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Abstract—Many data sets exhibit anearly plateauwhere the perfor- 100 F >%<7 X oAt v - A +_
mance of a learner peaks after seeing a few hundred (or less) instances. j@ A ¥§ % £x
When concepts drift slower than the time to find that plateau, then a 0 Y L L
simple windowing policy and an incremental discretizer lets standard 200 400 600 800
learners like NaiveBayes classifiers scale to very large data sets. Our dataset size

toolkit is simple to implement, can scale to millions of instances and works
as well as many other data mining schemes. With trivial modifications, it ) o . ) )
can be used to detect concept drift and to repair a theory after concept Fig.- 1. 10*10incremental cross validation experiments with J48 and Naive-

drift; it can reuse old knowledge when old contexts re-occur, and detect Bayes (with kernel estimation) ofA:heart-c, B:zoo; C:vote; D:heart-statlog;
novel inputs during unsupervised learning. E:lymph, F:autos. G:ionosphere, H:diabetes, I:balance-scale, J:sgytéan

and LSR on {K:bodyfat. L:cloud, M:fishcatch, N:sensory, O:pwLinear,

~ Index Terms—data mining, concept drift, scale up, NaveBayes classi- Q:strike, R:pbc, S:autoMpg, T:housihgAll data sets from the UCI reposi-
fiers, incremental, discretization, SAWTOOTH, SPADE, nOVelty detection tory [8] Data sets A..J have discrete classes and are scored \mahmcy

of the learned theory; i.e % successful classifications. Data sets K..T have
continuous classes and are scored byRRE&ED(30)of the learned theory; i.e.

what % of the estimated values are within 30% of the actual value.
I. INTRODUCTION

This paper is asimplicity-first approach to scaling up data min-
ers. Holte first argued for such a simplicity-first approach where SAWTOOTH implements the above windowing policy. In accor-
researcherdirst try simpler methodsbefore complicating existing dance with the Holte doctrine, SAWTOOTH was built by considering
algorithms [1]. In their review of methods for scaling up inductive almultiple implementation options, then always implementing the sim-
gorithms, Provost and Kolluri endorse this “simplicity-first” approactplest one. The windowing scheme was added to a simpiecBayes
However, they add that “it is not clear now mutgveragecan be classifier. Ouincremental discretization methpdalled SPADE, was
obtained through the use of simpler classifiers to guide subsequeased on the simplest discretization method that we could find.
search to addresspecific deficiencie their performance” [2, p32].  The experiment was quite successful. SAWTOOTH/SPADE can
Consider whaleveragea simple NaveBayes classifier offers for execute via one scan of the data, can scale to millions of instances,
scaling up induction. Such classifiers have two desirable featusd works as well as many other schemes for scaling up data
for scalable induction: fast updates and small memory footprint®ining. With trivial modifications, SAWTOOTH/SPADE can also
NaiveBayes classifiers summarize the training data in one frequertstect concept drift, repair a theory after concept drift, reuse old
table per class. Hence, they consume very litle memory and demowledge when old contexts re-occur, and detect novel inputs during
quickly modify their knowledge by incrementing the frequency countnsupervised learning.
of attribute ranges seen in new training examples. SAWTOOTH/SPADE can be used as a simpkeselinesystem to
However, simple N&veBayes classifiers hawpecific deficiencies comparatively evaluate the merits of seemingly more sophisticated
When learning from a large data set, it is common for the data geémplementations. This evaluation has lead to the abandonment of
erating phenomenon to change, and standarde¥ayes classifiers certain lines of research. Elsewhere, we have explored novelty detec-
have no mechanisms for adapting to secmcept drift In addition, tion in unsupervised learning using a variety of complex methods:
when processing very large datasets, it can be impossible to scaasgociation rules to learn expected patterns in attribute values [6];
multiple times or store it all in in main memory. Unfortunately, likeor SVDDs to recognize boundaries between expected and novel
many classifiers, NaeBayes assumes that all the data is held iniaputs [7]. SAWTOOTH/SPADE has now replaced those prior im-
single memory-resident table [2, p32]. These classifiers handle mlementations, which we now view as needlessly complex.
meric attributes via eithatiscretizationor kernel estimatiomethods. The rest of this paper describes the early plateau effect, offers
Most known discretization and estimation methods foividBayes some background notes on NeBayes and SAWTOOTH/SPADE,
require multiple passes through the data [3][5]. and then describes experiments with numerous UCI data sets, some
This paper reports an experiment in which we apply HolteKDD cup data, and an aircraft flight simulator.
simplicity-first approach to resolve specific deficiencies in
NaiveBayes classifiers. Experiments witincremental cross- T
validation, discussed below, show that many data sets have an
early plateaueffect, where the classification accuracy plateaus afterOne way to find plateaus is via incremental R*N-way cross-
a relatively small number of examples (just a few hundred). F¥plidation. ForR = 10 repeats, the order of the data is randomly
datasets with such plateaus, learning could proceeaviirdows shuffled. For each random ordering, the data is then dividedO
of a few hundred instances. After a small number of window¥/ays. Training is then conducted using the first i < IV divisions
performance would peak and learning could be disabled. If t@d tested using remaining-i divisions. As the size of the training
learner’s performance falls off the plateau (i.e. due to concept drif8€t grows, the accuracy of the learned theory improves. At the plateau
the learner could start afresh. Since learning only ever has to procB@it, this improvement flattens out. After all the repeats, this
a few hundred instances at a time, this approach should scalePkf€au point can be identified when learningth of the data does

