# XOMO: understanding Development Options for Autonomy

tim@menzies.us PDX, USA

Julian Richardson julianr@email.arc.nasa.gov RIACS,USRA

#### **Sound bites**

- 21<sup>st</sup> software: uses autonomy. Are you ready?
- Al software is still software
- SE has much to offer AI
- AI has much to offer SE
- If you can't mine data, grow it.
- Monte Carlo + data miners = good
- Conclusions without local calibration

### Autonomy: example

Good news: Autonomy reduces flight risks!

- Deep Impact intercepted comet Tempel 1, July 4<sup>th</sup> 2005.
- On-board autonomy made three last-minute trajectory corrections.
  - 1. T-minus 90 minutes.
  - 2. T-minus 35 minutes
  - 3. T-minus 12.5 minutes
- Note: ground control could not have made the last correction
  - Asteroid was 7½ light minutes from earth; i.e., 15 minutes round trip;
  - "You can't joystick this thing."
    - -- Deep Impact mission controller



http://www.nasa.gov/mission\_pages/ deepimpact/multimedia/SHYAM.html

- Risks mitigated:
  - 1. failure of ground-commanded trajectory calculations (based on old data, may be slow)
  - 2. failure due to communications outage

Challenge: How to build intelligent systems in a cost-effective manner?

#### Why autonomy?

- Extends capabilities:
  - Automatic rendezvous and docking
    - Good for in-orbit assembly
  - Faster reaction to science event
    - Data collection > downlink capacity
  - Extended mission life
    - Less reliance on ground control
      - Saves time (few controllers)
      - Avoids human errors (e.g XXXX)
    - Historical data: 41% of software anomalies triggered by communications uplink/downlink [Lutz 2003]

#### Scenario

- Talented PhD-level programmers
- No prior autonomy experience
- High reliability
- Complex software
- Hope that product will be reusable

- Ksloc = 75 .. 125
- Rely = 5
- Prec = 1
- Acap = 6
- Aexp = 1
- Cplx = 6
- Ltex = 1
- Reus = 6
- Pmat, time, resl, ...
   = ?

#### Cycle: repeat till happy (or no more improvement)



# COCOMO models

#### **COCOMO-II effort model**

|            | vl         | 1    | n    | h    | vh   | xh   |
|------------|------------|------|------|------|------|------|
| Scale fact | ors:       |      |      |      |      |      |
| flex       | 5.07       | 4.05 | 3.04 | 2.03 | 1.01 |      |
| pmat       | 7.80       | 6.24 | 4.68 | 3.12 | 1.56 |      |
| prec       | 6.20       | 4.96 | 3.72 | 2.48 | 1.24 |      |
| resl       | 7.07       | 5.65 | 4.24 | 2.83 | 1.41 |      |
| team       | 5.48       | 4.38 | 3.29 | 2.19 | 1.01 |      |
| Effort mu  | ltipliers: |      |      |      |      |      |
| acap       | 1.42       | 1.19 | 1.00 | 0.85 | 0.71 |      |
| aexp       | 1.22       | 1.10 | 1.00 | 0.88 | 0.81 |      |
| cplx       | 0.73       | 0.87 | 1.00 | 1.17 | 1.34 | 1.74 |
| data       |            | 0.90 | 1.00 | 1.14 | 1.28 |      |
| docu       | 0.81       | 0.91 | 1.00 | 1.11 | 1.23 |      |
| ltex       | 1.20       | 1.09 | 1.00 | 0.91 | 0.84 |      |
| pcap       | 1.34       | 1.15 | 1.00 | 0.88 | 0.76 |      |
| pcon       | 1.29       | 1.12 | 1.00 | 0.90 | 0.81 |      |
| plex       | 1.19       | 1.09 | 1.00 | 0.91 | 0.85 |      |
| pvol       |            | 0.87 | 1.00 | 1.15 | 1.30 |      |
| rely       | 0.82       | 0.92 | 1.00 | 1.10 | 1.26 |      |
| ruse       |            | 0.95 | 1.00 | 1.07 | 1.15 | 1.24 |
| sced       | 1.43       | 1.14 | 1.00 | 1.00 | 1.00 |      |
| site       | 1.22       | 1.09 | 1.00 | 0.93 | 0.86 | 0.80 |
| stor       |            |      | 1.00 | 1.05 | 1.17 | 1.46 |
| time       |            |      | 1.00 | 1.11 | 1.29 | 1.63 |
| tool       | 1.17       | 1.09 | 1.00 | 0.90 | 0.78 |      |

