
Feature Subset Selection Can Improve
Software Cost Estimation Accuracy

Zhihao Chen
Center for Software

Engineering
Univ. of Southern California,

USA

zhihaoch@cse.usc.edu

Tim Menzies? Dan Port‡
?Computer Science,

?Portland State Univ.;
‡Computer Science,

‡Univ. of Hawaii

tim@menzies.us
dport@hawaii.edu

Barry Boehm
Center for Software

Engineering,
Univ. of Southern California

boehm@cse.usc.edu

ABSTRACT
Cost estimation is important in software development for
controlling and planning software risks and schedule. Good
estimation models, such as COCOMO, can avoid insuffi-
cient resources being allocated to a project. In this study,
we find that COCOMO’s estimates can be improved via
WRAPPER- a feature subset selection method developed
by the data mining community. Using data sets from the
PROMISE repository, we show WRAPPER significantly and
dramatically improves COCOMO’s predictive power.

Categories and Subject Descriptors
D.2.9 [Software Engineering]: Time Estimation; K.6.3
[Software Management]: Software Process

General Terms
Algorithms, Measurement, Economics, Experimentation, The-
ory,Verification

Keywords
COCOMO, feature subset selection, WRAPPER, M5, LSR

1. INTRODUCTION
Good cost estimation models can significantly help the

managers of software projects. With such a good model,
project stakeholders can make informed decisions about (e.g.)
“buy-or-make”, how to manage resources, how to control
and plan the project, and how to deliver the project on
time, on schedule and on budget. However, if managers use
inaccurate models, those “informed” decisions may actually
be a recipe for disaster.

For these reasons, we study effort estimation models
and how to improve them. To the best of our knowledge, this

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PROMISE’05 St. Louis, Missouri USA
Copyright 2005 ACM ...$5.00.

 0

 20

 40

 60

 80

 100

0 1 2 3 4 5

P
R

E
D

(3
0)

cut what?

means

nasa
coc81

p02
p03
p04

Figure 1: The effect of removing attributes selected
by FSS.

is the first report of applying feature subset selection (FSS)
to software effort data. Our results, shown in Figure 1, show
that FSS can dramatically improve cost estimation. The x-
axis of that figure shows five “cut sets”, each containing
several attributes (this notion of a “cut set” is explained
in §4.2). These cut sets were discovered and ordered using
FSS. Each x-axis point shows the effects of removing all the
attributes in all the cut sets up to that point. “Cut0” shows
the baseline results using all available attributes (i.e. no
cuts). In all the five data sets studied in Figure 1, discarding
at least the first three cut sets always lead to a statistically
significant improvement. Sometimes, the improvement was
quite striking; e.g. “p02”’s performance rises from just over
20% to nearly 100%.

The core technology used in this study is FSS (fea-
ture subset selection) and FSS is an efficient heuristic search
through subsets of the available attributes. The goal of this
search is to find a subset that gives similar, if not supe-
rior, performance than using all the attributes. Equation 1
demonstrates how large that space can be. There are 15 pa-
rameters except for SIZE (total 16 parameters in COCOMO
81). A naive search through all possible subsets would have
to explore the 32768 sets shown in Equation 1. Assuming 60
seconds are needed for each hold-out experiment (training
set and test set are separated) on 60 project instances in
that domain, the number of total seconds is shown in Equa-
tion 2 and 3.74 years are needed to build the model shown

in Equation 3.

FS =
15∑

α=1

C
α
15 = 32768 (1)

Hold− out = 60 ∗ 30 ∗ 32, 768 ∗ 2 = 117, 964, 800 (2)

Y ears = 117, 964, 800/60/60/24/3, 65 = 3.74 (3)

Hours = 60 ∗ 30 ∗ 6 ∗ 2/60/60 = 6 (4)

Happily, this study did not take 3.74 years. The FSS
methods used in this paper as so efficient that our experi-
ments required only the 6 hours shown in Equation 4.

The rest of this paper explains and expands the Figure 1
result. We begin with some introductory notes on feature
subset selection and the COCOMO effort estimation model
used in this study. This is followed by some notes on our
experimental design and results. T-tests are applied to the
results to demonstrate that always in our data sets, remov-
ing attributes improves performance without increasing the
variance in model behavior.

