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Abstract This paper is far more optimistic about using qualita-

tive models for RE. In some models, the space of options
Acquisition of “gquantitative” models of sufficient accu- in the whole model reduces to just the choices in a small
racy to enable effective analysis of requirements tradeoffs isnumber ofmaster variables Such qualitative models can
hampered by the slowness and difficulty of obtaining suffi- be used for model-based requirements engineering, despite
cient data. “Qualitative” models, based on expert opinion, their nondeterminacy as followslearn from stochastic
can be built quickly and therefore used earlier. Such quali- samplesf qualitative models to findettings to the master
tative models are nondeterminate which makes them hard tovariables— treatments— thatimprove the performanaef
use for making categorical policy decisions over the model. the qualitative models.
The nondeterminacy of qualitative models can be tamed us- Previously, we have argued ttigeoretical potentialbf
ing “stochastic sampling” and “treatment learning”. These our method. At RE'99, with Easterbrook, Nuseibeh and
tools can quickly find and set the “master variables” that Waugh, we reported results from millions of simulations
restrain qualitative simulations. Once tamed, qualitative of thousands of randomly generated models showing that
modeling can be used in requirements engineering to assesyost of what was seen in any option could be found in a
more options, earlier in the life cycle. small number of randomly selected models [17]. A subse-
guent mathematical analyses suggested that (a) these empir-
ical results are the expected results from models with master
variables and (b) in the usual case, most models have only a
few master variables [21]. These results inspired tools such
TAR3, an efficient search engine foeatments i.e. set-
In model-based requirements engineer{Rd) [14], the tings to thefewestmaster variables thahostimprove the
constraints in a model are like amprire that can resolve  behavior of a model [18].
stakeholder feuds by e.g.: Despite all that theoretical work, this paper is this the
first time that our method has beérld-testedon a real-
e Showing how some options are clearly undesirable;  \yorld requirements documeént In this study, we read a
e Finding a novel solution that keeps most of the stake- gocument, quickly sketched out a qualitative model, then
holders mostly satisfied. used treatment learning to find definitive decisions. Our
document was a discussion of software process options

There is a tension between hdast a mpdgl is wri'ttgn for NASA Near Earth Qrbit Rendezvous (NEAR) mis-
and howsoonwe can use it to make definitive decisions. sions [11].

For example, early in the software life cycle, it is simple Figure 1 shows the distribution of utilities fofz§) a

and fast to generate qualitative models of a domain. How- baseline of random process options, )} process options
ever such nondeterministic qualitative models can generate, 1i-h include the “best” single process action found by the
a wide range of output. Hence, they may be useless foryar3 earner, but are otherwise random, af) process
model-based RE since th_ey neither constrain nor refine anoptions which are based on the treatments (which can be
argument. Clancy and Kuipers observe that. .. conjunctions of several process actions) produced by the
TAR3 learner. Figure 1 shows thay performs better than
the E, baseline, but is inferior t&5. Note that thet, treat-
ments nearly doubled that baseline performance from 20 to

1 Introduction

Intractable branching due to (nondeterminacy) is
one of the major factors hindering the application
of qualitative reasoning techniques to large real-
world problems [2]. 1See [6,20] for studies with treatment learning on more precise models




35. Despite qualitative nondeterminacy, we can make defi-“helps” and “hurts” [1]. Chung’s framework is silent on
nite decisions aboutinkingandrejectingsoftware process  computational mechanisms for handling combinations of

options. competing influences such as “helps” plus “hurts”.

The rest of this paper Similar issues appear in other work. Shaw and Gar-
describes how Figure 1 lan use qualitatively influences such as “strong”, “weak”,
was generated and dis- N — “medium” to model trade-offs between alternative soft-
cusses the generality of = ﬁiggiélgiféig — ware architectures using QFD (“Quality Functional Deploy-

our technique. F24=359,05072 —e—

ment”) tables [28, p119]. In QFD it is under-defined what

The framework we happens when “weak positives” combine with “weak neg-
describe in this paper has f \ atives”. Also, MacLean et.al. use “encourage” and “dis-
several ingredients: 0.01 - ] courage” links in their a Qestions @tions Qiteria (QOC)

’ \ graphs to rapidly record trade-offs between issues during a
decision discussion [13]. The QOC work does not specify
what happens when the same option is influenced by com-
binations “encourages” and “discourages”.