. FINDING PLATEAUS

very large data sets. not result in significantly greater accuracies than usig*X<¥1
_ _ ‘ of the data (computed using t-tests with= 0.05).
Manuscript received March, 2005, revised YYY, 2005. The y-axis of Figure 1 shows the plateau points seen in R*N-way
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by J48 and NBK: NaveBayes with kernel estimation. The datasethopeless (or at least difficult) to make it completely free of parame-
with continuous classes were processed by M5 and and.LUBRll  ters”. This has not been our experience: SAWTOOTH uses the simple
40 experiments, a plateau was reached well before all the trainistandardized test statistic of Equation 1 to determine window size. In
instances were used. Most of the experime@%) feached plateau all our experiments we have kept parameters of those tests constant.
in 200 instances or less. Further, only a hand%l)(of experiments s
o Sj - ( 1 El * E)
S

needed more than 300 instances to find their plateau. i — %
. —z(a=0.01) = —2.326 < =

This plateau effect has been have been reported before (although % \/m
this may be first report of early plateaus in M5’ and LSR). Provost z -
and Kolluri [2] make the general comment that the performance of vE
some learners levels off quite early, without specifying exactly howquation 1 needs some explanation. A SAWTOOTH window is some
early that might happen. They add that while some further accuraoyeger number okras of size £/ i.e. W = nE (default: E=150
improvements are seen as data set size increases, those improveniggitsnces). SAWTOOTH windows grow until performance has not
can be quite small. For example, Catlett reports differences of legdsanged significantly in &table (default: 2) number of eras. Each
than 1% (on average) between theories learned from 5000 or 2@@ is viewed as a binomial trial and each window is a record of
randomly selected instances in ten different data sets [12]. trial results in the erag, ...i,j where eraz is the current era and

In another study, Oates and Jensen found plateaus in 19 UCI data=1 is the first report of instability. Each étaholds Sy successful
sets using five variants of C4.5 [13]. In their results, six of their rur@assifications and Equation 1 checks if the currentjeisidifferent
plateaued after seeing 85 to 100% of the data. This is much later tliarthe proceedings erds.., .
Figure 1 where none of our data sets needed more than 70% of th®n stability, SAWTOOTH disables theory updates, but keeps
data. One possible reason for our earlier plateaus is the method usaltecting theS statistics (i.e. keeps classifying new examples using
to identify start-of-plateau. Figure 1 detected plateaus using t-tesite frozen theory). If stability changes to instability, SAWTOOTH
to compare performance scores seen in theories learnedffoan  shrinks W back to one era’s worth of data and learning is then re-
N examples 4 < N) and reported start-of-plateau if no significanenabled.
(«=0.05) difference was detected between Mand the last\/ with
a significant change. On the other hand, Oates and Jensen scanned the
accuracies learned from 10, 15% etc. of the data looking for three
consecutive accuracy scores that are within 1% of the score gaine@ne problem with windowing systems is the computational cost of
from a theory using all the available data. That is, Figure 1 shog§ntinually re-learning. Hence SAWTOOTH uses a learner that can
the point where accuracies stmpprovingas training setgrowwhile ~ update its knowledge very quickly. Figure 2 shows thévidBayes
Oates and Jensen report when accuracies dégradingas training classifier used by SAWTOOTH. The functiarpdate illustrates
setsshrink Given sufficiently large standard deviations, our methotile simplicity of re-learning for a Bayes classifier: just increment
will terminate on smaller training sets than Oates and Jensen. & frequency tablé” holding counts of the attribute values seen in the

