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Abstract

Acquisition of “quantitative” models of sufficient accu-
racy to enable effective analysis of requirements tradeoffs is
hampered by the slowness and difficulty of obtaining suffi-
cient data. “Qualitative” models, based on expert opinion,
can be built quickly and therefore used earlier. Such quali-
tative models are nondeterminate which makes them hard to
use for making categorical policy decisions over the model.
The nondeterminacy of qualitative models can be tamed us-
ing “stochastic sampling” and “treatment learning”. These
tools can quickly find and set the “master variables” that
restrain qualitative simulations. Once tamed, qualitative
modeling can be used in requirements engineering to assess
more options, earlier in the life cycle.

1 Introduction

In model-based requirements engineering(RE) [14], the
constraints in a model are like anumprire that can resolve
stakeholder feuds by e.g.:

• Showing how some options are clearly undesirable;
• Finding a novel solution that keeps most of the stake-

holders mostly satisfied.

There is a tension between howfast a model is written
and howsoonwe can use it to make definitive decisions.
For example, early in the software life cycle, it is simple
and fast to generate qualitative models of a domain. How-
ever such nondeterministic qualitative models can generate
a wide range of output. Hence, they may be useless for
model-based RE since they neither constrain nor refine an
argument. Clancy and Kuipers observe that. . .

Intractable branching due to (nondeterminacy) is
one of the major factors hindering the application
of qualitative reasoning techniques to large real-
world problems [2].

This paper is far more optimistic about using qualita-
tive models for RE. In some models, the space of options
in the whole model reduces to just the choices in a small
number ofmaster variables. Such qualitative models can
be used for model-based requirements engineering, despite
their nondeterminacy as follows:learn from stochastic
samplesof qualitative models to findsettings to the master
variables— treatments— that improve the performanceof
the qualitative models.

Previously, we have argued thetheoretical potentialof
our method. At RE’99, with Easterbrook, Nuseibeh and
Waugh, we reported results from millions of simulations
of thousands of randomly generated models showing that
most of what was seen in any option could be found in a
small number of randomly selected models [17]. A subse-
quent mathematical analyses suggested that (a) these empir-
ical results are the expected results from models with master
variables and (b) in the usual case, most models have only a
few master variables [21]. These results inspired tools such
TAR3, an efficient search engine fortreatments: i.e. set-
tings to thefewestmaster variables thatmost improve the
behavior of a model [18].

Despite all that theoretical work, this paper is this the
first time that our method has beenfield-testedon a real-
world requirements document1. In this study, we read a
document, quickly sketched out a qualitative model, then
used treatment learning to find definitive decisions. Our
document was a discussion of software process options
for NASA Near Earth Orbit Rendezvous (NEAR) mis-
sions [11].

Figure 1 shows the distribution of utilities for (E0) a
baseline of random process options, (E1) process options
which include the “best” single process action found by the
TAR3 learner, but are otherwise random, and (E2) process
options which are based on the treatments (which can be
conjunctions of several process actions) produced by the
TAR3 learner. Figure 1 shows thatE1 performs better than
theE0 baseline, but is inferior toE2. Note that theE2 treat-
ments nearly doubled that baseline performance from 20 to

1See [6,20] for studies with treatment learning on more precise models
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35. Despite qualitative nondeterminacy, we can make defi-
nite decisions aboutrankingandrejectingsoftware process
options.
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Figure 1. Results.

The rest of this paper
describes how Figure 1
was generated and dis-
cusses the generality of
our technique.

The framework we
describe in this paper has
several ingredients:

1. Section §2 de-
scribes a simple
representation of
the effects of differ-
ent process options.
The simplicity of
the representation
is advantageous for early requirements engineering:
it does not require large or complex axiomatizations
of a possibly poorly-understood domain, and rep-
resents effects qualitatively. This representation is
easily translated into executable form (which is thus
amenable to analysis). The translation is simple (each
row of the influence table is translated into a single
Prolog clause), adaptable, but has good foundations in
previous work on qualitative simulation.

2. Section§3 describes how we can extract definite rec-
ommendations from the model above using a simulator
which quickly generates very large numbers of random
or semi-random process options. The process options
are semi-randomly ranked and fed to a learner which
produces recommendations of which actions should or
should not be performed.

