator performance went from
15 percent to 97 percent.

Furthermore, these large improvements oc-
curred when we pruned most of the columns
away. For example, column pruning removed
65 percent of all columns (on average). Sur-
prisingly, when building a software cost
model, it’s usually useful to ignore over one-
half of the available cost data.

More important, row-and-column pruning
leads to the largest improvements in estimator
performance in the smallest training sets
(fewer than 30 examples). This result has tre-
mendous practical significance. Modern soft-
ware practices change so rapidly that most or-
ganizations can’t access large databases of
relevant project data. Our results suggest that
this isn’t necessarily a problem, provided mod-
els are learned via row and column pruning.

For a look at a different application of data
pruning to software cost estimation, see the
sidebar.

Pruning: Why?
Let’s look in more detail at why you would

want to prune data. The case for pruning rows
is simple. Software projects aren’t all the same.
For example, real-time safety-critical systems
are very different from batch financial proces-
sors. Given a database of different kinds of
software, it’s just good sense to divide the
rows into different project types and learn dif-
ferent cost models for each type. Then, in the
future, managers can use different cost models
depending on what type of software they’re
developing.

The case for pruning columns is slightly
more complex. If a learned cost model uses all
the variables in the database, then the only
way to use that cost model on future subsys-
tems is to collect information on all those vari-
ables. In many business situations, the cost of
reaching some goal is a function of how much

data you must collect or monitor along the
way. If the learned model uses only some of
the variables, then using that model in the fu-
ture means collecting less data. This would be
useful in several scenarios. For example, if
you’re monitoring an outsourced project at a
remote site, it’s useful to minimize the report-
ing requirements to the most important vari-
ables. Such a reporting structure reduces the
overhead in managing a contract.

Good technical reasons for subtracting
variables also exist:

Undersampling
The number of possible influences on a

project is quite large, and, usually, historical

N o v e m b e r / D e c e m b e r 2 0 0 5 I E E E S O F T W A R E 3 9

Table 1
Some data for a software engineering project

Variables

1 2 3 … 17
Analyst Process Required … Lines Development

Project Subsystem ability maturity reliability … of code effort (mos.)

proj1 DBapi High Low High … 100,000 467
proj1 GUI High Low Low … 200,000 847
proj2 Guidance High High Nominal … 50,000 174

Data-pruning methods evolved within the data-mining community. While
researchers have extensively explored them,1,2 little prior work exists on col-
umn pruning for software cost modeling.

To the best of our knowledge, the only research similar to ours was a
limited experiment by Colin Kirsopp and Martin Shepperd.3 As with our
study, they found that column pruning significantly improves effort estima-
tion. However, their experimental base was much more restrictive than ours
(they ran only two data sets; we ran 15). Also, unlike our work, their exper-
iment isn’t reproducible. Their data sets aren’t public domain, while you can
download all our COCOMO-I data sets from the PROMISE repository.4

References
1. M.A. Hall and G. Holmes, “Benchmarking Attribute Selection Techniques for Discrete Class

Data Mining,” IEEE Trans. Knowledge and Data Eng., vol. 15, no. 6, 2003, pp. 1437–1447.
2. R. Kohavi and G.H. John, “Wrappers for Feature Subset Selection,” Artificial Intelligence,

vol. 97, nos. 1–2, 1997, pp. 273–324.
3. C. Kirsopp and M. Shepperd, “Case and Feature Subset Selection in Case-Based Software

Project Effort Prediction,” Proc. 22nd SGAI Int’l Conf. Knowledge-Based Systems and Ap-
plied Artificial Intelligence, 2002.

4. J. Sayyad Shirabad and T.J. Menzies, The PROMISE Repository of Software Engineering
Databases, School of Information Technology and Eng., Univ. of Ottawa, 2005; http://
promise.site.uottawa.ca/SERepository.

