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The strangest thing...

“In any field, find the strangest thing, and explore it” – John Wheeler

■ Q: How have dummies (like me) managed to gain
(some) control over a (seemingly) complex world?

■ A: The world is simpler than we think.
◆ Models contain clumps
◆ A few collar variables decide which clumps to use.

■ TAR2,TAR3,TAR4:
◆ Data miners that assume clumps/collars
◆ Reports effects never seen before
◆ Finds solutions faster than other methods
◆ Returns tiniest theories
◆ Scales to infinite data streams (⇐= new result)
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How Complex are our Models?
■ COLLARS-

A small number few variables controls
the rest:
◆ DeKleer [1986]: “Minimal

environments” in the ATMS;
◆ Menzies and Singh [2003]: “Tiny

minimal environments”;
◆ Crawford and Baker [1994]:

“Master variables” in scheduling;
◆ Williams et al. [2003]: ‘Backdoors”

in satisfiability.

■ CLUMPS-
◆ Druzdzel [1994]. Commonly, a few

states; very rarely, most states;
◆ Pelanek [2004]. “Straight jackets”

in formal models: state spaces
usually sparse, small diameter,
many diamonds.

25,000 states in IEEE1394
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Exploiting Simplicity

■ If clumps
◆ most of the action in a small number of states
◆ effective search space = small

■ If collars:
◆ A few variables that switch you between states

■ Treatment learning
◆ If a few variables control the rest, then..

■ All paths inputs → outputs use the collars (by
definition).

◆ So don’t search for the collars:
■ They’ll find you.
■ Just sample, and count frequencies F .

◆ Divide output good and bad

■ Focus on ranges Ri with large F (Ri|good)
F (Ri|bad)

■ Great way to learn tiny theories.
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Learns Smaller Theories
find graphics on a page from 11 features find good housing in Boston

34 ≤ height < 86 ∧

3.9 ≤ mean_tr < 9.5

6.7 ≤ RM < 9.8 ∧

12.6 ≤ PTRATION < 15.9
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Why Learn Small Theories?

Reduce Uncertainty:

Linear regression: σ2 ∝ |variables| (Miller [2002]);

“Pluralitas non est ponenda sine neccesitate”:

MDL (Wallace and Boulton [1968]); FSS (Hall and Holmes [2003])

Explanation:

Smaller theories are easier to explain (or audit).

Performance:

The simpler the target concept, the faster the learning.

Construction cost:

Need fewer sensors and actuators.

Operations cost:

Less to do: important for manual procedures;
Less to watch: important for data-intensive tasks like security monitoring.

Pruning is good modeling:

Real world data often has noisy, irrelevant, redundant variables.
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So What is Treatment Learning?

34 ≤ height < 86 ∧ 3.9 ≤ mean_tr < 9.5

■ E: training data with examples of Ri → C

◆ Ri: attribute ranges
◆ C: classes with utilities {U1 < U2 < .. < UC}

◆ F1%, F2%, ..., FC%: frequencies of C in E

■ T treatment of size X: {R1 ∧ R2... ∧ RX};
◆ T ∩ E → e ⊆ E with frequencies f1%, f2%, ...fC%

◆ seek smallest T with largest lift =
`P

C UCfC

´

/
`P

C UCFC

´

■ This talk:
◆ Implementation, examples, a new scale-up method
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In practice...
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The TAR3 Treatment Learner

■ Assume clumps and collars
◆ Just thrash around some.

■ Build treatments
{R1 ∧ R2... ∧ RX} of size X
◆ FIRST try X = 1
◆ THEN use the X = 1 results

to guide the X > 1 search.

■ Hu [2002] :: grow treatments
via a stochastic search.
◆ Discretization: equal

frequency binning

■ Empirically:
◆ Run times linear on treatment

SIZE, number of examples
◆ Works as well as TAR2’s

complete search

function ONE (x = random(SIZE) )
x timesDo

treatment = treatment + ANYTHING()
return treatment

function ANYTHING ()
return a random range from CDF(lift1)

function SOME ()
REPEATS timesDo

treatments = treatments + ONE()
sort treatments on lift
return ENOUGH top items

function TAR3 (lives = LIVES )
for every range r do lift1[r]= lift(r)
repeat
before = size(temp)
temp = union(temp, SOME())
if (before==size(temp))
then lives--
else lives = LIVES

until lives == 0
sort temp on lift;
return ENOUGH top items

Useful defaults: <SIZE=10, REPEATS=100, ENOUGH=20, LIVES=5>
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Saving the World

“Limits to Growth” :: Meadows et al. [1972]
A second look at “Limits to Growth”: Geletko and Menzies [2003]
Vensim’s World-3 (1991): 295 variables

Happily ever after if
■ family size ≤ 2, menstruation onset > 18, industrial capital output = [3..5).