In §4 we describe the use of the framework and present
results. In§5 we conclude.

2 Qualitative Modeling Early Requirements

A degree of imprecision in modeling can help early life
cycle requirements engineering. Goel studied designers us-
ing well-structureddiagramming tools (MacDraw) and an
ill-structured diagramming tool (freehand sketches using
pencil and paper). Structured tools were found to inhibit
creativity while ill-structured tools generated more design
variants (i.e. more drawings, more ideas, more use of old
ideas) [7].

Because such imprecise models are useful, it is common
to see RE frameworks where the semantics of link infor-
mation is under-constrained. For example, Chung et.al’s
soft-goals use qualitative influences like “makes”, “breaks”,

“helps” and “hurts” [1]. Chung’s framework is silent on
computational mechanisms for handling combinations of
competing influences such as “helps” plus “hurts”.

Similar issues appear in other work. Shaw and Gar-
lan use qualitatively influences such as “strong”, “weak”,
“medium” to model trade-offs between alternative soft-
ware architectures using QFD (“Quality Functional Deploy-
ment”) tables [28, p119]. In QFD it is under-defined what
happens when “weak positives” combine with “weak neg-
atives”. Also, MacLean et.al. use “encourage” and “dis-
courage” links in their a Questions Options Criteria (QOC)
graphs to rapidly record trade-offs between issues during a
decision discussion [13]. The QOC work does not specify
what happens when the same option is influenced by com-
binations “encourages” and “discourages”.

To be fair, the above researchers never claimed that their
representations are executable. For the most part, soft-
goals, QFDs, and QOCs are manual browsing tools to be
used interactively in design meetings. Commonly, these
representations are precursors to other, more elaborate and
more time-consuming modeling.

Our research takes a different approach: our imprecise
modelsmustexecute. NASA often conducts week-long in-
tensivetiger teamdesign discussions that developmission
conceptdocuments2. These documents can be used to make
decisions about projects that will cost hundreds of millions
of dollars. Often those decisions are based on qualitative
information such as the operational parameters of a satellite
that does not yet exist nor has never been built before.

We seek to add value to those tiger team meetings with
automatic agents that point out the best decisions that could
be made from the available qualitative information. These
agents have two requirements. First, they must run fast
enough to keep with the dialogue of the tiger team. Second,
these agents must not slow down the tiger team’s dialogue
by, e.g. asking for precise details about satellites that don’t
exist yet. Hence, our agents need a fast execution mecha-
nism for qualitative models. Our representation is consider-
ably more lightweight than for examplei* [31, 32], which
allows rich representations of processes involving different
actors, logical and soft/qualitative task decompositions, but
where we lose out on the ability to model complex depen-
dencies in requirements problems, we gain in the speed with
which models can be constructed and, more significantly,
from the fact that we canexecuteour models — enabling us
to explore different scenarios (cf. [30]) — andlearn from
our models.

Figure 2 is an example of the kind of information we
can extract from those design meetings. To be precise, we

2At the NASA Jet Propulsion Laboratory in California, they are called
Team Xmeetings. At the NASA Goddard Space Flight Center, these are
the meetings conducted at theIntegrated Mission Design Centerhttp:
//imdc.nasa.gov/ .

2



Utility =
∑

x∈Goals Ux

∑options
y Impactxy

0 ≤ Usafety ≤ 10
0 ≤ UdevT ime ≤ 10
0 ≤ UdevCost ≤ 10

0 ≤ UlifeCycleCost ≤ 10
0 ≤ Ucapability ≤ 10

(1)

goals
life cycle

development operational
id software process option safety time cost cost capability
1 target critical mission

phases
+ + + - -

2 target critical
commands

+ + + - -

3 target critical events + + + - -
4 onboard checking + - - + 0
5 reduce flight

complexity
+ + + ? -

6 test fly prototypes + + + ? ?
7 enhance safing + - - + ?
8 certification + ? ? ? ?
9 increase vv + - - + ?
10 reduce onboard

autonomy
? + + - -

11 reuse across missions ? + + ? ?
12 increase developer

capabilities
+ + + ? ?

13 increase developer tool
use

+ + + ? ?