The results below show that learning using our start-of-plate&gW training examples.
detector can produce adequate classifiers that scale to very large data terms of scaling up induction, the most important property of
sets. Hence, at this time, we are not motivated to explore differdrigure 2 is theF data structure that holds the frequency counts. A
methods for detecting start-of-plateau. In any case, regardlessBayes classifier only needs the memory required forftieequency
wherethey found plateaus, Oates and Jensen’s results endorse our
general thesis that, often, learning need not process all the available
examples. Rather, learning can jump through the available data,ip, ogas: ¢ frequeny tables; "I : number of instances;

windows of a few hundred instances at a time. # “C”: how many classes?; “N”: instances per class
function update(class,train)
# OUTPUT: changes to the globals.
I1l. WINDOWING # INPUT: a “train”ing example containing attribute/value pairs
. . . X # plus that case’s “class”
In a windowing system like SAWTOOTH, newly arrived examples  ++: i (++N[class]==1)  then C++fi
are pushed into the start of a sliding window of sizewhile the same for <attr,value> in train

; : if (value != "?") then
number of older examples are dr_opped_ from the end._ Windowing Fclass attr range]++ f
systems need to select an appropriate window Bizdf W is small  function classify(test)

relative to the rate of concept drift, then windowing guarantees the# OUTPUT: “what” is the most likely hypothesis for the test case.
# INPUT: a “test” case containing attribute/value pairs.

1)

IV. NAIVEBAYES

maintenance of a theory relevant to the [HStexamples. However, if k=1: m=2 # Control for Laplace and M-estimates.
W is too small, learning may never find an adequate characterizationlike = -100000 # Initial, impossibly small likelihood.
o ; B ; for H in N # Check all hypotheses.
of the targe,t concept. Similarly, i is too large, then this will slow { prior = (N[HIKY(+(KC)) e P(H)
the learner’s reaction to concept drift. temp = log(prior)
Many windowing systems like SAWTOOTH and FLORA [14] {ff%; ?atrfvvﬂue;") in tﬁ“fibmes
. . . ) . if (value 1= "7 en
select the window size dynamicalli’” grows till stable performance inc=_ F[H,attr,value]+(m*prior)/(N[H]+m) #eP(E,; | H)

is reached, remains constant while performance is stable, and then  temp += log(inc) fi
shrinks when concept drift occurs and performance drops. FLORA
changesV using heuristics based on accuracy and other parametersy
that take into account the number of literals in the learned theory. retum what
FLORA's authors comment that their heuristics are “very sensitive

to the description language used”. Hence, they claim that “it seems
Fig. 2. A Bayes Classifier. “?” denotes “missing values”. Probabilities are
1J48 is a JAVA implementation of Quinlan’s C4.5 decision tree learner [9fnultiplied together using logarithms to stop numeric errors when handling
2All learners come from the WEKA [10]. LSR/M5’ assumes values can beery small numbers. The: and k variables handle low frequencies counts
fitted to one/many (respectively) n-dimensional linear models [11]. in the manner recommended by Yang and Webb FB5]].

if (temp >= like) then like = temp; what=class fi
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counts, plus a buffer just large enough to hold thst instance V. HANDLING NUMERIC ATTRIBUTES WITH SPADE

pass?d to Figure 2’§I§35|fy function. Discretization converts continuous ranges to a set of bins storing
NaiveBayes classifiers are based on Bayes’ Theorem. Informaliiie tally of numbers that fall into that bin. In order to process infinite
the theorem saysexzt = oldxnew i.e. what we'll believenextcomes  streams of data, we developed a one-pass discretization method called
from how new evidence effect®ld beliefs. More formally: SPADE (Sngle PAss Dynamic Ehumeration).
SPADE only scans the input data once and, at anytime during the
_ P(H) processing ofX instances, SPADE’s bins are available. Further, if it
P(H|E) = P(E) HP(EZ | H) ever adjusts bins (e.g. when merging bins with very small tallies), the
information used for that merging comes from the bins themselves,
i.e. given fragments of evidencE; and a prior probability for a and_not some second scan of the instances. Hence, it can be used for
the incremental processing of very large data sets.