2. COCOMO
In this study, we choose COCOMO, which stands for

Constructive Cost Model [1, 2]. COCOMO is used for esti-
mating software cost, effort and schedule. COCOMO helps
software developers reason about the cost and schedule im-
plications of their software decisions such as software invest-
ment decisions; setting project budgets and schedules; ne-
gotiating cost, schedule, and performance tradeoffs; making
software risk management decisions, and making software
improvement decisions.

We use COCOMO since, unlike other models such as
Price-S [3] or SLIM [4] or and SEER-SEM [5], it is an open
model with published data. All detail were published in
the text Software Engineering Economics [1, 2]. There are
two version of COCOMO - COCOMO I and COCOMO II.
The one we use here, (COCOMO I) was chosen based on
the available published data. Our intent was to define a
repeatable effort estimation experiment so that others may
repeat to refute or improve our results. Hence we base our
studies on COCOMO-I data since we know of no large pub-
lic domain COCOMO-II data sets1. In contrast, several
COCOMO-I data sets are available in the PROMISE repos-
itory [6]:

COCOMO-81: The 63 projects used to define COCOMO-
I [1]. This data comes from a variety of domains in-
cluding engineering, science, financial, etc.

COCOMO NASA: 60 NASA projects from the 1980s and
1990s. Since this data comes from NASA, it is strati-
fied to just aerospace applications.

Project02, 03, 04 : The three largest subsets of COCOMO
NASA

Equation 5 shows Boehm’s COCOMO I model [1]:

months = a ∗
(

KSLOC
b
)
∗

∏
j

EMj

 (5)

1The COCOMO II data is not published since it was col-
lected on condition of confidentiality with the companies
supplying the data. Further research must be conducted in
terms of the same conditions.

increase acap: analysts capability
these to pcap: programmers capability
decrease aexp: application experience
effort modp: modern programming practices

tool: use of software tools
vexp: virtual machine experience
lexp: language experience
sced: schedule constraint

decrease data: data base size
these to turn: turnaround time
decrease virt: machine volatility
effort stor: main memory constraint

time: time constraint for cpu
rely: required software reliability
cplx: process complexity

Figure 2: COCOMO I effort multipliers.

very very extra productivity
low low nominal high high high range

ACAP 1.46 1.19 1.00 0.86 0.71 2.06
PCAP 1.42. 1.17 1.00 0.86 0.70 2.03
AEXP 1.29 1.13 1.00 0.91 0.82 1.57
MODP 1.24. 1.10 1.00 0.91 0.82 1.51
TOOL 1.24 1.10 1.00 0.91 0.83 1.49
VEXP 1.21 1.10 1.00 0.90 1.34
LEXP 1.14 1.07 1.00 0.95 1.20
SCED 1.23 1.08 1.00 1.04 1.10
DATA 0.94 1.00 1.08 1.16 -1.23
TURN 0.87 1.00 1.07 1.15 -1.32
VIRT 0.87 1.00 1.15 1.30 -1.49
STOR 1.00 1.06 1.21 1.56 -1.56
TIME 1.00 1.11 1.30 1.66 -1.66
RELY 0.75 0.88 1.00 1.15 1.40 -1.87
CPLX 0.70 0.85 1.00 1.15 1.30 1.65 -2.36

Figure 3: COCOMO I effort multiplier values.

Here, EMj is one of a set of effort multipliers shown in
Figure 2. In COCOMO I model, a and b are domain-specific
parameters and KSLOC is estimated directly or computed
from a function point analysis. In order to use the lin-
ear least squares regression, which is the most widely used
and the simplest modeling method, we transform COCOMO
model into linear model:

LN(effort) = b ∗ LN(Size) + LN(EM1) + LN(EM2) + . . . (6)

The values in our data sets come as symbols such as
very low, low, etc. In accordance with Equation 6, these
symbols are replaced with the log of the effort multipliers
of Figure 3.

COCOMO’s performance is often measured in terms of
PRED(30). PRED(30) is calculated from the relative error,
or RE, which is the relative size of the difference between
the actual and estimated value:

REi =
estimatei − actuali

actuali

Given a data set of size D, a Training set of size (X =
|Train|) ≤ D, and a test set of size T = D − |Train|,
then the mean magnitude of the relative error, or MMRE,
is the percentage of the absolute values of the relative errors,
averaged over the T items in the Test set; i.e.