Related Work on Data Pruning
and Software Cost Modeling

data sets on projects for a particular company
are quite small. So, a variable that’s theoreti-
cally useful might be practically useless. For
example, figure 1 shows how nearly all the
NASA projects in the na60 data set were rated
as having high complexity. Therefore, this
data set wouldn’t support conclusions about
the interaction of, say, projects having very
high complexity with other variables. A
learner would be wise to subtract this variable
(and a cost-modeling analyst would be wise to
suggest to his or her NASA clients that they re-
fine the local definition of complexity).

Reducing variance
Alan Miller has extensively surveyed col-

umn pruning for linear models and regres-
sion.3 His survey includes a strong argument
for column pruning: the variance of a linear
model learned by minimizing least-squares er-
ror decreases as the number of columns in the
model decreases. That is, the fewer columns
there are, the more restrained the model pre-
dictions are.

Irrelevancy
Sometimes, modelers have incorrect beliefs

about what variables affect some outcome. In
this case, they might add irrelevant variables
to a database. Without column pruning, a cost
model learned from that database might con-
tain these irrelevant variables. Anyone trying
to use that model in the future would then be
forced into excessive data collection.

Noise
Learning a cost estimation model is easier

when the learner doesn’t have to struggle with
fitting the model to confusing noisy data (that
is, data containing spurious signals not associ-
ated with variations to projects). Noise can
come from many sources, such as clerical er-

rors or missing data. For example, organiza-
tions that build only word processors might
have little data on software projects with high-
reliability requirements.

Correlated variables
If multiple variables are tightly correlated,

using all of them will diminish the likelihood
that either variable attains significance. A re-
peated result in data mining is that pruning
away some correlated variables increases the
learned model’s effectiveness (the reasons for
this are subtle and vary according to which
learner you use4).

Pruning: How?
To prune columns, we use the Wrapper

variable-subtraction algorithm, which selects
combinations of columns and asks some
learner to build a cost model using just those
columns.5 The Wrapper then grows the se-
lected columns and checks if a better model
comes from learning over the larger set of
columns.

The Wrapper stops when there are no more
columns to select or when the learned model
has seen no significant improvement over the
last five additions (in which case, the Wrapper
discards those additions). Technically speak-
ing, this is a forward-select search with a
“stale” parameter set to 5.

The Wrapper is thorough, but it’s theoreti-
cally quite slow because (in the worst case) it
must explore all subsets of the available
columns. However, all the data sets in our study
were quite small. Our experiments required
only approximately 20 minutes per data set.

We use the Wrapper because other experi-
ments by other researchers strongly suggest
that it’s superior to many column-pruning
methods. For example, Mark Hall and Geof-
frey Holmes compare this algorithm to several
methods including principal component analy-
sis, a widely used technique.4 You can group
these methods according to

■ whether they make special use of the tar-
get attribute in the data set such as “de-
velopment cost” and

■ whether they use the target learner as part
of their pruning.

PCA is unique because it doesn’t make spe-
cial use of the target attribute. The Wrapper is

4 0 I E E E S O F T W A R E w w w. c o m p u t e r. o r g / s o f t w a r e

Low Nominal High Very high Extra high

50

40

30

20

10

0

Complexity

2 5

50

2 1

Figure 1. Distribution of
software complexity in
na60, a NASA project
data set.

also unique, but for different reasons: unlike
other pruning methods, it uses the target learner
as part of its analysis. Hall and Holmes found
that PCA was one of the worst-performing
methods (perhaps because it ignored the target
attribute) while the Wrapper was the best (be-
cause it can exploit its special knowledge of the
target learner).

Cost modeling with COCOMO

Before pruning data, we first need to un-
derstand how cost models might use that data.
This study uses COCOMO (Constructive Cost
Model) for cost modeling. COCOMO helps soft-
ware developers reason about the cost and
schedule implications of their software deci-
sions such as

■ software investment decisions;
■ setting project budgets and schedules;
■ negotiating cost, schedule, and perform-

ance trade-offs;
■ making software risk management deci-

sions; and
■ making software improvement decisions.