 $months = a * \left( KSLOC^{\left(b+0.01*\sum_{i=1}^{5} SF_{i}\right)} \right) * \left(\prod_{j=1}^{17} EM_{j}\right)$ (1)

# Madachy Risk Model: how many dumb things are you doing today?

|      |      | vl | 1 | n | h | vh | xh |      | 1         | vl | 1 | n |
|------|------|----|---|---|---|----|----|------|-----------|----|---|---|
|      | rely |    |   |   |   |    |    |      | acap      |    |   |   |
| sced | vl   |    |   |   | 1 | 2  |    | rely | n         | 1  |   |   |
|      | 1    |    |   |   |   | 1  |    |      | h         | 2  | 1 |   |
|      | cplx |    |   |   |   |    |    |      | vh        | 4  | 2 | 1 |
| sced | vl   |    |   |   | 1 | 2  | 4  |      | pcap      |    |   |   |
|      | 1    |    |   |   |   | 1  | 2  | rely | n         | 1  |   |   |
|      | n    |    |   |   |   |    | 1  | ,    | h         | 2  | 1 |   |
|      | time |    |   |   |   |    |    |      | vh        | 4  | 2 | 1 |
| sced | vl   |    |   |   | 1 | 2  | 4  |      | acap      |    |   |   |
|      | 1    |    |   |   |   | 1  | 2  | cplx | h         | 1  |   |   |
|      |      |    |   |   |   |    | 1  | -P21 | vh        | 2  | 1 |   |
|      | nvol |    |   |   |   |    |    |      | x h       | ã  | 2 | 1 |
| seed | vl   |    |   |   | 1 | 2  |    |      | ncan      |    | - |   |
| seed | 1    |    |   |   | • | ĩ  |    | cnh  | h         | 1  |   |   |
|      | tool |    |   |   |   |    |    | opix | vh        | 2  | 1 |   |
| read | 1001 | 2  | 1 |   |   |    |    |      | xh        | Ā  | 2 | 1 |
| seeu | 1    | 1  | 1 |   |   |    |    |      | tool      |    | 2 | 1 |
|      | 1    | 1  |   |   |   |    |    | only | 1001<br>h | 1  |   |   |
|      | pexp | 4  | 2 | 1 |   |    |    | сри  | n<br>vh   | 2  | 1 |   |
| sced | VI   | 4  | 4 | 1 |   |    |    |      | vn        | 4  | 2 | 1 |
|      | 1    | 2  | 1 |   |   |    |    |      | XII       | 4  | 2 | 1 |
|      | n    | 1  |   |   |   |    |    |      | pmat      |    |   |   |
|      | pcap |    |   |   |   |    |    | reiy | n         | 1  |   |   |
| sced | vl   | 4  | 2 | 1 |   |    |    |      | n         | 4  | 1 |   |
|      |      | 2  | 1 |   |   |    |    |      | vn        | 4  | 2 | 1 |
|      | n    | 1  |   |   |   |    |    |      | acap      | ~  |   |   |
|      | aexp |    | ~ |   |   |    |    | pmat | vi        | 2  | 1 |   |
| sced | vi   | 4  | 2 | 1 |   |    |    |      | 1         | 1  |   |   |
|      | 1    | 2  | 1 |   |   |    |    |      | acap      |    |   |   |
|      | n    | 1  |   |   |   |    |    | stor | h         | 1  |   |   |
|      | acap |    |   |   |   |    |    |      | vh        | 2  | 1 |   |
| sced | vl   | 4  | 2 | 1 |   |    |    |      | xh        | 4  | 2 | 1 |
|      | 1    | 2  | 1 |   |   |    |    |      | acap      |    |   |   |
|      | n    | 1  |   |   |   |    |    | time | h         | 1  |   |   |
|      | ltex |    |   |   |   |    |    |      | vh        | 2  | 1 |   |
| sced | vl   | 2  | 1 |   |   |    |    |      | xh        | 4  | 2 | 1 |
|      | 1    | 1  |   |   |   |    |    |      | acap      |    |   |   |
|      | pmat |    |   |   |   |    |    | tool | vl        | 2  | 1 |   |
| sced | vl   | 2  | 1 |   |   |    |    |      | 1         | 1  |   |   |
|      | 1    | 1  |   |   |   |    |    |      | pcap      |    |   |   |
|      | •    |    |   |   |   |    |    | tool | vl        | 2  | 1 |   |