class P(H), the theorem lets us calculate a posteriori probability ) ’ -
P(H | E). Technically, a Bayes classifier should return the class Unlike standard NweB_ayes clas_sme_rs, .SPA.DE makes no assump-
ns about the underlying numeric distributions. SPADE is similar

with highest probability. However, Figure 2 actually computes clafsQ

likelihoodsnot probabilities. Likelihoods become probabilities whe ollo-Jk\)[ms butt the MLN an(cjj Mﬁ;ﬁsn&i;ﬁ\r‘emﬁmaﬂyﬁ The flrft
they are normalized over the sum of all likelihoods. Since maximu ueXN creates one bin and sef o =N }. If a subsequen

probability comes from maximum likelihood, this code only needfrs]ew value arrives inside the currefiMIN,MAX } range, the bins

to return the class with maximum likelihood. Note that unlikelyrom MIN to MAX are searched for an appropriate bin. Otherwise, a

instances have lower frequency counts and hence lower Iikelihoogﬁ‘b&”s number of new bins are created (default: SubBins=5) and

In the sequel, we will use this property of likelihoods to recognizin inNS(MAX Is extended to the new value. For example, here are four

novel instances in unsupervised learning.

Bayes classifiers are calledaive since they assume that the bm_dej "ig" ‘ "Z‘(’)’“
frequencies of different attributes are independent. In practice [16],

the absolute values of the classification probabilities computed Byach bin is specified by its lowéordervalue. A variableN maps to
Bayes classifiers are often inaccurate. However, the relative rankth§ first/last bin if it is the currenfMIN,MAX } value (respectively).
of classification probabilities is adequate for the purposes of cldatherwise it maps to bin where border; < N < borderiyi.
sification. Many studies (e.g. [4], [17]) have reported that, in marfyssuming SubBins = 5, then if a new valueN = 50 arrives,
domains, this simple Bayes classification scheme exhibits excelléM¢ new bins added above the old MAX to a new MAX=50:
performance compared to other learners.

Other researchers have explored incremental Bayes classifiers using,. 4.

modifications to the standard Bayes classifier: e.g. Gama alters the

frequency counts in the summary tables according the success rin€ Newly created number of bins exceedMaxBins parameter
of the lastN classifications [18], while Chai et.al. updates the prior&€ault=the square root of all the instances seen to date) then adjacent
via feedback from the examples seen up until now [19]. In contrafins with a tally less thaMininst (default: same asfaxBing are
we use standard Bayes classifiarshout modification. merged if the tally in the merged bins is less thavlaxInstparameter
. ) ) . (default: 2*Mininst). Preventing the creation of very few bins with
E@ye; classifiers can be extended to numeric attributes ksme! big tallies is essential for a practical incremental discretizer. Hence,
estimation methods. The standard estimator assumes the cen ADE checks for merges only occasionally (at the end of each era),

limit theorem and models each numeric attribute using a S'ngéﬂowing for the generation of multiple bins before they are merged.

Gaussian. Other methods don’t assume a single Gaussian; e.g. JO@DADE runs as a pre-processoriadate to NaveBayes. Newly

and Langley's Gaussian kernel estimator models distributions of aived numerics get placed into bins and it is this bin number that is

shape as the sum of multiple Gaussians [3]. Other, more sophisticgled | s thealue passed tapdate or Figure 2. Also, when SPADE

",'ethOdS_ are V_Ve”_'eStab“Shed [2(_)], but several_ studies report th‘?‘t e}‘r?élrges bins, this causes a similar merging in frequency tables entries
simple discretization methodsuffice for adapting Bayes classifiers

. iabl (the F" variable of Figure 2).
to numeric variables [4], [5]. The opposite of merging would be ®&plit bins with unusually