One advantage of COCOMO (which is why we
use it) is that unlike many other costing mod-
els such as SLIM (Software Lifecycle Manage-
ment) or SEER-SEM (System Evaluation and
Estimation of Resources, Software Estimation

Model), it’s an open model with numerous
published data.6,7

Two versions of COCOMO exist. In going
from the 1981 COCOMO-I model6 to the 2000
COCOMO-II model,7 one parameter, turnaround
time, was dropped to reflect the almost-universal
use of interactive software development. CO-
COMO-II also dropped the modern-programming-
practices parameter in favor of a more general
process-maturity parameter. But COCOMO-II
added several parameters to reflect such fac-
tors as development for reuse, multisite devel-
opment, architecture and risk resolution, and
team cohesion. The COCOMO-II book also pro-
vides capabilities and guidelines for an organi-
zation to add new parameters, reflecting its
particular situations.7

COCOMO measures effort in calendar months
where one month is 152 hours (and includes
development and management hours). The core
intuition behind COCOMO-based estimation is
that as systems grow in size, the effort required
to create them grows exponentially. More
specifically, equation 1 shows the COCOMO-I
model:6

(1)

Here, EMj is one of the 15 COCOMO-I effort
multipliers such as CPLX (complexity) or

months a KSLOC EMb
j

j
= ∗()∗









∏

N o v e m b e r / D e c e m b e r 2 0 0 5 I E E E S O F T W A R E 4 1

Table 2
COCOMO-I effort multipliers and their numeric values*

Complexity
Effort multiplier Definition Very low Low Nominal High Very high Extra high

ACAP Analysts’ capability 1.46 1.19 1.00 0.86 0.71 —
PCAP Programmers’ capability 1.42 1.17 1.00 0.86 0.70 —
AEXP Application experience 1.29 1.13 1.00 0.91 0.82 —
MODP Modern programming practices 1.24 1.10 1.00 0.91 0.82 —
TOOL Use of software tools 1.24 1.10 1.00 0.91 0.83 —
VEXP Virtual-machine experience 1.21 1.10 1.00 0.90 — —
LEXP Language experience 1.14 1.07 1.00 0.95 — —
SCED Schedule constraint 1.23 1.08 1.00 1.04 1.10 —
DATA Database size — 0.94 1.00 1.08 1.16 —
TURN Turnaround time — 0.87 1.00 1.07 1.15 —
VIRT Machine volatility — 0.87 1.00 1.15 1.30 —
STOR Main-memory constraint — — 1.00 1.06 1.21 1.56
TIME Time constraint for CPU — — 1.00 1.11 1.30 1.66
RELY Required software reliability 0.75 0.88 1.00 1.15 1.40 —
CPLX Process complexity 0.70 0.85 1.00 1.15 1.30 1.65

* Increasing the top seven multipliers or decreasing the bottom seven multipliers will decrease effort.

PCAP (programmer capability). Table 2 de-
fines these effort multipliers and lists their nu-
meric values. COCOMO-II includes 17 effort
multipliers.

In the COCOMO-I model, a and b are domain-
specific variables and KSLOC (thousands of
lines of noncommented source code) is esti-
mated directly or computed from a function
point analysis. COCOMO-II was expanded to
include scale factors:

where SFj is one of five scale factors that ex-
ponentially influence effort. Examples of scale
factors include PMAT (process maturity) or
RESL (attempts to resolve project risks).