To be fair, the above researchers never claimed that their
Figure 1. Results. representations are executable. For the most part, soft-
goals, QFDs, and QOCs are manual browsing tools to be
used interactively in design meetings. Commonly, these
representations are precursors to other, more elaborate and
more time-consuming modeling.

Our research takes a different approach: our imprecise
modelsmustexecute. NASA often conducts week-long in-
tensivetiger teamdesign discussions that developssion
conceptocument& These documents can be used to make
decisions about projects that will cost hundreds of millions
of dollars. Often those decisions are based on qualitative
information such as the operational parameters of a satellite

2. Section§3 describes how we can extract definite rec- that does not yet exist nor has never been built before.
ommendations from the model above using a simulator ~ We seek to add value to those tiger team meetings with
which quickly generates very large numbers of random automatic agents that point out the best decisions that could
or semi-random process options. The process optionsbe made from the available qualitative information. These
are semi-randomly ranked and fed to a learner which agents have two requirements. First, they must run fast
produces recommendations of which actions should orenough to keep with the dialogue of the tiger team. Second,
should not be performed. these agents must not slow down the tiger team’s dialogue

. by, e.g. asking for precise details about satellites that don't
In §4 we describe the use of the framework and presenteyist yet. Hence, our agents need a fast execution mecha-
results. In§S we conclude. nism for qualitative models. Our representation is consider-
ably more lightweight than for example [31, 32], which
2 Qualitative Modeling Early Requirements allows rich representations of processes involving different
actors, logical and soft/qualitative task decompositions, but
A degree of imprecision in modeling can help early life Where we lose out on the ability to model complex depen-
cycle requirements engineering. Goel studied designers usHencies in requirements problems, we gain in the speed with
ing well-structureddiagramming tools (MacDraw) and an which models can be constructed and, more S|gn_|f|cantly,
ill-structured diagramming tool (freehand sketches using from the fact that we caexecuteour models — enabling us
pencil and paper). Structured tools were found to inhibit t0 explore different scenarios (cf. [30]) — aiearn from
creativity while ill-structured tools generated more design OUr models.
variants (i.e. more drawings, more ideas, more use of old  Figure 2 is an example of the kind of information we
ideas) [7]. can extract from those design meetings. To be precise, we
Because such imprecise models are use-fUL It i§ Co-mmon 2At the NASA Jet Propulsion Laboratory in California, they are called
to S.ee RE frameworks V.Vhere the semantics of link infor- Team Xmeetings. At the NASA Goddard Space Flight éenter, these are
mation is under-constrained. For example, Chung et.al'syhe meetings conducted at thetegrated Mission Design Centéttp:

soft-goals use qualitative influences like “makes”, “breaks”, //imdc.nasa.gov/

N(X,u,0)

1. Section §2 de- I A,
scribes a Simp|e -40 20 0 20 40 60 80 100
representation  of ey
the effects of differ-
ent process options.
The simplicity of
the representation
is advantageous for early requirements engineering:
it does not require large or complex axiomatizations
of a possibly poorly-understood domain, and rep-
resents effects qualitatively. This representation is
easily translated into executable form (which is thus
amenable to analysis). The translation is simple (each
row of the influence table is translated into a single
Prolog clause), adaptable, but has good foundations in
previous work on qualitative simulation.




Utility =3, c goars Us 237" Impact s,y (whenoptionscontains several process actions). The util-