MREi = abs(REi)
MMREi = 100

T

∑T
i MREi

PRED(N) reports the average percentage of estimates
that were within N% of the actual values:

PRED(N) =
100

T

T∑
i

{
1 if MREi ≤ N

100
0 otherwise

For example, a PRED(30)=50% means that half the es-
timates are within 30% of the actual. Note that, we report
results in terms of PRED(N), not MMRE. This is a prag-
matic decision- we have found PRED(N) easier to explain to
business users than MMRE. Also, there are more PRED(N)
reports in the literature than MMRE. This is perhaps due
to the influence of the COCOMO researchers who reported
their 1999 landmark study using PRED(N) [7]. Further, we
report here PRED(30) results since the major experiments
of that 1999 study also used PRED(30).

One of Boehm’s original motivation for creating CO-
COMO was to decrease the number of errors managers make
when estimation software projects. At the early software de-
velopment stage such as investigation and inception phase,
the characteristics of software system are unknown; the na-
ture of the processes, team, and personnel experiences are
still unclear; the degree of understanding architecture, re-
quirements, and constraints are low. When the software
project goes into further development phase, more knowl-
edge of the project is available so predictions better approx-
imate the actual cost.

Strangely, despite the original motivation for COCOMO,
very little has been reported on the variance on COCOMO’s
estimates. Numerous COCOMO calibration studies have
been reported [2] and, with only one exception, these stud-
ies just report mean results over the training data. The one
exception was Chulani et.al.’s report where the min, mean,
and max values seen in 15 holdout studies2 [7]. Chulani did
not report the standard deviation in their holdout exper-
iments and without that information since they repeated
their holdouts only 15 times (a number too small to collect
accurate information about standard deviations). Hence, in
the sequel, we report variances across a large number (30)
of hold-outs studies.

3. FEATURE SUBSET SELECTION
Feature subset selection is the process of identifying the

most promising features in a given dataset. Datasets used
in practical data mining applications have a large number
of features. These data sets often contain several extrane-
ous features which can reduce the efficiency of the learning
algorithm. Feature subset selection helps us identify the
important attributes and remove redundant ones. If only
the most relevant features were to be selected and given to
the learning algorithm they can produce smaller theories.
This enhances the understanding of the dataset or domain
under consideration. Dimensionality reduction also speeds
up the learning process. Also, a repeated result in the FSS
field (e.g. [8]), is that ignoring features need not degrade the
performance of the learned theory.

In this study, we applied the WRAPPER FSS method
implemented in WEKA3 data mining toolkit [9]. When

2Where 1
3

of the available data is selected at random for
testing, while the remaining data is used for training.
3The WEKA data mining toolkit is free, open source, well

using WRAPPER, a target learner is augmented with a pre-
processor that used a heuristic forward select search to grow
subsets of the available features. At each step in the growth,
the target learner is called to determine the performance of
the model learned from the current subset. Subset growth is
stopped when the growth is stale; i.e. after a MAX STALE
number of times, adding attributes has not improved the
performance.

For example, suppose the set of attributes were {A,B,C,
D,E,F,...,Z} and MAX STALE was 2. WRAPPER starts
by selecting one attribute at random (e.g. C) and score its
performance.

< Selected = {C}, Score = 30, Stale = 0 >

Next, another randomly selected attribute (e.g. B) is added
and scored:

< Selected = {C, B}, Score = 50, Stale = 0 >

Note how the addition of B was not a stale addition since
it improved the score. However, the addition of the next
randomly selected attribute (e.g. E) does not improve the
score, so stale increments:

< Selected = {C, B, E}, Score = 40, Stale = 1 >

Similarly, adding D also fails to improve the score beyond
just using {C,B} so scale increments again.

< Selected = {C, B, E, D}, Score = 42, Stale = 2 >

Since MAX STALE has been reached, WRAPPER would
remove from the selected set all the attributes implicated in
the stale growth ({E,D}). The search would then continue,
using other attributes.