■ This happy ending is not mentioned in Meadows et al. [1972].
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Compared with More Complete Search

■ DDP requirements models from deep-space missions (from JPL).

■ Iterative learning: simulationi → learn → constrain → simulationi+1

SA =

benefit
maxBenefit

+
`

1 − cost
maxCost

´

0

@2 ∗
number of

selected mitigations

1

A + 1
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iB(300,50)
SA-reg(3000)

TAR3: 7*300 samples
SA: 9*3000 samples
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Learns Very Tiny Theories

■ Compare with feature subset selection: Hall and Holmes [2003]

■ For each class c ∈ C

◆ Give c the largest utility Uc.
◆ Find treatments for c

■ Selected = all attributes in treatments for all c ∈ C.

■ Accuracy= selected’s performance in some target learner.

■ Menzies et al. [2005]

% of attributes accuracy

domain ignored improvement

Anneal 81.6% 2.66%

credit-g 75.0% 2.17%

Soybean 54.3% 0.65%

vote 62.5% 0.21%

breast-c 77.8% 0.00%

Segment 78.9% -0.51%

Ionosphere 94.1% -0.90%

Diabetes 87.5% -2.28%

lymph 83.3% -2.75%

HorseColic 90.9% -4.45%

average 78.6% -1.13%

#attributes selected (target learner = C4.5)

original ig cfs cbs rlf wrp pc select

Soybean 35 19 24 35 32 19 30 I 16

Anneal 38 17 21 15 20 18 36 I 7

vote 16 12 10 I 6 11 9 11 I 6

credit-g 20 8 7 8 9 8 I 4 5

Segment 19 16 12 9 13 9 16 I 4

lymph 18 6.8 5.3 4 4 6 9 I 3

breast-c 9 4 4 7 7 4 4 I 2

Horse colic 22 4 4 I2 3 5 3 I 2

Ionosphere 34 12 7 9 9 7 10 I 2

Diabetes 8 33 3 4 4 4 6 I1
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Scaling Up
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TAR3 is not a Data Miner

The data mining desiderata :: Bradley et al. [1998]:
■ Requires one scan, or less of the data

■ On-line, anytime algorithm

■ Suspend-able, stoppable, resumable

■ Efficiently and incrementally add new data to existing models

■ Works within the available RAM

TAR3 is not a data miner
■ Stores all examples in RAM

■ Requires at three scans
1. discretization

2. collect statistics, build treatments

3. rank generated theories
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SAWTOOTH is a data miner

SAWTOOTH= incremental NaïveBayes
classifier Menzies and Orrego [2005]
■ Exploits the “saturation effect”:

◆ Learners performance improves and
plateaus, after 100s of examples

◆ Processes data in chunks (window =
250)

◆ Disables learning while performance
stable

■ One-pass through the data
◆ Incremental discretization of numeric

data (SPADE)
◆ Input each example, converted to

frequency counts, then deletes

■ Results
◆ Small memory; scales.
◆ Recognizes and reacts to concept drift

■ Can we model treatment learning as a
NaïveBayes classifier?

learn=off
learn=on

stable=yes
stable=no
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NaïveBayes classifiers

evidence E, hypothesis H

future=
z }| {

P (H|E) =

now∗
z }| {
 
Y

i

P (Ei|H)

!