John and Langley comment that their method must access all {hgye tallies. SPADE has no split operator since we did not know
indiVidUal numeric Values to bulld theil‘ kel‘nel estimatOI‘ and th|S ﬁow to best divide up a b|w|thoutkeep|ng per-bin kernel estimation
impractical for large data sets. Many discretization methods violaggia (which would be memory-expensive). Our early experiments
the one scanrequirement of a data miner: i.e. the need to execuiiggested that addin§ubBins = 5 new bins between old ranges
using only one scan (or less) of the data since there many not¢j newly arrived out-of-range values was enough to adequately
time or memory to go back and look at a store of past instances. kfifide the range. Our subsequent experiments (see below) were so
example, Dougherty et.al’s [4Jraw mardiscretization method 50-  encouraging that we are not motivated to add a split operator.
bins which divides attributes; into bins of size /A @) MINe:) Figure 3 compares results from SPADE and John and Langley’s
If MAX and MIN are calculated incrementally along a stream oferne| estimation method using the display format proposed by
data, then instance data may have to be cached and re-discretiz@omghertyy Kohavi and Sahami [4]. In that figure, a 10*10-way
the bin sizes change. An alternative is to calculate MAX and MINyoss validation used three learners: (a)iveBayes with a single
after seeingall the data. Both cases require two scans through tligyssian for every numeric; (b) NaBayes with John and Langley’s
data, with the second scan doing the actual binning. Many othesinel| estimation method (c) the Figure 2izBayes classifier using
discretization methods (e.g. all the methods discussed by Doughejia pre-discretized by SPADE. Mean classification accuracies were
et.al. [4] and Yang and Webb [5]) suffer from this two-scan problengo|lected and shown in Figure 3, sorted by the meansa)— (b—a);

An incremental one scan (or less) discretization method is needédt is, by the difference in the improvement seen in SPA@E
for scaling up induction. SAWTOOTH uses the SPADE methokernel estimatiorover and above simple single Gaussian scheme.
described below. Hence, the left-hand-side data sets of Figure 3 show examples where

1 2 3 4 5 6 7 8 9 min | max
10 | 20 | 30 | 40 | 42 | 44 | 46 | 48 | 50 10 50
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Fig. 3. Comparing SPADE and kernel estimation. Data sgfs:vowel,
B=iris, C=ionosphere, D=echo, E=horse-colic, F=anneal, G=hypothyroid,
H=hepatitis, I=heart-c, J=diabetes, K=auto-mpg, L=waveform-5000Fjg 4. SAWTOOTH and the KDD'99 data
M=vehicle, N=labor, O=segment

kernel estimation worked better than SPADE, while the right-handuper-user as (e.g.) just a simple probe. Note fHat C' are mis-
side shows results where SPADE did comparatively better. classificationscores, so ¢ower score is better.

Three features of Figure 3 are noteworthy. Firstly, in a finding Figure 4 shows all the sortedean M*C scoregrom the KDD'99
consistent with those of Dougherty et.al. [4], discretization cagntrants. Also shown in that figure is SAWTOOTH’s me&hs C
sometimes dramatically improve the classification accuracy of r@sult. SAWTOOTH’s results were close to the winning score of
NaiveBayes classifier (by up to 9% to 15% in data sets C,F,M,0). Sestrant #1; very similar to entrants 10,11,12,13,14,15,16; and much
ondly, Dougherty et.al. found that even simple discretization schemgstter than entrants 18,19,20,21,22,23,24. These results are encour-
(e.g. 10-bins) can be competitive with more sophisticated schemegging since SAWTOOTH is a much simpler tool than many of the
We see the same result here where,1ih of these experiments, other entries. For example, the winning entrant took several runs
SPADE’s mean improvement was within 3% of John and Langleyts divide the data into smaller subsets and build an ensemble of
kernel estimation method. Thirdly, in two cases, SPADE’s one sc80x10 C5 decision trees using an intricate cost-sensitive bagged
method lost information and performed worse than assuming a singlsosting technique. This took more than a day to terminate on a dual-
Gaussian. In data set A, the loss was minimal (-1%), and in data pedcessor 2x300MHz Ultra-Sparc2 machine with 512MB of RAM
B SPADE's results were still within 3% of kernel estimation. In ouusing the commercially available implementation of C5, written in
view, the advantages of SPADE (incremental, one scan processi@.. In contrast, our toolkit, written in interpreted scripting languages
distribution independent) compensate for its occasionally performiggawk/bash), processed all 5,300,000 instances in one scan of the data
less well than state-of-the-art alternatives, which require far mouging less than 3.5 Megabytes of memory. This took 11.5 hours on a
memory. 2GHz Pentium 4, with 500MB of RAM, running Windows/Cygwin,

and we conjecture that that this runtime could be greatly reduced by

V1. EXPERIMENTS porting our toolkit to “C”.