|      |            | vl | 1 | n |
|------|------------|----|---|---|
|      | aexp       |    |   |   |
| ruse | h          | 1  |   |   |
|      | vh         | 2  | 1 |   |
|      | xh         | 4  | 2 | 1 |
|      | ltex       |    |   |   |
| ruse | h          | 1  |   |   |
|      | vh         | 2  | 1 |   |
|      | xh         | 4  | 2 | 1 |
|      | pcap       |    |   |   |
| pmat | vl         | 2  | 1 |   |
|      | 1          | 1  |   |   |
|      | pcap       |    |   |   |
| stor | h          | 1  |   |   |
|      | vh         | 2  | 1 |   |
|      | xh         | 4  | 2 | 1 |
|      | pcap       |    |   |   |
| time | h          | 1  |   |   |
|      | vh         | 2  | 1 |   |
|      | xh         | 4  | 2 | 1 |
|      | pcap       |    | ~ |   |
| ltex | vl         | 4  | 2 | 1 |
|      | 1          | 2  | 1 |   |
|      | n          | 1  |   |   |
|      | pexp       | 1  |   |   |
| pvoi | n          | 2  | 1 |   |
|      | VII        | 2  | 1 |   |
| taal | pmat       | 2  | 1 |   |
| 1001 | 1          | 1  | 1 |   |
|      | taal       | 1  |   |   |
| time | 1001<br>wh | 1  |   |   |
| ume  | vii<br>xb  | 2  | 1 |   |
|      |            | 2  | 1 |   |
| toom | aexp       | 2  | 1 |   |
| team | 1          | 1  | 1 |   |
|      | sced       | 1  |   |   |
| team | vl         | 2  | 1 |   |
| team | 1          | 1  | 1 |   |
|      | site       | 1  |   |   |
| team | vl         | 2  | 1 |   |
| tean | 1          | ĩ  |   |   |
|      | 1 1        |    |   |   |