0< Usaery < 10 ity can then be used to judge between points in the trade
%S<[Ujiemme <§ 118 @ space of process options. Different stakeholders assign dif-
0< 0 fdcycl"ctoj <10 ferent values to thé&/; weights to reflect the relative impor-
0 < Ucapabitity < 10 tance to them of the project subgoals of safety, development
goals cost, capability, etc.. Given suitable definitions of summa-
‘ ion for qualitative values (define m(.,.,.
life cycle tion f litat I defined by thsa
development| operationa . .
id | software process option| safetyl time| cost cost capability andvalue(.,.) predicates below), Equation 1 allows us
1 té}:get criical - mission  + + + - - to incorporate these into an overall utility score.
ses . . .
2 tpargetcritical ¥ ¥ ¥ . . The economy of the representation of Figure 2 is ad-
commands vantageous for early requirements analysis: it can be used
3 | target critical events + + + - - ..
4 ["onboard checking T . T 0 when the structure of the domain is not well understood, and
5 feducle ﬂ,'g/hf ] + ? when stakeholders disagree about the relative importance of
complexi . . . .
6 testfﬁ’y prototypes ¥ ¥ s > > project subgoals. It is also very easily transformed into an
; ggrﬁ?g‘{‘;ﬁ‘f‘”g - 2 . i : executable representation. We represent Figure 2 as a set of
1T I [ ?
9 [Mncrease w T . T > Prolog tuples (one per row of the table), e.qg.:
10[ reduce onboard ? + + -
autonomy tablel(target_critical_mission_phases,+,+,+,-,-).
11[ reuse across missions 2 + + ? ? tablel(target_critical_commands o).
12| increase developer + + + ? ?
capabiliies In Figure 2, +,-,0 denote “positive”, “negative”, or “zero”
13| increase developer topl + + + ? ? ) 3 . i
use numeric values (respectively). If “?”is the non-determinant
14] implement optional fung- 2 |+ [ 7 ? ? case and “0” indicates “no influence”, then the following
15[ reduce wv cost 0 O ¥ ¥ 0 fairly standard definition of a qualitativeum(.,.,.)
16| _increase vv speed N I 0 0 predicate is used to define the inner summation of Equa-
17[ increase vv capabilities + + + 0 +

tion 1.
Figure _2. Part of the NEAR model: “+” de- SUM(+++). SUM(--). % same + same is same
notes “increases”; “-” denotes “decreases”; sum(+,-,?). sum(-+,?). % this + that is unknown
weyn « : : sum(_,?,?). sum(?,_,?). % anything + unknown= unknown
?. denotes “an influence O.f unknown sign sum(0,X,X). sum(X,0,X). % nothing + something= something
exists”; and “0” denotes “no influence”.
The results of qualitative summation are converted by
value(.,.) below to integers which can be multiplied

built that figure from a text document. Nevertheless, it is by thel/; weights in the outer summation of Equation 1.

representative of the kind of information we have observed value(+,1).  value(--1). value(0,0).
in the tiger team meetings. The model was quick to build Y21 value(?0). value(?.1).
(just & few hours for one of us to generate Figure 2 based  Figyre 2seemsjuite small but its behavior is surprisingly
on [11]). complex. For example, Figure 3 shows 1000 outputs from
The impact matrix containing = 17 software process  Figure 2 using a small qualitative simulator described later
options is shown on the bottom of Figure 2. Note that eachn the paper. Due to qualitative nondeterminacy, the utili-
process option impacts multiple goals, sometimes in con-ties generated in 1000 runs vary quite widely. The resulting
tradictory ways. For exampldargeting critical mission  pattern is very noisy and, hence, it is difficult (impossible?)
phases improvesission safety butecreasesission capa- o make a decision about the effects of those four process
bilities (since less resources are devoted to peripheral funC'options on the overall utility of the project.
tionality). Another problem with qualitative modeling is that the
In general, a process option will combine a number of simulators themselves can be quite complex. Formally, a
single process optioAdrom Figure 2. We make the sim-  qualitative model can reach a contradiction; i.e. a belief
plifying assumption here that the order in which process ac-that the model can be in two or more mutually exclusive
tions is applied does not matter. states. Most theorem provers are not contradiction tolerant
Equation 1 of Figure 2 allows us to compute the util- since they are based in classical logic. In classical propo-
ity of single process actions (whesptionsis a singleton  sitional logic, if a theory can reach any contradiction then
set), and of combinations of more complex process optionseverything else in the theory can becomes trivially true. In-
3Single process options are henceforth caiemtess actionsThe term tUItlvely'_ the argume_nt IS as fO_IIOWS: if an argument permits
process optioris used to denote a combination of one or more process conclusions on all sides of an issue then we may as well stop
actions. arguing now and agree that anything at all could be true.




to resolve disputes by tediously exploring such a large range
of options.