∗

past
z }| {

P (H)

P (E)

E1 E2 E3

H = car job suburb wealthy?

ford tailor NW y

ford tailor SE n

ford tinker SE n

bmw tinker NW y

bmw tinker NW y

bmw tailor NW y

P (Ei|H)

P(H) job suburb wealthy?

ford:3=0.5 tinker:1=0.33 NW:1=0.33 y:1=0.33

tailor:2=0.67 SE:2=0.67 n:2=0.67

bmw:3=0.5 tinker:2=0.67 NW:3=1.00 y:3=1.00

tailor:1=0.33 SE:0=0.00 n:0=0.00

■ E = job=tailor & suburb=NW

■ likelihood = L(bmw|E) =
Q

i P (E|bmw) ∗ P (bmw) =0.33*1.00*0.5 =0.16500

■ L(ford|E) =
Q

i P (E|ford) ∗ P (ford) =0.67*0.33*0.5 =0.11055

■ Prob(bmw|E) =
L(bmw|E)

L(bmw|E)+L(ford|E) = 59.9%

■ Prob(ford|E) =
L(ford|E)

L(bmw|E)+L(ford|E) = 40.1%

■ So our tailor drives a bmw

■ Naïve: assumes independence; counts single attribute ranges (not combinations)
◆ But optimal under the one-zero assumption Domingos and Pazzani [1997].
◆ Incremental simple, fast learning/classification speed, low storage space.
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CUBE & TAR4

outlook U1 : minimize temperature humidity windy U2 : maximize play upi downi

overcast 64 65 TRUE yes=1 1.00 0

rainy 68 80 FALSE yes=1 0.87 0.13

... ... ... ... ... ... ...

sunny 80 90 TRUE no=0 0.11 0.89

sunny 85 85 FALSE no=0 0.00 1

■ Examples are placed in a U -dimensional hypercube (one dimension for each utility):
◆ apex = best = {1,1,1,1...};
◆ base = worst = {0,0,0,0,...}

■ examplei has distance 0 ≤ Di ≤ 1 from apex (normalized by U0.5)

■ Each range Rj ∈ examplei adds
downi = Di and upi = 1 − Di to F (Rj |base) and F (Rj |apex).

P (apex) =
P

i upi/
`P

i upi +
P

i downi

´

P (base) =
P

i downi/
`P

i upi +
P

i downi

´

P (Rj |apex) = F (Rj |apex)/
P

i upi

P (Rj |base) = F (Rj |base)/
P

i downi

L(apex|Rk ∧ Rl ∧ ...) =
Q

x P (Rx|apex) ∗ P (apex)

L(base|Rk ∧ Rl ∧ ...) =
Q

x P (Rx|base) ∗ P (base)

TAR4.0: Bayesian treatment learner = find the smallest treatment T that maximizes:

P (apex|T ) =
L(apex|T )

L(apex|T ) + L(base|T )
; didn’t work: out-performed by TAR3
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Why did TAR4.0 fail?

■ Hypothesis: muddled-up by dependent attributes;

■ “Naïve” Bayes: assume independence, keeps singleton counts.
E1 E2 E3

H = car job suburb wealthy?

ford tailor NW y

ford tailor SE n

ford tinker SE n

bmw tinker NW y

bmw tinker NW y

bmw tailor NW y

E P(bmw|E) P(ford|E)

job = tailor &
suburb = NW

59.9% 40.1%

job = tailor &
suburb = NW &
wealthy = y

81% 19.0%

■ Adding redundant information radically changes probabilities? Bad!

■ Note: gets class probabilities WRONG, but RANKS classes correctly
Domingos and Pazzani [1997]

■ We asked TAR4.0 to do what you must never do:
◆ compare numeric of probabilities of the same class in NaïveBayes.
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TAR4.1

■ Prune treatments with low support in the data.

■ What does “support” mean?
◆ Maximal when includes all examples from a class
◆ 0 ≤ support ≤ 1
◆ support = likelihood =

Q

x P (Rx|H) ∗ P (H)

■ probability ∗ support =
L(apex|E)2

L(apex|E)+L(base|E)

■ Worked!
◆ Much faster, less memory than TAR3:

■ No need for a second scan
■ No need to hold examples in RAM

◆ Bayesian guess-timate for support of best class
(almost) the same as TAR3

◆ No connection treatment size to guess-timate error.

■ But why did it work so well?

less memory

faster, less variance

lift errors small
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When Won’t Dependencies Confuse TAR4?

■ T ′ = T + t where t is an attribute dependent on members of T ;

■ TAR4.1 not confused by t when it ignores treatments that use it.

a = L(apex|T ′) =

x
z }| {

P (t|apex) ∗
Q

i P (Ti|apex) ∗ P (apex)

b = L(base|T ′) = P (t|base)
| {z }

y

∗
Q

i P (Ti|base) ∗ P (base)

■ Then when is support ∗ probability increased by ignoring x and y?