In all the following experiments, SPADE was run continuously OEiAnother encouraging result is thieattributes with X bingplot of

all incoming data while SAWTOOTH worked on windows contain: gure 4. One concern with SPADE is that several of its internal

ing a variable number of eras. When SAWTOOTH accuracies #?ragetgrsthare linked t(i t?teh numbEr offprotcessed _Il_r;]stz;nggg;ogg.
reported, they are the accuracies seen on new instdrefesethose axbinsis the square root of the number ot Instances. The 5,595,

instances update the frequency tables of thévéBayes classifier. instances of KDD’99 could therefore generate an impractically large

That is, all the SAWTOOTH accuracies reported below come frOH,]umber of bin.s for each numer_ic attribute. This worst-case scenario

datanot (yet) used to train the classifier. would_occur if each_consecutlve group SfubBir_zs number of
numeric values had different values from the previously seen groups

andthey were sorted in ascending or descending order. If this unlikely

A. KDD'99 Data combination of events didhot occur then the resulting bins would

In order to stress test our system, we ran it on the 5'300,Ob@ve tallies thanMiniInst, encouraging it to merge with the next
instances used in the 1999 KDD éufDD'99 dealt with network bin. In none our experiments, however, have we seen this worst-case

intrusion detection and was divided into a training set of abofighavior. In KDD'99, for example, SPADE only ever generated 2

five million instances and test setof 311,029 instances. The datalins for 20 of the 40 attributes. In addition, for only two of the

comprised 6 discrete attributes, 34 continuous attributes, and &#ibutes did SPADE generate more than 50 bins. Further, SPADE
classes which fell into five main categoriesormal (no attack); N€ver generated more than 100 bins for any attribute.
probe (surveillance and other probingDOS (denial-of-service);  Attempts to test our system using other KDD cup data were not
U2R (unauthorized access to local super-user privileges); R2id  successful, for a variety of reasdns
(unauthorized access from a remote machine).

The 24 KDD’99 cup entrants ran their learners to generate a matrix

MTi, 5] showing the number of times classvas classifieq. Entries ~_ “The KDD'04 evaluation portal was off-line during the period when
were scored by computing the meadid|[:, j] * C[i, j] value where SAWTOOTH was being developed. The KDD'03 problem required feature
. . o . extraction from free text- something that is beyond the scope of this research.
C[i, j] was the cost of mis-classifying (e.g.) unauthorized access g gata for KDD'02 is no longer on-line. The KDD’01 had data with 130,000
attributes and we don’t yet know how to extend our technique to such a large
Shttp://www.ai.univie.ac.at/"bernhard/kddcup99.html attribute space. We also had trouble following the KDD’00 documentation.
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'eiger W'”l'oloss ek '2555 L C. Data with Concept Drift

SAVC'TBSOTH _% g 198 gg Figure 4 and Figure 5 showed SAWTOOTH processing static data.

NB -12 9 21 | 30 Figure 6 shows SAWTOOTH running on data with concept drift.
~ 20 , , , , , To generate that figure, a flight simulator was executed where a
£ 15} } airplane moved from a nominal mode to one of five error conditions
z or ] (labeled a,b,c,d,¢. Data was taken from the simulator in eras of
g ° ++++H+: size 100 instances. Each error mode lasted two eras and each such
% 2 [ #H#MH***WW i mode was encountered twice. The top of Figure 6 shows the results
% 1ok f** ] of SAWTOOTH’s stability tests, as well as when SAWTOOTH
§ a5 b5 ] enabled or disabled learning. Each error mode introduced a period
8 20 L L L L L of instability which, in turn, enabled a new period of learning.

0 10 20 30 40 50 60
delta accuracies, sorted

The first time SAWTOOTH saw a new error mode (at eras
15,23,31,39,and 47), the accuracy dropped sharply and after each
Fig. 5. SAWTOOTH executing on UCI data. mode, accuracy returned to a high level (usually, over 80%). The
secondtime SAWTOOTH returned to a prior error mode (at eras
63,71,79,87 and 95), the accuracies dropped, but only very slightly.