Fortunately, the space of possible behaviors in a qualita-
tive model can be greatly reduced by setting a small num-
ber of keymaster variables According to Menzies, East-
erbrook, Nuseibeh, and Waugh [17], within most models
there are a small number of master variables which set the
remainingslave variables For suchmaster-slave models
the space of options is just the space of options within the
master variables.

Crawford and Baker used the termaster-variablesn
their study of scheduling problems. Similar concepts have
been reported elsewhere:

1,000 runs

e Prime-implicantsin model-based diagnosis [27] or
machine learning [26], or fault-tree analysis [12].

e Backbonedn satisfiability [22, 29];

e The dominance filteringsed in Pareto optimization of

Figure 3. Utilities seen after selecting four op-
tions, then 1000 times, computing Equation 1.

designs [8];
Hence, qualitative simulators use complex non-classical e Minimal environment# the ATMS [4];
semantics. Qualitative simulators build multipl®rlds of e Thebase controversial assumptioaEHT4 [16].

beliefs(a.k.a. envisionments [3], extensions of a default the-
ory [25], scenarios [23]). Each world holds a consistent set Whatever the name, the core intuition in all these terms is
of beliefs which conflict with at least one other world. The the same: what happens in the total space of a system is
proper implementation of such a multi-worlds reasoner is a controlled by a small critical region.
non-trivial task and most researchers reuse a small num- An interesting property of master variable systems is
ber of well-studies tools such as the ATMS [4], THEO- that, by definition, inference pathways from inputs to out-
RIST [23], or QSIM [10]. All these tools scale badly since puts pass through the master variables. Hence, a stochastic
larger theories with more contradictions lead to an exponen-sampling of those pathways will repeatedly stumble over
tial forking in the number of worlds. the master variables. The tools described below use such a
Previously (with Cohen, Houle, Waugh, Goss, and Pow- Stochastic sampling policy, thereby avoiding the exponen-
ell) we have tried using restrictive modeling languages to tial runtime times of other qualitative reasoning tools.
simplify qualitative simulation and restrain the exponential
forking of behavior. A restrictive language was developed 3.2 The TAR3 Treatment Learner
with the property thatiny modelwritten in that language
would generate tractable qualitative simulation [15, 19, 24].
Those restrictions are quite severe. In the following sections
we show how stochastic simulation and treatment learning
can make general qualitative modeling useful for require-
ments engineering.

The TARS treatment learnemerforms stochasti¢or-
ward selecsearch for areatmenti.e. a small conjunction
of master variables which, when compared to some base-
line scenario, most improves the score of the system under
study [18].
. L . . A forward selectsearch adds candidate attribute values
3 Simpler Qualitative Simulation to a growing set of selected attribute values until the larger
set does no better than a smaller set. For example, Kohavi
Our tools usereatment learningrom stochastic sam-  and John’s WRAPPER assesses attributes by their classifi-
pling to find and set thenaster variableshat restrain qual-  cation accuracy when they are used by a target learner [9].

itative simulations. These terms are explain below. Forward select search can be slow; e.g. WRAPPER does
not scale to large data sets.
3.1 Master Variables A faster method is to select new attributes for the grow-

ing set using some heuristic preference criteria. Hence,
Nondeterminacy can prevent requirements engineerstreatment learning starts by computing ttieof each indi-
from making decisions from qualitative models. For exam- vidual attribute valueLift is the increase in average oracle
ple, 20 binary unknowns implie$° > 1, 000, 000 different score within a defined sub population, compared to the full
possibilities. We have never found a domain expert willing population:



e Let Dy be the training examples with attributdswith
rangesR;

e Let X be an attribute range withid; i.e. X € AxR.

e Let D, be the subset with attribute range D, C Dy;

e If Dy andD; have mean oracle scorg andyu, then
lift 5 = log (ﬁ)

e By definition, settingX to a master variable dramati-
cally improves the score; i.4ft y > 0.

e By the same reasoning, to find bad settings to the mas-

ter variables, look for the randé with lift,- < 0.