14 implement optional func-
tions after launch

? + ? ? ?

15 reduce vv cost 0 0 + + 0
16 increase vv speed 0 + 0 0 0
17 increase vv capabilities + + + 0 +

Figure 2. Part of the NEAR model: “+” de-
notes “increases”; “-” denotes “decreases”;
“?” denotes “an influence of unknown sign
exists”; and “0” denotes “no influence”.

built that figure from a text document. Nevertheless, it is
representative of the kind of information we have observed
in the tiger team meetings. The model was quick to build
(just a few hours for one of us to generate Figure 2 based
on [11]).

The impact matrix containingy = 17 software process
options is shown on the bottom of Figure 2. Note that each
process option impacts multiple goals, sometimes in con-
tradictory ways. For example,targeting critical mission
phases improvesmission safety butdecreasesmission capa-
bilities (since less resources are devoted to peripheral func-
tionality).

In general, a process option will combine a number of
single process options3 from Figure 2. We make the sim-
plifying assumption here that the order in which process ac-
tions is applied does not matter.

Equation 1 of Figure 2 allows us to compute the util-
ity of single process actions (whenoptions is a singleton
set), and of combinations of more complex process options

3Single process options are henceforth calledprocess actions. The term
process optionis used to denote a combination of one or more process
actions.

(whenoptionscontains several process actions). The util-
ity can then be used to judge between points in the trade
space of process options. Different stakeholders assign dif-
ferent values to theUi weights to reflect the relative impor-
tance to them of the project subgoals of safety, development
cost, capability, etc.. Given suitable definitions of summa-
tion for qualitative values (defined by thesum(.,.,.)
andvalue(.,.) predicates below), Equation 1 allows us
to incorporate these into an overall utility score.

The economy of the representation of Figure 2 is ad-
vantageous for early requirements analysis: it can be used
when the structure of the domain is not well understood, and
when stakeholders disagree about the relative importance of
project subgoals. It is also very easily transformed into an
executable representation. We represent Figure 2 as a set of
Prolog tuples (one per row of the table), e.g.:

table1(target_critical_mission_phases,+,+,+,-,-).
table1(target_critical_commands ,+,+,+,-,-).

In Figure 2, +,-,0 denote “positive”, “negative”, or “zero”
numeric values (respectively). If “?”is the non-determinant
case and “0” indicates “no influence”, then the following
fairly standard definition of a qualitativesum(.,.,.)
predicate is used to define the inner summation of Equa-
tion 1.

sum(+,+,+). sum(-,-,-). % same + same is same
sum(+,-,?). sum(-,+,?). % this + that is unknown
sum(_,?,?). sum(?,_,?). % anything + unknown= unknown
sum(0,X,X). sum(X,0,X). % nothing + something= something

The results of qualitative summation are converted by
value(.,.) below to integers which can be multiplied
by theUi weights in the outer summation of Equation 1:

value(+,1). value(-,-1). value(0,0).
value(?,-1). value(?,0). value(?,1).

Figure 2seemsquite small but its behavior is surprisingly
complex. For example, Figure 3 shows 1000 outputs from
Figure 2 using a small qualitative simulator described later
in the paper. Due to qualitative nondeterminacy, the utili-
ties generated in 1000 runs vary quite widely. The resulting
pattern is very noisy and, hence, it is difficult (impossible?)
to make a decision about the effects of those four process
options on the overall utility of the project.

Another problem with qualitative modeling is that the
simulators themselves can be quite complex. Formally, a
qualitative model can reach a contradiction; i.e. a belief
that the model can be in two or more mutually exclusive
states. Most theorem provers are not contradiction tolerant
since they are based in classical logic. In classical propo-
sitional logic, if a theory can reach any contradiction then
everything else in the theory can becomes trivially true. In-
tuitively, the argument is as follows: if an argument permits
conclusions on all sides of an issue then we may as well stop
arguing now and agree that anything at all could be true.
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Figure 3. Utilities seen after selecting four op-
tions, then 1000 times, computing Equation 1.