A standard method for assessing COCOMO

performance is Pred(30). You calculate Pred(30)
from the relative error (RE), which is the relative
size of the difference between the actual and es-
timated value:

RE = (estimate � actual)/actual

The mean magnitude of the relative error
(MMRE) is the average percentage of the ab-
solute values of the relative errors over an en-
tire data set. Pred(N) reports the average per-
centage of estimates that were within N
percent of the actual values. If a data set has
rows, then

For example, Pred(30) = 50 percent means
that one-half of the estimates are within 30
percent of the actual. We report results in
terms of Pred(N), not MMRE. This is a prag-
matic decision—we’ve found Pred(N) easier to
explain to business users. Also, there are more
Pred(N) reports in the literature. This is per-
haps due to the influence of the COCOMO re-
searchers who reported their 1999 landmark
study using Pred(N).8 Furthermore, we report
Pred(30) results because the major experi-
ments of that 1999 study also used Pred(30).

To use linear least-squares regression, the
most widely used and simplest modeling
method, it’s common to transform the CO-
COMO model into a linear model by taking the
logs of equation 1:

LN(effort) = b * LN(Size)
+ LN(EM1) + LN(EM2) + … (2)

If we use equation 2, then before computing
Pred(N), we must convert the estimated effort
back from a logarithm.

Case study data
Our study used data sets in both the CO-

COMO-I and COCOMO-II formats. We used these
COCOMO-I data sets:

■ coci includes data from a variety of do-
mains including engineering, science, and
finance.

■ na60 comes from 20 years of NASA
projects.

The na60 data includes these subsets:

■ c01, c02, and c03 store data from three
NASA geographical locations.

■ p02, p03, and p04 store data from three
NASA projects.

■ t02 and t03 store data from two tasks
such as ground-data receiving and flight
guidance.

For reasons of confidentiality, we can’t dis-
close the exact details of these locations, tasks,
and projects. We didn’t include the other loca-
tions, projects, and tasks from na60 for prag-
matic reasons (for example, suspicious re-
peated entries suggesting data entry errors or
too few examples for generalization).

We used two COCOMO-II data sets:

■ The cii0 data set was used to build the CO-
COMO-II model.

■ The cii4 data set includes the 72 projects
from cii0 developed after 1990, plus 47
new projects.

The COCOMO-II data isn’t published because it
was collected on condition of confidentiality
with the companies supplying the data. Fur-
ther research must be conducted in terms of
the same conditions.

Of these data sets, coci describes projects
from before 1982, cii4 contains data from the
most recent projects, and the NASA data sets
(na60, pX, cX, and tX) describes projects
newer than coci and before cii4. Also, the CO-
COMO-I data sets have the 15 effort multipliers

Pred
if

otherwise
N

R
RE

N
i

i

R

() =
≤






∑100 1

100
0

b SFj
j

= + ∑0 91.

4 2 I E E E S O F T W A R E w w w. c o m p u t e r. o r g / s o f t w a r e

Pruning is most
important for

small data sets.

in table 2; the COCOMO-II data sets have 24 ef-
fort multipliers.

For experimental purposes, we used these
groups:

■ call combines all the center data—that is,
call = c01 + c02 + c03.

■ tall combines all the task data—that is,
tall = t02 + t03.

■ pall combines all the project data—that is,
pall = p02 + p03.

Experimental method
To find each column’s relative value, we ran

the Wrapper 10 times (each time using a ran-
domly selected 90 percent of the rows). We
then set a column’s value to the number of
times the Wrapper selected that column.

Once the Wrapper ordered the columns, we
randomized the order of the rows and started
column pruning. To ensure statistical validity,
we repeated randomization (followed by col-
umn pruning) 30 times.

For each repeat, at each pruning stage, we
removed the lowest-value column. We then di-
vided the rows in the remaining columns into
training and test sets (each time using a ran-
domly selected 67 percent of the rows for the
training set). A cost model was learned (using
linear regression) from the training set and
then assessed, using Pred, on the test set.

Once the 30 repeats completed, we selected
the best model by looking at the mean and
standard deviation of model performance at
each pruning step. The best model was the one
that t-tests confirmed outperformed all other
states of the column pruning. Our scripts then
automatically computed that model’s mean
value over the 30 repeats.