Implementing such a stochastic sampling method is triv-
ial. For example, the followingany predicate converts
standard SLD resolution used in logic programming into
a random sampling method. Standard PROLOG processes
clauses lists in a top-down mannekny returns solutions
in a random order:

any(X) :- setof(R/X,(X,R is random(2**30)),L),

Theany predicate is the core of our qualitative simula-
tor for the NEAR knowledge. It is used, for example, in
therow predicate to select a random process option from

Often there is added value in defining treatments as Table2

conjunctions of ranges. Treatment conjunctiokis A
X5 ... Xy are grown by selecting a treatment sixe at
random from 1 tonaxSize (e.g. 10). N attribute ranges

row(tablel1,X,[A,B,C,D,E]) :- any(table1(X,A,B,C,D,E)).

Apart from any, there are two main predicates in our

are then combined into a conjunction by selecting attribute simulator:across anddown.

rangesX; at random, preferring those with higher lifts. This

is repeated, say, 100 times and the ldgtteatments are col-

lected. This process is repeated until no new best treatments

are found.

3.3 Stochastic Sampling

sim(Used,Score) :-

Table = tablel, % what table to look at

Inits = [ 0,0,0,0,0 ], % initial values for all colums
Used = [ _1, 2,_3,_4], % how many options to select?
Utils = [ 10,3,3,2,2 ], % Equations 2 to 6
down(Used,[], Table,Inits,Impacts),
across(Utils,Impacts,Score).

Across sums over the goals to implement thglity

The complexities of multiple worlds reasoning were dis- Calculation of Equation 1.

cussed ing2 above. Not only can they be difficult to im-

across(U,V,S) :- maplist(score,U,V,S0), add(S0,S).

plement, but they can scale poorly to larger problems. To score(Util,valo,utival) :- any(value(valo,val)).
reduce the implementation complexity, we use a result from agaq,0. %adds a list of numbers.

Druzdel [5]. If software has variables, each with its own
assignment probability distribution gf, then the probabil-
ity that a system will fall into a particular state is

n
P = P1p2p3---Pn = Hpi-
i=1

By taking logs of both sides, this equation becomes

n n
np=InJ]pi=> Inp @)
=1 =1

The asymptotic behavior of such a sum of random variables

is addressed by the central limit theorem. As longas
not uniform, then the expected case is thatill exhibit a

log-normal distribution; i.e. a small fraction of states can and score  for

add([H|T],X) :- add(T,X0), X is XO+H.

Across is calledafter down sums downs the columns
of Figure 2 to find the net qualitative influences on each
goal. Downtries to fill in a list of software process options
(in its first argument) with rows from the impact table.

down((],_,_,Out,Out).
down([One|Rest],Used,Table, Old,Out) :-
row(Table,One,Next), % "One" is a row ..
\+ member(One,Used), % .. which is not used before
sums(Old,Next,New), % add this to "Old"
down(Rest, % and recurse
[One|Used], Table,New,Out).

sums([1.,{1,0)-
sums([HO[TO],[H1|T1],[H|T]):-
any(sum(HO0,H1,H)),sums(T0,T1,T2).

the nondeterministic choice withinsums
the qualitative mathematics in

Note

be expected to cover a large portion of the total probability any(sum,HO,H1.H))

space; and the remaining states have practically negligible The data from Figure 3 can now be generatediist
probability. A stochastic sample of a small number of the finding any solution, thenextrepeatedly scoring that solu-
reachable states will therefore sample a large percentage dfion:

the likely states.

This result can reduce the cost of searching through the
worlds of belief generated by qualitative simulations. If we
stochastically sample a subset of the reachable worlds, then
Equation 2 promises that sample will include a large per-

centage of the states that are not negligibly unlikely.

generateFigureThree :-
sim(Used,_),
tell(figure2.data’),
forall(between(1,1000,_),
(sim(Used,Score)
Jformat(*“p\n”,Score)

)
told.