Hence, qualitative simulators use complex non-classical
semantics. Qualitative simulators build multipleworlds of
beliefs(a.k.a. envisionments [3], extensions of a default the-
ory [25], scenarios [23]). Each world holds a consistent set
of beliefs which conflict with at least one other world. The
proper implementation of such a multi-worlds reasoner is a
non-trivial task and most researchers reuse a small num-
ber of well-studies tools such as the ATMS [4], THEO-
RIST [23], or QSIM [10]. All these tools scale badly since
larger theories with more contradictions lead to an exponen-
tial forking in the number of worlds.

Previously (with Cohen, Houle, Waugh, Goss, and Pow-
ell) we have tried using restrictive modeling languages to
simplify qualitative simulation and restrain the exponential
forking of behavior. A restrictive language was developed
with the property thatany modelwritten in that language
would generate tractable qualitative simulation [15,19,24].
Those restrictions are quite severe. In the following sections
we show how stochastic simulation and treatment learning
can make general qualitative modeling useful for require-
ments engineering.

3 Simpler Qualitative Simulation

Our tools usetreatment learningfrom stochastic sam-
pling to find and set themaster variablesthat restrain qual-
itative simulations. These terms are explain below.

3.1 Master Variables

Nondeterminacy can prevent requirements engineers
from making decisions from qualitative models. For exam-
ple, 20 binary unknowns implies220 > 1, 000, 000 different
possibilities. We have never found a domain expert willing

to resolve disputes by tediously exploring such a large range
of options.

Fortunately, the space of possible behaviors in a qualita-
tive model can be greatly reduced by setting a small num-
ber of keymaster variables. According to Menzies, East-
erbrook, Nuseibeh, and Waugh [17], within most models
there are a small number of master variables which set the
remainingslave variables. For suchmaster-slave models,
the space of options is just the space of options within the
master variables.

Crawford and Baker used the termmaster-variablesin
their study of scheduling problems. Similar concepts have
been reported elsewhere:

• Prime-implicants in model-based diagnosis [27] or
machine learning [26], or fault-tree analysis [12].

• Backbonesin satisfiability [22,29];
• The dominance filteringused in Pareto optimization of

designs [8];
• Minimal environmentsin the ATMS [4];
• Thebase controversial assumptionsof HT4 [16].

Whatever the name, the core intuition in all these terms is
the same: what happens in the total space of a system is
controlled by a small critical region.

An interesting property of master variable systems is
that, by definition, inference pathways from inputs to out-
puts pass through the master variables. Hence, a stochastic
sampling of those pathways will repeatedly stumble over
the master variables. The tools described below use such a
stochastic sampling policy, thereby avoiding the exponen-
tial runtime times of other qualitative reasoning tools.

3.2 The TAR3 Treatment Learner

The TAR3 treatment learnerperforms stochasticfor-
ward selectsearch for atreatment; i.e. a small conjunction
of master variables which, when compared to some base-
line scenario, most improves the score of the system under
study [18].

A forward selectsearch adds candidate attribute values
to a growing set of selected attribute values until the larger
set does no better than a smaller set. For example, Kohavi
and John’s WRAPPER assesses attributes by their classifi-
cation accuracy when they are used by a target learner [9].
Forward select search can be slow; e.g. WRAPPER does
not scale to large data sets.

A faster method is to select new attributes for the grow-
ing set using some heuristic preference criteria. Hence,
treatment learning starts by computing thelift of each indi-
vidual attribute value.Lift is the increase in average oracle
score within a defined sub population, compared to the full
population:
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• Let D0 be the training examples with attributesA with
rangesR;

• Let X be an attribute range withinA; i.e. X ∈ A×R.
• LetD1 be the subset with attribute rangeX, D1 ⊆ D0;
• If D0 andD1 have mean oracle scoreµ0 andµ1, then

liftX = log
(

µ1
µ0

)
.

• By definition, settingX to a master variable dramati-
cally improves the score; i.e.liftX � 0.

• By the same reasoning, to find bad settings to the mas-
ter variables, look for the rangeY with liftY � 0.

Often there is added value in defining treatments as
conjunctions of ranges. Treatment conjunctionsX1 ∧
X2 . . . XN are grown by selecting a treatment sizeN at
random from 1 tomaxSize (e.g. 10). N attribute ranges
are then combined into a conjunction by selecting attribute
rangesXi at random, preferring those with higher lifts. This
is repeated, say, 100 times and the bestB treatments are col-
lected. This process is repeated until no new best treatments
are found.