We fully automated this process using a
tool consisting of Unix scripts that control the
WEKA (Waikato Environment for Knowledge
Analysis) Java data-mining library.9 WEKA in-
cludes a linear-regression learner and an im-
plementation of the Wrapper. The tool runs on
a standard Linux installation, and the whole
system is available from the authors.

Results
Figure 2 shows the results of our column

pruning. The red and green lines show the
number of columns in our data sets before and
after pruning. The Before values are 22 for the
COCOMO-II data sets (cii0 and cii4) and 15 for

the COCOMO-I data sets. The blue line shows
the percentage of the Before columns that
pruning removed. For example, pruning re-
moved few columns from cii0 but most
columns from p03. As we mentioned earlier,
we pruned on average over 65 percent of the
columns. Sometimes, the pruning was quite
heavy—over 80 percent of the columns.

A concern with such large-scale pruning is
that the resulting models might be somehow
substandard. This proved not to be the case.
Figure 3 shows the Pred(30) results for the
pruned data sets. This figure shows mean val-
ues for 30 experiments where we tested the
learned model on rows not seen during train-
ing. The red lines show the mean Pred(30) for
using all the columns. These are the baseline
results for learning cost models before apply-
ing any pruning method. The green lines show
the best mean Pred(30) after automatic col-
umn pruning. The difference between the red
and the green lines is the improvement that
pruning produced.

Figure 3 sorts the data sets by pruning
method into three plots. Each plot sorts the
data sets from left to right in increasing value
of (after � before)/before.

The left plot, “Pruning just columns,”
shows the largest data sets, which combine
project information from many sources (that
is, cii0, cii4, coci, and na60). These data sets
don’t contain data from similar sources. So,
we performed no row pruning on these data
sets.

The right plot, “Pruning columns and
many rows,” shows the eight data sets that
have been heavily stratified into specific
NASA centers, projects, or software tasks.

The middle plot, “Pruning columns and
some rows,” shows somewhat-stratified data
sets that combine data from either all the
NASA centers, all the NASA projects, or all

N o v e m b e r / D e c e m b e r 2 0 0 5 I E E E S O F T W A R E 4 3

 100
 80
 60
 40
 20
 0

p03p02c02t02p04t03c01c03tallpallcallna60cocicii4cii0

Data set

Nu
m

be
r o

f c
ol

um
ns

Before pruning (B)
After pruning (A)

100 * (B – A)/B

Figure 2. The number
of columns (variables
describing software
projects) that pruning
removed from each
data set.

the NASA tasks. This group samples a point
halfway between the unstratified data sets on
the left and the heavily stratified data sets on
the right.

Figure 3 reveals these interesting results:

■ Pruning always improved estimation ef-
fectiveness. That is, in all our case studies,
it was always useful to ignore a portion of
the available data.

■ Column pruning by itself can improve
Pred somewhat. However, column prun-
ing combined with row pruning can dra-
matically improve effort estimation.

■ With one exception (c03), the general
trend across the three graphs is clear: as
data set size shrinks, the improvement in-
creases. That is, pruning is most impor-
tant for small data sets.

When not to prune
Although column pruning is clearly useful,

sometimes you can’t or shouldn’t apply it.
First, our variable-subtraction methods re-
quire a historical database of projects. If no
such database exists, our column-pruning
techniques won’t work.

Second, even if a historical database exists
and our techniques suggest pruning variable
X, then it might still be important to ignore
that advice. If a cost model ignores certain ef-
fects that business users believe are important,
those users might not trust that model. In that
case, even if a variable has no noticeable im-
pact on predictions, you should leave it in the
model. By doing this, you’re acknowledging
that, in many domains, expert business users
hold in their head more knowledge than might
be available in historical databases.