. . . . R 2. i f 1.
The above code demonstrates the implementation simplic-<¢2? 3000 cases (23 attributes) from mi.data

ity of stochastic qualitative simulation. The above code is Options: granularity 4

small (fits into half a page) and can be easily adapted to maxflumber 20

another model syntax or other user requests. For example, maxSize 10

we can introduce a new qualitative value “++” which is to randomTrials 100

be stronger than “+”. The change to above code was triv- bestClass ~ 10.00%
ial: we just defined the scores for the qualitative Symbols t0 g.cgjine:

be normal distributions with different means and changed

score to sum the normals. CLASS SUPPORT

=20 [ 1666 - 33%)
value(++,N) :- normal( 2, 0.5, N). % "++" has a mean of 2 QT [ 1667 - 33%)
value( +,N) - normal( 1, 0.5, N). % "+" has a mean of 1 20T [ 1667 - 33%)
value( -,N) :- normal(-1, 0, N). % ™" has a mean of -1
value( ?,N) :- normal( O, 1, N). % "?" has a mean of 0 Liftls:

[ 1- 1%]
This scoring scheme produces very similar results to the - 1%
scheme defined i§2, but is more flexible. We used this

scheme for the experiments described in the following sec-

tions.

[ 59 - 63%]
[ 20 - 22%]

~ [ 5 - 5%
~ [ 6 - 6%]
[ 1- 1%

..
PAwNROR®

4 Results Figure 4. TAR3 pre-processing FEj.

A standard run with the above tools was to, one hundred
times, generate 5000 process options, each combining from iieTrials=5
one to four process actions from Figure By in Figure 1
shows outbaselineresults. These were the distribution of
utilities seen when thé&/, values of Equation 1 where al-
lowed to vary randomly from O to 10. Subsequently, we
explored the effects of restricting the range of possible
values.

The outputs were based omoruns of TAR3. Inrunone, ~ PestClass=10% : This option stops TAR3 generating
TAR3 was used to find the master variable settings thatmost ~ (reatments with too little support. Thaseline

. If, after building 100 treatments,
there are no new “top 20" treatments, then that is a
“futile trial”. In our experiments, TAR3 kept generat-
ing sets of 100 treatments until it found 5 consecutive
futile trials.

improvedthe utility score. In run two, TAR3 was used to in Figure 4 shows that our 5000 input examples con-
find the settings that modecreasedhe score. This process tain 1,667 “best” examples. In our experiments,

was not slow: in 20 minutes on a standard Linux box we TARS3 rejected all treatments that selects for less than
could stochastically sample our qualitative model 500,000 10%*1667=167 of those best. examples.

and execute TAR3 200 times.
Figure 4 shows the start of one of the 200 runs of TAR3 ThelLiftls  distribution of Figure 4 shows thiét values
on Ey. Note that 23 attributes were passed to TAR3: for single ranges of th&, values and the software process
_ ) optionsdos anddonts . Most of the ranges have equal
e 17"do"s and “donts that show which process actions frequencies in all the classes (see the 59 rangesliftits
were selected. . 0). However, in a result consistent with the master-variable
e 5numericU, weights from Equation 1. hypothesis, there exist a small number of ranges that have a

e The finalUtility value from Equation 1. In our exper-  |arge impact on the overall score (see the handful of ranges
iments, we wrote a small pre-processor to divide these,yjth |ift scores approaching -3 and 4).

into three classes of equal size. Figure 5 and Figure 6 show some TAR3 results. Note

Figure 4 also shows th@ptions used in this experiment. ~ that the ordering of the classes in the two runs is reversed

The following settings are the default settings for TAR3:  In Figure 5 TAR3 is seeking attribute ranges that select for
) ) ) . ) higher utilities (the “20” class) but in Figure 6 TAR3 is seek-
granularity=4 : Discretize all numeric attributes (e.g.  ing attribute ranges that select for lower utilities (the “-20"
the 5U,, values) into four unique values. class). TheSUPPORTcolumn shows the effect of apply-

ing the treatment to the training data. These support results

should be compared thRaselineof Figure 4. Note that

randomTrials=100 Build 100 conjunctive treatments these treatments make large changes to the utility distribu-
of sizeminSize=1 to maxSize=10 tions.

maxNumber=20: Only report the top 20 treatments.



