
1

XOMO: understanding
Development Options for

Autonomy

tim@menzies.us
PDX, USA

Julian Richardson
julianr@email.arc.nasa.gov

RIACS,USRA

2

Sound bites
• 21st software: uses autonomy. Are you ready?

• AI software is still software

• SE has much to offer AI

• AI has much to offer SE

• If you can’t mine data, grow it.

• Monte Carlo + data miners = good

• Conclusions without local calibration

3

Autonomy: example

http://www.nasa.gov/mission_pages/
deepimpact/multimedia/SHYAM.html

• Deep Impact intercepted
comet Tempel 1, July 4th 2005.

• On-board autonomy made
three last-minute trajectory
corrections.
1. T-minus 90 minutes.
2. T-minus 35 minutes
3. T-minus 12.5 minutes

• Note: ground control could
not have made the last
correction
• Asteroid was 7½ light minutes

from earth; i.e., 15 minutes
round trip;

• “You can’t joystick this thing.”
-- Deep Impact mission
 controller

• Risks mitigated:
1. failure of ground-commanded
 trajectory calculations (based
 on old data, may be slow)
2. failure due to communications
 outage

Challenge: How to build intelligent systems in a cost-effective manner?

Good news: Autonomy reduces flight risks!

4

Why autonomy?
• Extends capabilities:

– Automatic rendezvous and docking
• Good for in-orbit assembly

– Faster reaction to science event
• Data collection > downlink capacity

– Extended mission life
• Less reliance on ground control

– Saves time (few controllers)
– Avoids human errors (e.g XXXX)

• Historical data: 41% of software anomalies triggered by
communications uplink/downlink [Lutz 2003]

5

Scenario

• Talented PhD-level
programmers

• No prior autonomy
experience

• High reliability
• Complex software
• Hope that product

will be reusable

• Ksloc = 75 .. 125
• Rely = 5
• Prec = 1
• Acap = 6
• Aexp = 1
• Cplx = 6
• Ltex = 1
• Reus = 6
• Pmat, time, resl, …

– = ?

6

Cycle: repeat till happy
 (or no more improvement)

COCOMO-II

COQUALMO

MADACHY

scenario
sample
possible
inputs

BORE:TAR3:

(le
ar

ne
d

re
str

ain
ts)

Monte carlo simulations

classificationlearning

7

COCOMO
models

8

COCOMO-II effort model

9

Madachy Risk Model: how many
dumb things are you doing today?

10

COQUALMO:
defect introduction

11

COQUALMO:
defect removal

12

XOMO=
support code for COCOMO Monte Carlos
thousands of lines of codes
_ANY(ksloc, 2, 10000)

scale factors: exponential effect on effort
ANYi(prec, 1, 6)
ANYi(flex, 1, 6)
...
effort multipliers: linear effect on effort
ANYi(rely, 1, 5)
...
defect removal methods
_ANYi(automated_analysis, 1, 6)
_ANYi(peer_reviews, 1, 6)
_ANYi(execution_testing_and_tools, 1, 6)
…
calibration parameters
_ANY(a, 2.25,3.25)
_ANY(b, 0.9, 1.1)

function Prec()
 return scaleFactor("prec", prec())
...
function Effort() {

return A() * Ksloc() ˆ E() *
Rely()* Data()* Cplx()*
Ruse()* Docu()* Time()* Stor()* Pvol()*
Acap()*Pcap()* Pcon()* Aexp()* Plex()*
Ltex()* Tool()*Site()* Sced() }

function E() {
return B() +
 0.01*(Prec() + Flex()

 + Resl() + Team() + Pmat())}

13

Case
study

14

Sample call

Sample output

Effort does not predict
for defect density

Highest schedule risk,
one of the lowest defects

15

BORE: best or rest selection
• Binary classification

of N-utilities
– Effort
– Defects
– Schedule risk

16

Housing, baseline
(% of housing types)

The TAR3
“treatment learner”

Bad great

6.7 <= rm < 9.8 and
12.6 <= ptratio < 15.9

• Classes have utilities (best > rest)

• “treatment”= policy
• what to do
• what to watch for

• seek attribute ranges that are
•often seen in “good”
•rarely seen in “bad”.

• Treatment=
• constraint that changes baseline
 frequencies

0.6 <= NOX < 1.9 and
17.16 <= lstat < 39

A few variables
are (often) enough

17

Cycle: repeat till happy
 (or no more improvement)

COCOMO-II

COQUALMO

MADACHY

scenario
sample
possible
inputs

BORE:TAR3:

(le
ar

ne
d

re
str

ain
ts)

Monte carlo simulations

classificationlearning

18

variances reduced Only 17/28 restrained

19

Sound bites (again)
• 21st software uses

autonomy. Are you ready?

• AI software is still software
– Autonomy= new software
– But can be analyzed, at

least partially, by existing
methods

• SE has much to offer AI

• AI has much to offer SE
– Use data miners to explore

COCOMO-model(s)
– Large scale, easy, what-if

scenarios

• If you can’t mine data, grow it.

• Monte Carlo + data miners = good
– Don’t just auto-generate
– Also auto-understand
– seek the “diamonds in the dust”

• Conclusions without local
calibration
– Seek stable conclusions within the

envelope of options

20

Questions?
Comments?