A third reason not to prune variables is that
you still might need them. For example, our
experiments often subtracted over one-half of
the attributes in a COCOMO-I model while (usu-
ally) improving effort estimation. However,

4 4 I E E E S O F T W A R E w w w. c o m p u t e r. o r g / s o f t w a r e

p03p02c02t02p04t03c01c03tallpallcallna60cocicii4cii0
Data set

 160

 120

 80

 40

 0

Nu
m

be
r o

f r
ow

s

 100

 75

 50

 25

Pr
ed

(3
0)

Pruning just columns

Number of rows

Pruning columns and some rows

Before After

Pruning columns and many rows
Figure 3. How different
pruning methods
affected the Pred(30)
measure of predictive
accuracy.

suppose that a user needs some of the pruned
variables to make a business decision. Because
the reduced model has no information on those
variables, the user would have to resort to
other information to make the decision.

So, you should use column pruning with
some care. If no historical data exists for
learning specialized data sets, then managers
should use the general background knowledge
in COCOMO. The 1981 regression coefficients
of COCOMO-I or the updated coefficients of
COCOMO-II7 are the best general-purpose indi-
cators we can currently offer for cost estima-
tion. Management decisions can use that pub-
lic knowledge to make software process
decisions. For example, according to the coef-
ficients on the COCOMO-II PMAT factor, the in-
crease in cost between a CMM Level 3 project
and a CMM Level 4 project, each containing
N lines of code, is N3.13/N1.56. With this esti-
mate in hand, a business user could then make
an assessment about the cost of increased soft-
ware process maturity versus that increase’s
benefits.

If historical data from the local site is avail-
able, managers could tune the general CO-
COMO background knowledge by adjusting the
coefficients in the COCOMO equations. CO-
COMO-I and COCOMO-II contain several local-
calibration variables that can quickly tune a
model to local project data. Our experience
has been that 10 to 20 projects are adequate to
achieve such tunings.10

Local calibration is a simple tuning method
that many tools support (for examples, visit
http://sunset.usc.edu/available_tools/index.
html). Currently, our toolkit’s methods require
more effort (that is, some Unix scripting) than
local calibration. Figure 3 suggests that the ex-
tra effort might well be worthwhile, particu-
larly when you’re building models from a
handful of projects. Also, we have other rea-
sons for preferring reduced variable sets to lo-
cal calibration. Elsewhere,11 we’ve found it
easier to extrapolate costs from old projects to
new projects using the reduced sets. Neverthe-
less, as we mentioned earlier, column pruning
isn’t appropriate when there are business rea-
sons to use all available variables.

O ur main goal here is to encourage
more column pruning in cost model-
ing, particularly when dealing with

very small data sets. Our more general goal is
to encourage repeatable, refutable, and im-
provable experiments in software engineering.
To that end, as much as possible, we use pub-
lic-domain tools and public-domain data sets.
So for these experiments we used an open-
source cost model (COCOMO) and, as much as
possible, publicly available data. You can
download all the COCOMO-I data sets we used
from the PROMISE repository.12 We urge other
researchers to produce more results based on
open source models and data sets.

Acknowledgments
Helen Burgess offered invaluable editorial assis-

tance. The anonymous reviewers’ advice helped clar-
ify an earlier draft of this article, which appeared
previously in a workshop publication.13 This article
extends that earlier draft in two ways. First, it ex-
plores more data (here we analyze double the number
of COCOMO-I projects and add two new COCOMO-II
data sets). Second, it includes an expanded discussion
on column pruning’s business implications.

N o v e m b e r / D e c e m b e r 2 0 0 5 I E E E S O F T W A R E 4 5

About the Authors

Zhihao Chen is a research assistant at the University of Southern California’s Center for
Software Engineering and a PhD candidate in the university’s Computer Science Department.
His research interests are system software engineering, model development, and integration in
general. He received his masters in computer science from the South China University of Tech-
nology. Contact him at zhihaoch@usc.edu.