One of the major advantages of the WRAPPER ap-
proach is that, if some target learner is already implemented,
then the WRAPPER is simple to implement. Also, in their
comparative evaluation of feature subset selection techniques [8],
Hall and Holmes conclude that WRAPPER is the best FSS
mechanism, if the data set is not too large. At each step in
the heuristic search, WRAPPER makes another call to the
target learner. Hence, it many be too slow for large data
sets. The data sets used in this study, are small (maximum
size: 63 instances) and hence are amenable for WRAPPER.

The Hall and Holmes results were also negative about a
widely used technique: principle component analysis (PCA).
FSS methods can be grouped according to:

• Whether or not they make special use of the target
attribute in the data set such as “development cost”;

• Whether or not they use the target learner as part of
their FSS analysis.

PCA is unique since, unlike other FSS methods, it does not
make special use of the target attribute. WRAPPER is also
unique, but for different reasons: unlike other FSS meth-
ods, it does use the target learner as part of the FSS analy-
sis. Hall and Holmes found that PCA was one of the worst
performing FSS methods (perhaps because it ignored the
target attribute) while WRAPPER was the best (since it
can exploit its special knowledge of the target learner).

documented,compatible on many platforms, and easy to in-
stall.

COCOMO81 NASA Project02 Project03 Project04
instances: 63 instances: 60 instances: 22 instances: 12 instances: 14

cut attr. n cut attr. n cut attr. n cut attr. n cut attr. n

6 loc 10 6 loc 10 6 loc 10 6 loc 10 6 loc 10
5 sced 10 5 acap 10 5 turn 7 5 modp 9 5 modp 9
5 pcap 10 5 time 10 5 lexp 7 4 pcap 1 5 virt 5
5 time 10 5 turn 10 4 time 4 4 rely 1 4 stor 4
5 virt 9 4 stor 8 4 modp 3 4 turn 1 4 turn 4
4 cplx 6 4 vexp 7 3 data 2 3 stor 0 4 cplx 3
4 modp 5 3 data 4 3 tool 2 2 acap 0 3 time 2
4 acap 5 3 aexp 2 3 sced 2 2 vexp 0 3 pcap 2
4 rely 5 2 virt 1 2 rely 1 1 aexp 0 3 rely 2
3 vexp 4 2 pcap 1 2 vexp 1 1 data 0 3 lexp 2
3 tool 3 2 modp 1 2 cplx 1 1 tool 0 2 acap 1
3 data 3 1 cplx 0 1 aexp 0 1 cplx 0 2 data 1
2 aexp 2 1 tool 0 1 pcap 0 1 lexp 0 2 vexp 1
2 stor 2 1 rely 0 1 virt 0 1 sced 0 2 tool 1
1 lexp 1 1 lexp 0 1 acap 0 1 virt 0 2 sced 1
1 turn 0 1 sced 0 1 stor 0 1 time 0 1 aexp 0

Figure 4: Features selected in each data set.

4. EXPERIMENTAL DESIGN
Our experiments were in three phases: linearization,

followed by selection followed by application. Each phase
was applied to our five data sets.

4.1 Linearization
Linearization was described above: all symbols are re-

placed with the logarithm of their effort multiplier value.

4.2 Selection
In selection, a data set is randomly sub-sampled ten

times to generated ten random samples, each containing 90%
of the data. WRAPPER is then applied to each of the ten
sub-samples and the selected attributes were recorded. “Cut
sets” are then formed by clustering the attributes according
to how often they were selected.

The selection results are shown in Figure 4. In that
figure, attributes are sorted but how often they appear (see
the results in the n column). For example, in COCOMO-81,
loc (lines of code) was selected in all 10 subsets while turn
(turnaround time) was never selected.

COCOMO-81’s cut sets are shown in the far left-hand-
side column (labeled cut). Loc has a special place in the
COCOMO model (recall Equation 6) so it is allocated a cut
set all to itself. The other attributes are grouped into five
cut sets with the least/most frequently occurring attributes
being assigned to cut sets 1/5 (respectively).