3.3 Stochastic Sampling

The complexities of multiple worlds reasoning were dis-
cussed in§2 above. Not only can they be difficult to im-
plement, but they can scale poorly to larger problems. To
reduce the implementation complexity, we use a result from
Druzdel [5]. If software hasn variables, each with its own
assignment probability distribution ofpi, then the probabil-
ity that a system will fall into a particular state is

p = p1p2p3...pn =
n∏

i=1

pi.

By taking logs of both sides, this equation becomes

ln p = ln
n∏

i=1

pi =
n∑

i=1

ln pi (2)

The asymptotic behavior of such a sum of random variables
is addressed by the central limit theorem. As long aspi is
not uniform, then the expected case is thatp will exhibit a
log-normal distribution; i.e. a small fraction of states can
be expected to cover a large portion of the total probability
space; and the remaining states have practically negligible
probability. A stochastic sample of a small number of the
reachable states will therefore sample a large percentage of
the likely states.

This result can reduce the cost of searching through the
worlds of belief generated by qualitative simulations. If we
stochastically sample a subset of the reachable worlds, then
Equation 2 promises that sample will include a large per-
centage of the states that are not negligibly unlikely.

Implementing such a stochastic sampling method is triv-
ial. For example, the followingany predicate converts
standard SLD resolution used in logic programming into
a random sampling method. Standard PROLOG processes
clauses lists in a top-down manner.Any returns solutions
in a random order:

any(X) :- setof(R/X,(X,R is random(2**30)),L),

Theany predicate is the core of our qualitative simula-
tor for the NEAR knowledge. It is used, for example, in
the row predicate to select a random process option from
Table2

row(table1,X,[A,B,C,D,E]) :- any(table1(X,A,B,C,D,E)).

Apart from any , there are two main predicates in our
simulator:across anddown.

sim(Used,Score) :-
Table = table1, % what table to look at
Inits = [ 0,0,0,0,0 ], % initial values for all colums
Used = [ _1,_2,_3,_4], % how many options to select?
Utils = [ 10,3,3,2,2 ], % Equations 2 to 6
down(Used,[],Table,Inits,Impacts),
across(Utils,Impacts,Score).

Across sums over the goals to implement theutility
calculation of Equation 1.

across(U,V,S) :- maplist(score,U,V,S0), add(S0,S).
score(Util,Val0,Util*Val) :- any(value(Val0,Val)).

add([],0). %adds a list of numbers.
add([H|T],X) :- add(T,X0), X is X0+H.

Across is calledafter down sums downs the columns
of Figure 2 to find the net qualitative influences on each
goal. Down tries to fill in a list of software process options
(in its first argument) with rows from the impact table.

down([],_,_,Out,Out).
down([One|Rest],Used,Table, Old,Out) :-

row(Table,One,Next), % "One" is a row ..
\+ member(One,Used), % .. which is not used before
sums(Old,Next,New), % add this to "Old"
down(Rest, % and recurse

[One|Used],Table,New,Out).

sums([],[],[]).
sums([H0|T0],[H1|T1],[H|T]):-

any(sum(H0,H1,H)),sums(T0,T1,T2).

Note the nondeterministic choice withinsums
and score for the qualitative mathematics in
any(sum,H0,H1.H)) .

The data from Figure 3 can now be generated byfirst
finding any solution, thennextrepeatedly scoring that solu-
tion:

generateFigureThree :-
sim(Used,_),
tell(’figure2.data’),
forall(between(1,1000,_),

(sim(Used,Score)
,format(‘‘˜p\n’’,Score)
)),

told.
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The above code demonstrates the implementation simplic-
ity of stochastic qualitative simulation. The above code is
small (fits into half a page) and can be easily adapted to
another model syntax or other user requests. For example,
we can introduce a new qualitative value “++” which is to
be stronger than “+”. The change to above code was triv-
ial: we just defined the scores for the qualitative symbols to
be normal distributions with different means and changed
score to sum the normals.

value(++,N) :- normal( 2, 0.5, N). % "++" has a mean of 2
value( +,N) :- normal( 1, 0.5, N). % "+" has a mean of 1
value( -,N) :- normal(-1, 0, N). % "-" has a mean of -1
value( ?,N) :- normal( 0, 1, N). % "?" has a mean of 0

This scoring scheme produces very similar results to the
scheme defined in§2, but is more flexible. We used this
scheme for the experiments described in the following sec-
tions.