Tim Menzies is an associate research professor at Portland State University and works
with NASA on software quality. His recent research concerns modeling and learning, with a
particular focus on lightweight modeling methods. He received his PhD in knowledge acquisi-
tion and artificial intelligence from the University of New South Wales. Contact him at tim@
timmenzies.net.

Daniel Port is an assistant professor of IT management at the University of Hawaii at
Manoa and a cofounder of the university’s proposed Center for Strategic Software Engineering.
He’s also a visiting scholar at the University of Southern California’s Center for Software Engi-
neering. His primary research activities lie in strategic and economic-based software engineer-
ing. He received his PhD in applied mathematics from the Massachusetts Institute of Technol-
ogy. Contact him at dport@hawaii.edu.

Barry Boehm is the director of the University of Southern California’s Center for Software
Engineering. His research interests include software process modeling, software requirements
engineering, software architectures, software metrics and cost models, software engineering en-
vironments, and knowledge-based software engineering. He received his PhD in mathematics
from UCLA. He’s a fellow of the American Institute of Aeronautics and Astronautics, the ACM,
and the IEEE and is a member of the National Academy of Engineering. Contact him at boehm@
sunset.usc.edu.

References
1. C.F. Kemerer, “An Empirical Validation of Software

Cost Estimation Models,” Comm. ACM, vol. 30, no. 5,
1987, pp. 416–429.

2. M. Shepperd and C. Schofield, “Estimating Software
Project Effort Using Analogies,” IEEE Trans. Software
Eng., vol. 23, no. 11, 1997, pp. 736–743.

3. A. Miller, Subset Selection in Regression, 2nd ed.,
Chapman Hall, 2002.

4. M.A. Hall and G. Holmes, “Benchmarking Attribute
Selection Techniques for Discrete Class Data Mining,”
IEEE Trans. Knowledge and Data Eng., vol. 15, no. 6,
2003, pp. 1437–1447.

5. R. Kohavi, D. Sommerfield, and J. Dougherty, “Data
Mining Using MLC++: A Machine Learning Library in
C++,” Proc. 8th IEEE Int’l Conf. Tools with AI (ICTAI
96), IEEE CS Press, 1996, pp. 234–235.

6. B. Boehm, Software Engineering Economics, Prentice
Hall, 1981.

7. B. Boehm et al., Software Cost Estimation with CO-
COMO II, Prentice Hall, 2000.

8. S. Chulani, B. Boehm, and B. Steece, “Bayesian Analysis
of Empirical Software Engineering Cost Models,” IEEE
Trans. Software Eng., vol. 25, no. 4, 1999, pp. 573–583.

9. I.H. Witten and E. Frank, Data Mining: Practical Ma-
chine Learning Tools and Techniques with Java Imple-
mentations, Morgan Kaufmann, 1999.

10. T. Menzies et al., “Validation Methods for Calibrating
Software Effort Models,” Proc. 27th Int’l Conf. Soft-
ware Eng. (ICSE 05), ACM Press, 2005, pp. 587–595;
http://menzies.us/pdf/04coconut.pdf.

11. T. Menzies et al., “Simple Software Cost Estimation:
Safe or Unsafe?” Proc. 2005 Workshop Predictor Mod-
els in Software Eng., ACM Press, 2005; http://menzies.
us/pdf/05safewhen.pdf.

12. J. Sayyad Shirabad and T.J. Menzies, The PROMISE

Repository of Software Engineering Databases, School
of Information Technology and Eng., Univ. of Ottawa,
2005; http://promise.site.uottawa.ca/SERepository.

13. Z. Chen, T. Menzies, and D. Port, “Feature Subset Se-
lection Can Improve Software Cost Estimation Accu-
racy,” Proc. 2005 Workshop Predictor Models in Soft-
ware Eng., ACM Press, 2005; http://menzies.us/pdf/
05fsscocomo.pdf.

For more information on this or any other computing topic, please visit our
Digital Library at www.computer.org/publications/dlib.