# COQUALMO: defect introduction

|       | rely     | data | ruse | docu | cplx | time | stor | pvol | acap | pcap | pcon | aexp | plex | ltex | tool | site | sœd       | 1.00  |      |      |      |
|-------|----------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|-----------|-------|------|------|------|
| requ  | irements | :    |      |      |      |      |      |      |      |      |      |      |      |      |      |      |           | 1.1.1 |      |      |      |
| xh    |          |      | 1.05 |      | 1.32 | 1.08 | 1.08 | 1.16 |      |      |      |      |      |      |      | 0.83 |           |       |      |      |      |
| vh    | 0.7      | 1.07 | 1.03 | 0.86 | 1.21 | 1.05 | 1.05 | 1.1  | 0.75 | 1    | 0.82 | 0.81 | 0.9  | 0.93 | 0.92 | 0.89 | 0.85      |       |      |      |      |
| h     | 0.85     | 1.04 | 1.02 | 0.93 | 1.1  | 1.03 | 1.03 | 1.05 | 0.87 | 1    | 0.91 | 0.91 | 0.95 | 0.97 | 0.96 | 0.95 | 0.92      |       |      |      |      |
| n     | 1        | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1         |       |      |      |      |
| 1     | 1.22     | 0.93 | 0.95 | 1.08 | 0.88 |      |      | 0.86 | 1.17 | 1    | 1.11 | 1.12 | 1.05 | 1.04 | 1.05 | 1.1  | 1.09      |       |      |      |      |
| vl    | 1.43     |      |      | 1.16 | 0.76 |      |      |      | 1.33 | 1    | 1.22 | 1.24 | 1.11 | 1.07 | 1.09 | 1.2  | 1.18      | 1.1   |      |      |      |
| desig | en:      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |           | 1.1   |      |      |      |
| xh    | ,<br>,   |      | 1.02 |      | 1.41 | 1.2  | 1.18 | 1.2  |      |      |      |      |      |      |      |      | 0500      | flax  | rael | teem | nmot |
| vh    | 0.69     | 1.1  | 1.01 | 0.85 | 1.27 | 1.13 | 1.12 | 1.13 | 0.83 | 0.85 | 0.8  | 0.82 | 0.86 | 0.88 | 0.91 |      | prec      | пех   | resi | team | pina |
| h     | 0.85     | 1.05 | 1    | 0.93 | 1.13 | 1.06 | 1.06 | 1.06 | 0.91 | 0.93 | 0.9  | 0.91 | 0.93 | 0.91 | 0.96 | requ | urements: |       |      |      |      |
| n     | 1        | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | xh   | 0.7       | 1     | 0.76 | 0.75 | 0.73 |
| ĩ     | 1.23     | 0.91 | 0.98 | 1.09 | 0.86 |      |      | 0.83 | 1.1  | 1.09 | 1.13 | 1.11 | 1.09 | 1.07 | 1.05 | vh   | 0.84      | 1     | 0.87 | 0.87 | 0.85 |
| vl    | 1.45     |      |      | 1.18 | 0.71 |      |      |      | 1.2  | 1.17 | 1.25 | 1.22 | 1.17 | 1.13 | 1.1  | h    | 0.92      | 1     | 0.94 | 0.94 | 0.93 |
| codi  | ng:      |      |      |      |      |      |      |      |      |      |      |      |      |      |      | n    | 1         | 1     | 1    | 1    | 1    |
| xh    | 0        |      | 1.02 |      | 1.41 | 1.2  | 1.15 | 1.22 |      |      |      |      |      |      |      | 1    | 1 22      | 1     | 116  | 117  | 1 10 |
| vh    | 0.69     | 1.1  | 1.01 | 0.85 | 1.27 | 1.13 | 1.1  | 1.15 | 0.9  | 0.76 | 0.77 | 0.88 | 0.86 | 0.82 | 0.8  |      | 1.42      | 1     | 1.10 | 1.24 | 1.19 |
| h     | 0.85     | 1.05 | 1    | 0.92 | 1.13 | 1.06 | 1.05 | 1.08 | 0.95 | 0.88 | 0.88 | 0.94 | 0.94 | 0.91 | 0.9  | - 1  | 1.45      | 1     | 1.52 | 1.54 | 1.56 |
| n     | 1        | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | desi | gn:       |       |      |      |      |
| 1     | 1.23     | 0.91 | 0.98 | 1.09 | 0.86 |      |      | 0.82 | 1.05 | 1.16 | 1.15 | 1.07 | 1.08 | 1.11 | 1.13 | xh   | 0.75      | 1     | 0.7  | 0.8  | 0.61 |
| vl    | 1.45     |      |      | 1.18 | 0.71 |      |      |      | 1.11 | 1.32 | 1.3  | 1.13 | 1.16 | 1.22 | 1.25 | vh   | 0.87      | 1     | 0.84 | 0.9  | 0.78 |
|       |          |      |      |      |      |      |      |      |      |      |      |      |      |      |      | h    | 0.94      | 1     | 0.92 | 0.95 | 0.89 |
| -     |          |      |      | _    |      | -    | -    |      |      |      |      |      |      |      | _    | n    | 1         | 1     | 1    | 1    | 1    |
|       |          |      |      |      |      |      |      |      |      |      |      |      |      |      |      | 1    | 1 17      | 1     | 1 22 | 1 12 | 1 22 |
|       |          |      |      |      |      |      |      |      |      |      |      |      |      |      |      | · .  | 1.17      | 1     | 1.42 | 1.15 | 1.55 |
| 100   |          |      |      |      |      |      |      |      |      |      |      |      |      |      |      | vi   | 1.34      | 1     | 1.43 | 1.26 | 1.65 |
|       |          |      |      |      |      |      |      |      |      |      |      |      |      |      |      | codi | ng:       |       |      |      |      |
|       |          |      |      |      |      |      |      |      |      |      |      |      |      |      |      | xh   | 0.81      | 1     | 0.71 | 0.86 | 0.63 |
|       |          |      |      |      |      |      |      |      |      |      |      |      |      |      |      | vh   | 0.9       | 1     | 0.84 | 0.92 | 0.79 |
|       |          |      |      |      |      |      |      |      |      |      |      |      |      |      |      | h    | 0.95      | 1     | 0.92 | 0.96 | 0.9  |
|       |          |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      | 1         | 1     | 1    | 1    | 1    |
| 1.4   |          |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      | 1 10      | 1     | 1.01 | 1.00 | 1.2  |
| A     |          |      |      |      |      |      |      |      |      |      |      |      |      |      |      | I    | 1.12      | 1     | 1.21 | 1.09 | 1.3  |
|       |          |      |      |      |      |      |      |      |      |      |      |      |      |      |      | vl   | 1.24      | 1     | 1.41 | 1.18 | 1.58 |
|       |          |      |      |      |      |      |      |      |      |      |      |      |      |      |      | _    |           | _     |      | _    | _    |
|       |          |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |           |       | /    |      | -    |