20 Treatments learned after 58 random trials

: seeking LOWER utilities U =0..10
IF al6=dont AND al2=do THEN... 2 Fo g safety
<] 1400 T T T T T T T T T
CLASS SUPPORT E 1200 L do NN _
it i § logo L don't HmIm i
207 [ 46 - 12%] s
0: [ 94 - 25%] g 800 7
20T [ 230 - 62%] © 600 | -
S 400 F 1
IF a4=dont AND al7=do THEN S
a4=don al7=do S 200 | -
CLASS SUPPORT £ O e
:2:0::1 : ::g;::::gj/:]:::: ‘&>>\ -200 | - T .- E_
- N - (]
0: [ 205 - 31%] qg)_ -400 | | | | | | | | L]
20: [ 399 - 60%] o 1 3 5 7 9 11 13 15 17
etc software process option

Ep: seeking HIGHER utlities; Uger,=0..10

2]
E 1000} do mmmm 4
8 don’t HRENNNN
20 Treatments learned after 55 random trials g 1000 | on
o 800
IF al3=dont AND al7=dont THEN Q
a on a on % 600
CLASS SUPPORT Q 400
=—==== ————————————oo [¢]
20: ~ [ 39 - 4% > 202
-20; T [ 551 - 62%) ) -200 —
o -400 -
IF al7=dont THEN = 1 1 1 ! ! 1 1 1 I
CLASS SUPPORT o 1 3 5 7 9 11 13 15 17
o0 [ 33- 9w software process option
0: [ 103 - 28%]
QT [ 228 - 63%)

Figure 7. Frequency of “dos” and “donts”.

numbers (solid bars) count the occurrences of “dos”
Figure 6. E, seeking LOWER utilities. and negative numbers (striped bars) count the occur-
rences of “donts”.

4.1 Evaluating Process Recommendations In the two plots of Figure 7 TAR3 was looking for higher
and lower utilities. When seeking lower utilities, TAR3'’s

ang treatments were full of “donts”; i.e. actions which lead
to a poor score if we do not do them. On the other hand,
apply and what process options to avoid. Each run of theWh“e“ s"eeking high?r utiIitie_s, TARS's treatments were full
system (generating and scoring 5000 random process op®f "d0s” and “donts”. Experiment, reveals that four pro-
tions, then applying TAR3) produces a ranking of 20 best €SS actions Iee}d to positive treatments if chosen, and nega-
and 20 worst process options. These top/bottom 20 treat Ve freatments if not chosen:
ments differ somewhat on successive runs of the system, g Test fly prototypes;
i.e. the recommendations produced by a single run stillhave 12 |ncrease developer capabilities;
some randomness in them. This noise can be substantially13. |ncrease developer tool use;
reduced by collating the results from a large number of runs 17 |ncrease V&V capabilities.
of the system.

Figure 7 shows the frequencies of what “dos” and These results assume t_hat all thig values in Figure 2
“donts” were seen in one experiment of 100 repeats of 5000"ange from 0 to 10. The influence of changes to the

stochastic simulations run twice through TAR3. In that fig- distribution is examined i§4.3. .
ure: Based on Figure 7, we might limit our conclusions to the

recommendation that process action 17 should be included
e The x-axis numbers correspond to the software processn any process option. Is this the best we can do?
actions listed in Figure 2. We can evaluate the utility of a (possibly singleton or
e The y-axis show the frequency of ranges: positive empty) set of treatments by repeating our experiments, re-

The treatments if Figure 5 and Figure 6 show “dos”
“donts”; i.e. they comment ohothwhat process options to
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hand-side of Figure 8 shows that as treatments grow in size,
their mean lift increases somewhat and their variance de-

1600 , creases sharply. Hence, in the case of Figure 2, it is better
to setmultiple process optiongather than just reading off
1400 one action from Figure 7.
The effects of the best treatment found by TAR3 were
1200 shown asE, in Figure 1. Thosé®, results were generated
1000 as follows: TAR3'smaxNumber configuration parameter
was set to one; i.e. TAR3 only reported thesttreatment it
800 ever found in any run. This process was repeated 100 times,
600 producing 100 best treatments, for example, the four most
frequently chosen were 1. do(17), 2. do(17)& dont(9), 3.
400 do(17) & dont(10), 4. do(17) & dont(4). Intuitively, these
treatments are combinations which advise doing 17 while
200 avoiding 9, 10, 4 (which negate or introduce uncertainty
0 into goals which 17 would otherwise influence positively).
1234 In experimentFs, 500000 random process options were
treatments lift generated which were compatible with the set of 100 se-

lected treatments. The utility score nearly doubled the base-

line distribution, and significantly increased over thatif
Figure 8. LEFT: TARS generated thousands of (extensions of 17).
treatments of size 1,2,3 or 4. RIGHT: larger
treatments had higher mean lifts with less

variance.