Mid Atlantic
(product/recruitment)
Dawn Becker
Phone: +1 732 772 0160
Fax: +1 732 772 0161
Email: db.ieeemedia@ieee.org

New England (product)
Jody Estabrook
Phone: +1 978 244 0192
Fax: +1 978 244 0103
Email: je.ieeemedia@ieee.org

New England (recruitment)
Robert Zwick
Phone: +1 212 419 7765
Fax: +1 212 419 7570
Email: r.zwick@ieee.org

Southeast (product)
Bob Doran
Phone: +1 770 587 9421
Fax: +1 770 587 9501
Email: bd.ieeemedia@ieee.org

Southern CA (product)
Marshall Rubin
Phone: +1 818 888 2407
Fax: +1 818 888 4907
Email: mr.ieeemedia@ieee.org

Southeast (recruitment)
Thomas M. Flynn
Phone: +1 770 645 2944
Fax: +1 770 993 4423
Email: flynntom@mindspring.com

Midwest/Southwest
(recruitment)
Darcy Giovingo
Phone: +1 847 498-4520
Fax: +1 847 498-5911
Email: dg.ieeemedia@ieee.org

Midwest (product)
Dave Jones
Phone: +1 708 442 5633
Fax: +1 708 442 7620
Email: dj.ieeemedia@ieee.org

Will Hamilton
Phone: +1 269 381 2156
Fax: +1 269 381 2556
Email: wh.ieeemedia@ieee.org

Joe DiNardo
Phone: +1 440 248 2456
Fax: +1 440 248 2594
Email: jd.ieeemedia@ieee.org

Southwest (product)
Josh Mayer
Phone: +1 972 423 5507
Fax: +1 972 423 6858
Email: josh.mayer@wageneckassoci-
ates.com

Northwest (product)
Peter D. Scott
Phone: +1 415 421 7950
Fax: +1 415 398 4156
Email:
peterd@pscottassoc.com

Northwest/Southern CA
(recruitment)
Tim Matteson
Phone: +1 310 836 4064
Fax: +1 310 836 4067
Email: tm.ieeemedia@ieee.org

Connecticut (product)
Stan Greenfield
Phone: +1 203 938 2418
Fax: +1 203 938 3211
Email: greenco@optonline.net

Japan (product/recruitment)
Tim Matteson
Phone: +1 310 836 4064
Fax: +1 310 836 4067
Email: tm.ieeemedia@ieee.org

Europe (product/recruitment)
Hilary Turnbull
Phone: +44 1875 825700
Fax: +44 1875 825701
Email:
impress@impressmedia.com

A D V E R T I S E R / P R O D U C T I N D E X

N O V E M B E R / D E C E M B E R 2 0 0 5

Advertising Personnel

Marion Delaney
IEEE Media, Advertising Director
Phone: +1 212 419 7766
Fax: +1 212 419 7589
Email: md.ieeemedia@ieee.org

Marian Anderson
Advertising Coordinator
Phone: +1 714 821 8380
Fax: +1 714 821 4010
Email: manderson@computer.org

Sandy Brown
IEEE Computer Society,
Business Development Manager
Phone: +1 714 821 8380
Fax: +1 714 821 4010
Email: sb.ieeemedia@ieee.org

Advertising Sales Representatives

IEEE Software
IEEE Computer Society
10662 Los Vaqueros Circle
Los Alamitos, CA 90720-1314
USA
Phone: +1 714 821 8380
Fax: +1 714 821 4010
www.computer.org
advertising@computer.org

Addison-Wesley 103

Auerbach Publications 104

Carnegie Mellon Software Engineering Institute 11

ICRE 2006 16

John Wiley & Sons, Inc. 105

MIT Press 7

Morgan Kaufmann Publishers 104

SD West 2006 Cover 4

Boldface denotes advertisements in this issue.

Advertiser / Product Page Number