#### **COQUALMO:** defect removal

|       | automated | peer    | execution_testing |
|-------|-----------|---------|-------------------|
|       | analysis  | reviews | _and_tools        |
| requi | rements:  |         |                   |
| xh    | 0.4       | 0.7     | 0.6               |
| vh    | 0.34      | 0.58    | 0.57              |
| h     | 0.27      | 0.5     | 0.5               |
| n     | 0.1       | 0.4     | 0.4               |
| 1     | 0         | 0.25    | 0.23              |
| vl    | 0         | 0       | 0                 |
| desig | n:        |         |                   |
| xh    | 0.5       | 0.78    | 0.7               |
| vh    | 0.44      | 0.7     | 0.65              |
| h     | 0.28      | 0.54    | 0.54              |
| n     | 0.13      | 0.4     | 0.43              |
| 1     | 0         | 0.28    | 0.23              |
| vl    | 0         | 0       | 0                 |
| codir | ıg:       |         |                   |
| xh    | 0.55      | 0.83    | 0.88              |
| vh    | 0.48      | 0.73    | 0.78              |
| h     | 0.3       | 0.6     | 0.69              |
| n     | 0.2       | 0.48    | 0.58              |
| 1     | 0.1       | 0.3     | 0.38              |
| vl    | 0         | 0       | 0                 |
|       |           |         |                   |

#### XOMO= support code for COCOMO Monte Carlos

# thousands of lines of codes
\_ANY(ksloc, 2, 10000)

# scale factors: exponential effect on effort ANYi(prec, 1, 6) ANYi(flex, 1, 6)

# effort multipliers: linear effect on effort ANYi(rely, 1, 5)

# defect removal methods
\_ANYi(automated\_analysis, 1, 6)
\_ANYi(peer\_reviews, 1, 6)
\_ANYi(execution\_testing\_and\_tools, 1, 6)