4.3 Application
Each selection phase for each data sets resulted in cut

sets specialized to that data set. In the application phase,
the cut sets found for each data set were explored as fol-
lows. The attributes in each cut set was removed in the
order 1,2,3,4,5 (as defined in Figure 4). After the removal of
each attribute set, the remaining data was randomly sam-
pled thirty times to generate a 2

3
rds training set and a 1

3
rds

test set. Least squares regression was then applied to the
training set to learn a linear model of the form of Equation 6.
This model was then applied to the test set. The mean and
standard deviation of the model’s performance over the 30
subsets was then computed.

Cut What? cut0 cut1 cut1,2 cut1,2,3 cut1,2,3,4 justLOC
dataset keep1-6 keep2-6 keep3-6 keep4-6 keep5-6 justLOC

cocomo81 42.4 46.5 * 51.3 * 41.6 47.3 * 22.1 *
nasa60 69.5 74.2 * 78.0 * 81.3 * 80.5 * 57.3 *

project04 27.5 20.8 * 16.7 * 66.7 * 57.5 * 62.5 *
project03 20.0 19.2 54.2 * 55.8 * 54.2 * 36.7 *
project02 15.7 84.8 * 94.8 * 97.1 * 92.9 * 85.2 *
MEANs 35 49.1 59.0 68.5 66.5 52.8

Figure 5: Mean PRED(30) results

Cut What? cut0 cut1 cut1,2 cut1,2,3 cut1,2,3,4 justLOC
dataset keep1-6 keep2-6 keep3-6 keep4-6 keep5-6 justLOC

cocomo81 11.75 9.66 8.17 8.10 8.92 7.66
nasa60 8.55 8.21 8.47 7.54 7.32 8.58

project04 12.07 12.40 8.78 6.92 11.10 10.93
project03 20.13 20.43 18.67 15.65 19.79 22.49
project02 23.07 17.47 15.16 23.06 23.81 26.06

Figure 6: Pred(30)s standard deviations

5. RESULTS
Figure 5 shows the raw data used to plot the mean

PRED(30) results shown in Figure 1. Each column shows
the results after removing some combination of the cut sets.
The final column in that table shows the effects of remov-
ing all attributes except lines of code. In that figure, “*”
denotes mean values that are significantly different (at the
99% level) to the cut0’s mean. In Figure 5, the maximum
mean PRED(30) values found for any data set are shown
underlined and in bold. Note that:

• The cut0 means were always lower than means seen in
the other cut sets.

• The best (i.e.) largest mean values occurred after re-
moving up to and including cut set 3.

Figure 6 shows the raw data used to plot the standard
deviation results shown in Figure 7. As before, each column
shows the results after removing some combination of the
cut sets and the final column shows the effects of removing
all attributes except lines of code. In Figure 6, the minimum
PRED(30) standard deviation values are shown underlined
and in bold. Note that:

• As above, the most best (i.e. smallest) standard de-

 0

 10

 20

 30

0 1 2 3 4 5

P
R

E
D

(3
0

cut what?

standard deviations

nasa
coc81

p02
p03
p04

Figure 7: The changes in variance with feature se-
lection.

treatment Win-Loss Win Loss Tie
cut4 13 16 3 6
cut3 13 16 3 6
cut2 8 14 6 5
cut1 -9 6 15 4

justLOC -10 6 16 3
cut0 -15 4 19 2

Figure 8: Wins vs Losses

viations occurred after removing up to and including
cuts set 3.

The data was studied using t-test comparing the mean
PRED(30) results for each data set after removing sets X0=cut0;
X1=cut1; X2=cut2; X3=cut3; X4=cut4; X5=cut every-
thing except lines of code. Our experimental rig let us com-
pare results 30 train/test results seen between sets Xi and
Xj where {i, j} ∈ {0...5} and j < i. If the T-tests reject the
hypotheses that there is no difference in the difference be-
tween the < Xi, Xj > comparison, then that is scored as one
“tie”. If the comparison does not “tie”, then if the means
are numerically compared to compute “win”s and “loss”es.

The results, sorted on win-loss are shown in Figure 84.
Note that culling up to cut set 3 and 4 always generated
data sets which, when measured in terms of win-loss, score
better than other combinations of attributes.

Recall from Figure 5 and Figure 6 that the maximum
mean and minimum standard deviations were seen in cut3.
Hence, even though cut4 sets scores as well as cut3 in Fig-
ure 8, we recommend cutting up to cut3, but not cut4.