4 Results

A standard run with the above tools was to, one hundred
times, generate 5000 process options, each combining from
one to four process actions from Figure 2.E0 in Figure 1
shows ourbaselineresults. These were the distribution of
utilities seen when theUx values of Equation 1 where al-
lowed to vary randomly from 0 to 10. Subsequently, we
explored the effects of restricting the range of possibleUx

values.
The outputs were based ontworuns of TAR3. In run one,

TAR3 was used to find the master variable settings that most
improvedthe utility score. In run two, TAR3 was used to
find the settings that mostdecreasedthe score. This process
was not slow: in 20 minutes on a standard Linux box we
could stochastically sample our qualitative model 500,000
and execute TAR3 200 times.

Figure 4 shows the start of one of the 200 runs of TAR3
onE0. Note that 23 attributes were passed to TAR3:

• 17 “do”s and “dont”s that show which process actions
were selected.

• 5 numericUx weights from Equation 1.
• The finalUtility value from Equation 1. In our exper-

iments, we wrote a small pre-processor to divide these
into three classes of equal size.

Figure 4 also shows theOptions used in this experiment.
The following settings are the default settings for TAR3:

granularity=4 : Discretize all numeric attributes (e.g.
the 5Ux values) into four unique values.

maxNumber=20: Only report the top 20 treatments.

randomTrials=100 Build 100 conjunctive treatments
of sizeminSize=1 to maxSize=10

Read 5000 cases (23 attributes) from m1.data

Options: granularity 4
maxNumber 20
minSize 1
maxSize 10
randomTrials 100
futileTrials 5
bestClass 10.00%

Baseline:

CLASS SUPPORT
===== ==============

-20:˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜ [ 1666 - 33%]
0:˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜ [ 1667 - 33%]

20:˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜ [ 1667 - 33%]

Lift1s:
-3: [ 1 - 1%]
-1: [ 1 - 1%]

0:˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜ [ 59 - 63%]
1:˜˜˜˜˜˜˜˜˜˜ [ 20 - 22%]
2:˜˜ [ 5 - 5%]
3:˜˜˜ [ 6 - 6%]
4: [ 1 - 1%]

Figure 4. TAR3 pre-processing E0.

futileTrials=5 : If, after building 100 treatments,
there are no new “top 20” treatments, then that is a
“futile trial”. In our experiments, TAR3 kept generat-
ing sets of 100 treatments until it found 5 consecutive
futile trials.

bestClass=10% : This option stops TAR3 generating
treatments with too little support. TheBaseline
in Figure 4 shows that our 5000 input examples con-
tain 1,667 “best” examples. In our experiments,
TAR3 rejected all treatments that selects for less than
10%*1667=167 of those best. examples.

TheLift1s distribution of Figure 4 shows thelift values
for single ranges of theUx values and the software process
optionsdos anddonts . Most of the ranges have equal
frequencies in all the classes (see the 59 ranges withlift =
0). However, in a result consistent with the master-variable
hypothesis, there exist a small number of ranges that have a
large impact on the overall score (see the handful of ranges
with lift scores approaching -3 and 4).

Figure 5 and Figure 6 show some TAR3 results. Note
that the ordering of the classes in the two runs is reversed
In Figure 5 TAR3 is seeking attribute ranges that select for
higher utilities (the “20” class) but in Figure 6 TAR3 is seek-
ing attribute ranges that select for lower utilities (the “-20”
class). TheSUPPORTcolumn shows the effect of apply-
ing the treatment to the training data. These support results
should be compared theBaselineof Figure 4. Note that
these treatments make large changes to the utility distribu-
tions.
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20 Treatments learned after 58 random trials

IF a16=dont AND a12=do THEN...