4.3 The Effects of “Magic Weights”

Models of user preferences often contain “magic
weights” representing the relative strengths of various fac-
stricting process option sets to those which are compatibletors on the final outcome. In the case of Figure 2, those
with at least one of the treatments (i.e. which, for some “magic weights” are thé/, weights which range from 0 to
treatment, perform all of the positive actions (plus maybe 10.
some others) and none of the negative actions). In the general case, changing these weights can change
The E; results shown in Figure 1 came from imposing the conclusions of the model. However, in the specific case
software process 17 (increase V&V capabilities) onto the Of Figure 2, we can use our rig to show that the implica-
NEAR model and running another 5000 simulations. As tions of the NEAR model are quite insensitive to some of
shown in that figureF; out-performed the baseline. How- the possible changes in the magic weights.

ever, as shown below, certain combinationshofitiple soft- Recall that Figure 7 assumed that@ll values varied at
ware process options out-perfot . random from O to 10. Figure 9 shows the effect of changing

theUsq fety distribution. The left-hand column of that figure
shows results from a run whetg,, .., was constrained to
middle-range values; i.8 < Usqfety < 6. The right-hard

At the end of the previous section, we evaluated the ef- °°'“'.m” shovys re;ults from a run Wh.ygafdy was given a
maximal weight; i.e.Usqfety = 10. Figure 7 and Figure 9

fect of using the best single process option (17) as the baSiSshow similar distributions; i.e. the above conclusions are
for process options. Here, we study the effects of SGIect_relativel insensitiveto diffe’re.nt. erceptions on the relative
ing up to ten of the process actions listed in Figure 2. The y P P

results indicate that simply collating treatments from many mer|t§ of safety Versus othgr goals. Th!s is a good Fhlng to
experiments and choosing the single best process action i%mow. stakeholders with cﬁffer'ent opinions on the 'mpor-
simplistic: basing process options on more complex learned ance of sa_lfety can agree in this case on the conclusions of
treatments can produce better results. our analysis.

Recall from TARS3's options shown in Figure 4 that )
TARS3 hunted for treatments of size 1 to 10. The left-hand- 5 Conclusion
side of Figure 8 shows the size of best treatments found by
TAR3 in any of its 200 runs ovek, data. In these results, Early life cycle modelshouldbe less precise than mod-
TAR3 is advising us to do more thgast apply singleton els generated later on. Such imprecise models are faster to
software process options selected from Figure 7. The right-generate and let users explore more options, faster.

4.2 Exploring Large Treatments
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Figure 9. Ej: effects of changing utilities

Until now, it seemed that speed meant recklessnessfind the master variable settings that most improve or de-
that models written quickly were not suitable for model- grade a qualitative model, our intent is that users will focus
based RE. Such quickly written models are often so under-their dialogue on those settings. Our expectation is that,
constrained that they produce a wide range of outputs. Suchas a result of that extra attention, users will often elabo-
wide-ranging output may neither restrain or nor refine an rate parts of the qualitative models (i.e. those including the
argument. We saw such a large range of options here: Fig-master variables). That is, our tools let users find and fo-

ure 2 generated the noise of Figure 3. cus on those parts of the model which most influence the
However, we show here that master variables can be ex-decisions. An alternative approach, which would be much
ploited to explore the space of options as follows: more time-consuming is that users elabomteparts of a

model. For our target domain (real-time support of NASA's
tiger teams), this isotthe preferred options since it would
be too slow.

e Quickly sketch a qualitative model.

e Learn treatmentsdrom stochastic samplesf those
qualitative models

e Use the treatments &®ttings to the master variables
thatimprove the performancef the qualitative mod- ~ Acknowledgements
els.

Our choice of a simple representation had a number of Reference herein to any specific commercial product,
benefits: models can be quickly formulated, are immedi- process, or service by trade name, trademark, manufac-
ately executable, can be executed very fast, and yield datdurer, or otherwise, does not constitute or imply its endorse-
which is very amenable to treatment learning. This is very ment by the United States Government. This research was
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ten early life cycle models. After our treatment learners der the Software Assurance Research Program led by the
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