# calibration parameters \_ANY(a, 2.25,3.25) \_ANY(b, 0.9, 1.1) function Prec()
return scaleFactor("prec", prec())

function Effort() {
 return A() \* Ksloc() ^ E() \*
 Rely()\* Data()\* Cplx()\*
 Ruse()\* Docu()\* Time()\* Stor()\* Pvol()\*
 Acap()\*Pcap()\* Pcon()\* Aexp()\* Plex()\*
 Ltex()\* Tool()\*Site()\* Sced() }

function E() { return B() + 0.01\*(Prec() + Flex() + Resl() + Team() + Pmat())}

# Case study 13



### **BORE: best or rest selection**

- Binary classification of N-utilities
  - Effort
  - Defects
  - Schedule risk



|        | 26 in      | puts |        |      |    |        | 3 outputs |         |
|--------|------------|------|--------|------|----|--------|-----------|---------|
|        |            |      |        |      |    |        | schedule  |         |
| rely p | lex ksloc  | p    | cap ti | me a | ıa | effort | risk      | defects |
| 5      | 1 118.80   |      | 5      | 3    | 5  | 2083   | 69        | 0.50    |
| 5      | 1 105.51   |      | 1      | 3    | 5  | 4441   | 326       | 0.86    |
| 5      | 4 89.26    |      | 3      | 5    | 3  | 1242   | 63        | 0.96    |
| 5      | 2 89.66    |      | 1      | 4    | 5  | 2118   | 133       | 2.30    |
| 5      | 1 105.45   |      | 2      | 4    | 5  | 6362   | 170       | 2.66    |
| 5      | 3 118.43   |      | 2      | 6    | 2  | 7813   | 112       | 4.85    |
| 5      | 4 110.84   |      | 4      | 4    | 4  | 4449   | 112       | 6.81    |
|        |            |      |        |      |    | I      | I         |         |
|        |            |      |        |      |    |        |           |         |
| rely p | olex ksloc |      | pcap t | ime  | aa | effort | secdRisk  | defects |
| best:  |            |      |        |      |    |        | •         |         |
| 5      | 4 89.26    |      | 3      | 5    | 3  | 1242   | 63        | 0.96    |
| 5      | 1 118.80   |      | 5      | 3    | 5  | 2083   | 69        | 0.50    |
| 5      | 2 89.66    |      | 1      | 4    | 5  | 2118   | 133       | 2.30    |
| rest:  |            |      |        |      |    |        | •         |         |
| 5      | 1 105.51   |      | 1      | 3    | 5  | 4441   | 326       | 0.86    |
| 5      | 4 110.84   |      | 4      | 4    | 4  | 4449   | 112       | 6.81    |
| 5      | 3 118.43   |      | 2      | 6    | 2  | 7813   | 112       | 4.85    |
|        |            |      |        |      |    |        |           |         |

#### The TAR3 "treatment learner"

- Classes have utilities (best > rest)
- "treatment"= policy
  - what to do
  - what to watch for
- seek attribute ranges that are
  often seen in "good"
  rarely seen in "bad".
- Treatment=
  - constraint that changes baseline frequencies

A few variables are (often) enough



#### Cycle: repeat till happy (or no more improvement)



|                                                                                           |                                                                                                                               | learned restraints               |                          |                                                      |                                                      |  |  |  |  |  |
|-------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|----------------------------------|--------------------------|------------------------------------------------------|------------------------------------------------------|--|--|--|--|--|
| number of restraints<br>25<br>20<br>15<br>10<br>5<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | baseline<br>$75 \le \text{ksloc} \le 125$<br>rely = 5<br>prec = 1<br>acap = 5<br>aexp = 1<br>cplx = 6<br>ltex = 1<br>ruse = 6 | 1000<br>sced=4<br>peer_reviews=5 | 2000<br>pmat=5<br>pcap=4 | 3000<br>tool=4<br>execution_testing-<br>_and_tools=5 | 4000<br>team=5<br>resl=5<br>automated-<br>analysis=5 |  |  |  |  |  |



# Sound bites (again)

- 21<sup>st</sup> software uses autonomy. Are you ready?
- Al software is still software
  - Autonomy= new software
  - But can be analyzed, at least partially, by existing methods
- SE has much to offer AI
- Al has much to offer SE
  - Use data miners to explore COCOMO-model(s)
  - Large scale, easy, what-if scenarios

- If you can't mine data, grow it.
- Monte Carlo + data miners = good
  - Don't just auto-generate
  - Also auto-understand
  - seek the "diamonds in the dust"
- Conclusions without local calibration
  - Seek stable conclusions within the envelope of options

# **Questions?**

Comments?