CLASS SUPPORT
===== ==============
-20:˜˜˜˜˜˜ [ 46 - 12%]

0:˜˜˜˜˜˜˜˜˜˜˜˜ [ 94 - 25%]
20:˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜ [ 230 - 62%]

IF a4=dont AND a17=do THEN

CLASS SUPPORT
===== ==============
-20: ˜˜˜˜ [ 63 - 9%]

0: ˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜ [ 205 - 31%]
20: ˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜ [ 399 - 60%]

etc

Figure 5. E0: seeking HIGHER utilities.

20 Treatments learned after 55 random trials

IF a13=dont AND a17=dont THEN

CLASS SUPPORT
===== ==============

20: ˜˜ [ 39 - 4%]
0: ˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜ [ 298 - 34%]

-20: ˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜ [ 551 - 62%]

IF a17=dont THEN
CLASS SUPPORT
===== ==============

20:˜˜˜˜ [ 33 - 9%]
0:˜˜˜˜˜˜˜˜˜˜˜˜˜ [ 103 - 28%]

-20:˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜ [ 228 - 63%]

etc

Figure 6. E0 seeking LOWER utilities.

4.1 Evaluating Process Recommendations

The treatments if Figure 5 and Figure 6 show “dos” and
“donts”; i.e. they comment onbothwhat process options to
apply and what process options to avoid. Each run of the
system (generating and scoring 5000 random process op-
tions, then applying TAR3) produces a ranking of 20 best
and 20 worst process options. These top/bottom 20 treat-
ments differ somewhat on successive runs of the system,
i.e. the recommendations produced by a single run still have
some randomness in them. This noise can be substantially
reduced by collating the results from a large number of runs
of the system.

Figure 7 shows the frequencies of what “dos” and
“donts” were seen in one experiment of 100 repeats of 5000
stochastic simulations run twice through TAR3. In that fig-
ure:

• The x-axis numbers correspond to the software process
actions listed in Figure 2.

• The y-axis show the frequency of ranges: positive
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Figure 7. Frequency of “dos” and “donts”.

numbers (solid bars) count the occurrences of “dos”
and negative numbers (striped bars) count the occur-
rences of “donts”.

In the two plots of Figure 7 TAR3 was looking for higher
and lower utilities. When seeking lower utilities, TAR3’s
treatments were full of “donts”; i.e. actions which lead
to a poor score if we do not do them. On the other hand,
when seeking higher utilities, TAR3’s treatments were full
of “dos” and “donts”. ExperimentE0 reveals that four pro-
cess actions lead to positive treatments if chosen, and nega-
tive treatments if not chosen:

6. Test fly prototypes;
12. Increase developer capabilities;
13. Increase developer tool use;
17. Increase V&V capabilities.

These results assume that all theUx values in Figure 2
range from 0 to 10. The influence of changes to theUx

distribution is examined in§4.3.
Based on Figure 7, we might limit our conclusions to the

recommendation that process action 17 should be included
in any process option. Is this the best we can do?

We can evaluate the utility of a (possibly singleton or
empty) set of treatments by repeating our experiments, re-

7



 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 1 2 3 4

treatments

 0

 10

 20

 1.3  1.4  1.5  1.6  1.7  1.8

N
(X

,µ
,σ

)

lift

1: µ=1.46,σ=0.11
2: µ=1.54,σ=0.12
3: µ=1.63,σ=0.07
4: µ=1.65,σ=0.02

Figure 8. LEFT: TAR3 generated thousands of
treatments of size 1,2,3 or 4. RIGHT: larger
treatments had higher mean lifts with less
variance.

stricting process option sets to those which are compatible
with at least one of the treatments (i.e. which, for some
treatment, perform all of the positive actions (plus maybe
some others) and none of the negative actions).

The E1 results shown in Figure 1 came from imposing
software process 17 (increase V&V capabilities) onto the
NEAR model and running another 5000 simulations. As
shown in that figure,E1 out-performed the baseline. How-
ever, as shown below, certain combinations ofmultiplesoft-
ware process options out-performE1.

4.2 Exploring Large Treatments

At the end of the previous section, we evaluated the ef-
fect of using the best single process option (17) as the basis
for process options. Here, we study the effects of select-
ing up to ten of the process actions listed in Figure 2. The
results indicate that simply collating treatments from many
experiments and choosing the single best process action is
simplistic: basing process options on more complex learned
treatments can produce better results.