0

B
B
B
B
B
B
B
@

ignoring x and y
z }| {

(a/x)2

a/x + b/y
>

using x and y
z }| {

a2

a + b

1

C
C
C
C
C
C
C
A

=⇒ y >
bx2

b + a − xa

b=0.1
b=0.00001

 0  0.2  0.4  0.6  0.8  1x  0
 0.2

 0.4
 0.6

 0.8
 1

a

 0
 0.2
 0.4
 0.6
 0.8

 1

y

■ And for TAR4.0:s pre-condition for no confusion: (a/x)
a/x+b/y > a

a+b
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Typical Values and Constraints:: (a/x)2

a/x+b/y

0 < i ≤ 20 ; treatment size

b < a ; apex is better than base

10−10 < x ≤ y ≤ 0.25 ; see graphs

0 < a ≤ xi ≤ x ≤ 0.25 ; a combines many x-like numbers

0 < b ≤ yi ≤ y ≤ 0.25 ; b combines many y-like numbers

 0.0001
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 1
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TAR4.1 Works
■ Pick {a,b,x,y,i} at random within typical values; reject those violate our constraints;

■ Check pre-conditions; report rounded log10 values;

■ TAR4.0: not confused when
“

(a/x)
a/x+b/y > a

a+b

”

0

25

50

75

100 . . . . . . . . . .

. . . . .

. . . . .

. . . . .

. . . . .

. . . . .

. . . . .

. . . . .

. . . . .

. . . . .

. . . . .

. . . . .

. . . . .

. . . . .

. . . . .

-10 -9 -8 -7 -6 -5 -4 -3 -2 -1

log10(x)

% not confused (in 10,000 runs)

Often confused.

■ TAR4.1: not confused when
„

(a/x)2

a/x+b/y > a2

a+b

«

0

25

50

75

100 . . . . . . . . . .

-10 -9 -8 -7 -6 -5 -4 -3 -2 -1

log10(x)

% not confused (in 10,000 runs)

Rarely confused.
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So What?

■ Mathematically, TAR4.0 will always fails (except for x � 1);

■ TAR4.1 succeeds since pre-condition is usually satisfied
◆ In 96.52% of our simulations

■ So, theoretically and empirically:
◆ Bayesian treatment learning with CUBE can guess effect of treatments

using frequency counts,
◆ Does not need a second scan of the data (providing you use

support ∗ probability)
◆ Now we have a data miner TAR4.1.

■ By the way,
◆ No need for Bayes nets in this domain
◆ Why doesn’t this mean that treatments will never grow beyond size=1?
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But Why Big Treatments?

■ When are larger treatments acceptable; i.e.
“

(a/x)2

a/x+b/y
< a2

a+b

”

?

■ When is y < bx2

b+a−xa
.

b=0.1
b=0.00001

 0  0.2  0.4  0.6  0.8  1x  0
 0.2

 0.4
 0.6

 0.8
 1

a

 0
 0.2
 0.4
 0.6
 0.8

 1

y

■ When x is large and y is much smaller than x

■ i.e. when some attribute ranges has a high frequency in the apex and a
much lower frequency in the base.

■ If collars then such ranges are not common; i.e. dependencies unlikely.
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Success Despite Complexity

■ Maybe....
◆ The world is not as complex as we thing
◆ Real world models clump, have collars.
◆ Possible to quickly search, find ways to select for preferred states.

■ Ultimately, this is an empirical study.
◆ Q: When does a clumping/collaring-inspired search engine succeed?
◆ A: Often

■ Reports effects never seen before (limits to growth)
■ Finds solutions faster than other methods (JPL).
■ Returns tiniest theories (fss)
■ Scales to infinite data streams (TAR4.1)

■ Many applications. May I try this on your problems?
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A Final Word

■ Sometimes the world is complex:
◆ 2% optimizing air-flow over leading wing in trans-sonic range
◆ synthesis of optimized code for complex engineering problems

■ And sometimes it ain’t.
◆ Try the simple solution before the more complex.
◆ Benchmark the complex against the seemingly less sophisticated.
◆ Warning: your straw man may not burn
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