At cut3, Figure 7 shows that the variances were never
decreased by removing attributes and sometimes it even de-
creased. Hence, in summary, the above results are quite
positive about feature subset selection for software cost es-
timation. Not only do the PRED(30) means significantly
increase without also increasing the standard deviations.

6. DISCUSSION
A curious feature of Figure 4 is that, with the exception

of lines of code, different data sets yield different “most im-
portant” attributes. Hence, it would be inappropriate to use
these results of argue that we should always ignore certain
COCOMO attributes. Indeed, our results seem to endorse

4There are 6 feature sets, 5 data sets. Each feature set needs
to be compared with other 5 feature sets for each data set,
so the total number of comparisons for each feature set is
5x5=25.

the opposite view: analysts should collect as many differ-
ent attributes as possible before applying FSS to select the
attributes that are most important in a particular domains.

From a practical standpoint, removing cost-drivers vari-
ables produces a more efficient cost model turned to an or-
ganizations existing project practices. However, if the or-
ganization makes a significant change in practices with re-
spect to a removed cost driver variable (for example, going
from developing routine business applications to develop-
ing real-time, safety-critical systems), there will be a sig-
nificant risk of estimation inaccuracy. We propose an idea
for the extended reduced-parameter model: Extended Ef-
fort = Reduced-Parameter Effort * Reduced-But-Current-
Significant Parameter. We use the extended reduced-parameter
models to answer such a question: what happen if the orga-
nization uses the reduced-parameter model without RELY
to bid a very-high-Reliability project? Experiments will be
conducted to perform to evaluate whether extended models
are “better” or not.

7. CONCLUSION AND FUTURE WORK
We have shown that, for the studied data sets, fea-

tures subset selection always significantly improves mean
PRED(30) values without increasing variance. Sometimes,
that improvement can be quite dramatic; e.g. the project2
results of Figure 1.

In the future, we are planning to do more stratification
analysis to better understand the implications of FSS on
COCOMO, and validate the idea of the extended reduced-
parameter model. Also, we hope to repeat this experi-
ment using other induction methods such as genetic algo-
rithms [10]. Further, we want to experiment on other data
sets. Here, we have used COCOMO-I data since we wanted
to define a repeatable software cost estimation experiment.
While the PROMISE repository contains several COCOMO-
I data sets, we know of no public domain COCOMO-II data
sets.

8. REFERENCES
[1] B. Boehm, Software Engineering Economics. Prentice

Hall, 1981.

[2] B. Boehm, E. Horowitz, R. Madachy, D. Reifer, B. K.
Clark, B. Steece, A. W. Brown, S. Chulani, and
C. Abts, Software Cost Estimation with Cocomo II.
Prentice Hall, 2000.

[3] P. S. L. M. L. NJ, “Your guide to price-s: Estimating
cost and schedule of software development and
support,” 1998.

[4] L. H. Putnam, Software Cost Estimating and
Life-Cycle Control: Getting the Software Numbers,
New York. The Institute of Electrical and Electronics
Engineers, Inc., 1980.

[5] D. of USA, “Parametric cost estimating handbook,
second edition,” 1999.

[6] J. Sayyad Shirabad and T. Menzies, “The PROMISE
Repository of Software Engineering Databases..”
School of Information Technology and Engineering,
University of Ottawa, Canada, 2005. Available from
http://promise.site.uottawa.ca/SERepository.

[7] S. Chulani, B. Boehm, and B. Steece, “Bayesian
analysis of empirical software engineering cost

models,” IEEE Transactions on Software Engineering,
vol. 25, July/August 1999.

[8] M. Hall and G. Holmes, “Benchmarking attribute
selection techniques for discrete class data mining,”
IEEE Transactions On Knowledge And Data
Engineering, vol. 15, no. 6, pp. 1437– 1447, 2003.

[9] I. H. Witten and E. Frank, Data Mining: Practical
Machine Learning Tools and Techniques with Java
Implementations. Morgan Kaufmann, 1999.

[10] J. Yang and V. Honavar, “Feature subset selection
using a genetic algorithm,” IEEE Intelligent Systems,
vol. 13, no. 2, pp. 44–49, 1998.