Recall from TAR3’s options shown in Figure 4 that
TAR3 hunted for treatments of size 1 to 10. The left-hand-
side of Figure 8 shows the size of best treatments found by
TAR3 in any of its 200 runs overE0 data. In these results,
TAR3 is advising us to do more thanjust apply singleton
software process options selected from Figure 7. The right-

hand-side of Figure 8 shows that as treatments grow in size,
their mean lift increases somewhat and their variance de-
creases sharply. Hence, in the case of Figure 2, it is better
to setmultiple process optionsrather than just reading off
one action from Figure 7.

The effects of the best treatment found by TAR3 were
shown asE2 in Figure 1. ThoseE2 results were generated
as follows: TAR3’smaxNumber configuration parameter
was set to one; i.e. TAR3 only reported thebesttreatment it
ever found in any run. This process was repeated 100 times,
producing 100 best treatments, for example, the four most
frequently chosen were 1. do(17), 2. do(17)& dont(9), 3.
do(17) & dont(10), 4. do(17) & dont(4). Intuitively, these
treatments are combinations which advise doing 17 while
avoiding 9, 10, 4 (which negate or introduce uncertainty
into goals which 17 would otherwise influence positively).

In experimentE2, 500000 random process options were
generated which were compatible with the set of 100 se-
lected treatments. The utility score nearly doubled the base-
line distribution, and significantly increased over that ofE1

(extensions of 17).

4.3 The Effects of “Magic Weights”

Models of user preferences often contain “magic
weights” representing the relative strengths of various fac-
tors on the final outcome. In the case of Figure 2, those
“magic weights” are theUx weights which range from 0 to
10.

In the general case, changing these weights can change
the conclusions of the model. However, in the specific case
of Figure 2, we can use our rig to show that the implica-
tions of the NEAR model are quite insensitive to some of
the possible changes in the magic weights.

Recall that Figure 7 assumed that allUx values varied at
random from 0 to 10. Figure 9 shows the effect of changing
theUsafety distribution. The left-hand column of that figure
shows results from a run whereUsafety was constrained to
middle-range values; i.e.3 ≤ Usafety ≤ 6. The right-hard
column shows results from a run whenUsafety was given a
maximal weight; i.e.Usafety = 10. Figure 7 and Figure 9
show similar distributions; i.e. the above conclusions are
relatively insensitiveto different perceptions on the relative
merits of safety versus other goals. This is a good thing to
know: stakeholders with different opinions on the impor-
tance of safety can agree in this case on the conclusions of
our analysis.

5 Conclusion

Early life cycle modelsshouldbe less precise than mod-
els generated later on. Such imprecise models are faster to
generate and let users explore more options, faster.
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Figure 9. E0: effects of changing utilities

Until now, it seemed that speed meant recklessness,
that models written quickly were not suitable for model-
based RE. Such quickly written models are often so under-
constrained that they produce a wide range of outputs. Such
wide-ranging output may neither restrain or nor refine an
argument. We saw such a large range of options here: Fig-
ure 2 generated the noise of Figure 3.

However, we show here that master variables can be ex-
ploited to explore the space of options as follows:

• Quickly sketch a qualitative model.
• Learn treatmentsfrom stochastic samplesof those

qualitative models
• Use the treatments assettings to the master variables

that improve the performanceof the qualitative mod-
els.

Our choice of a simple representation had a number of
benefits: models can be quickly formulated, are immedi-
ately executable, can be executed very fast, and yield data
which is very amenable to treatment learning. This is very
suitable for quick early RE.

Our goal is not of course the construction of Platonic
truths, but explicating tacit influences within hastily writ-
ten early life cycle models. After our treatment learners

find the master variable settings that most improve or de-
grade a qualitative model, our intent is that users will focus
their dialogue on those settings. Our expectation is that,
as a result of that extra attention, users will often elabo-
rate parts of the qualitative models (i.e. those including the
master variables). That is, our tools let users find and fo-
cus on those parts of the model which most influence the
decisions. An alternative approach, which would be much
more time-consuming is that users elaborateall parts of a
model. For our target domain (real-time support of NASA’s
tiger teams), this isnot the preferred options since it would
be too slow.
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