Two features of Figure 6 are worthy of mention. Firstly, the large

leam=off | :,,,,_f' - ;—f' r ‘——f”p LA L drop in accuracy when entering a new context means SAWTOOTH
learn=on |- -- - oo RS es EEEEE R : -
4] can be used to recognize new contexts (i.e., watch for the large drops).
% Sggt')elgzﬁg C T In terms of certifying an adaptive system, this is a very useful result:
learning systems can alert their users when theyeanéng the region
100 = of their past competencgecondly, and most importantly, there is no
75 | such large drop when SAWTOOTH returns to old contexts. That is,
- SAWTOOTH canretain knowledge of old contex&nd reuse that
8 S0 F knowledgewhen contexts re-occur
g 25 -
> 0 D. Unsupervised Learning
| | | | A N | L un-u

Figure 4, Figure 5, and Figure 6 were all exampleswabervised
abcde a b cde . . . . . .
era=1 era=50 era=10C learning In supervised learning (when each instance is stamped with
a class symbol), handling concept drift meaesognizingwhen the
underlying data generating phenomenon has changediepadting
the current classifier to cope with that change.
Figure 7 shows anun-
supervised learning experi-
B. UCI Data ment (where instances lack Average Max Likelihood
any class symbol). In unsu-

Figure 4 explored SAWTOOTH’s competencies on one Iarg%]emsed learning, it no longer  o.0001
akes sense taepair the

data set. Figure 5 explores SAWTOOTH’s competency on maré\f/ o .
assifier, since there are no
smaller data sets from the standard UCI databdsemeal, au- .
. . .. classes to classify. However,
diology, auto-mpg, diabetes, echo, heart-c, hepatitis, horse-coltﬁ, .
L L ' e problem of recognizing

hypothyroid, ionosphere, iris, labor, letter, primary-tumor, segment, . X

. riovel situations remains.
soybean, vehicle, vote, vowel, waveform-B0those data sets ranged In the Fi 7 - ¢
in size from labors 57 instances tdetters 20,000 instances. A " : € '?urﬁ_ fxperlmen,
standard 10*10 cross-validation experiment was conducted usii IC asdso_t?] |ns_an::es| vt\;elr.e
SAWTOOTH/SPADE (using the Figure 2 code); or the J48 decisi(ﬂ? ace EWI a S'n% € a_ Et' 16-06 |
tree learner; or two NaeBayes classifiers that used either a singl%ast‘:]o't f.ras Onﬁ 0 Silgv
Gaussian to model continuous attributes (the “NB” learner) or a su at figure show .

Fig. 6. SAWTOOTH and concept drift

le-05

. . 1 5 9 15
-5 OTH processing eight eras train monitor  error

of Gaussians (the “NBK” learner proposed by John and Langley [3](of 100 instances) of nominal

Using t-tests, significant differences & 0.05) between the mean flight simulator data. Updat- , - Learning normal flight (eras
performance of each learner on the 20 data sets could be detecigd. of the frequency tables 1 1o 8): monitoring five different flights

Win/loss/ties statistics for each pair of learners on e_ach data s then disabled and the sys-a,b,..e (eras 9 to 16); injecting errors into
was then collected. The results, shown at the top of Figure 5, shguy, \atched over five entirely €ras 15,16.
SAWTOOTH performing marginally better than NB classifiers bujitterent flights, each ending

worse than both J48 and NBK. This is not surprising: Provost angin one of our errors,b,c,d,e The classify routine of Figure 2
Kolluri [2, p22] comment that sequential learning strategies likgas modified to return the classification with the maximum likeli-
windowing usually performs worse than learning from the total Seﬁood, as well asthat maximum likelihood value. Figure 7 shows

However, what is encouraging is teezeof the difference in mean the average maximum likelihood seen in each era. In all cases, the
accuracies between SAWTOOTH and the other learners. The piéoa 15,16 errors dramatically changed the likelihoods: they dropped
shown bottom of Figure 5 sorts all those differences. In 80% of oby two orders of magnitudé&om the pre-error values, and dropped
experiments, SAWTOOQOTH performed within5% of other methods. belowthe likelihoods seen during training (eras 1 to 8).
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