
October 11, 2006
WP ref: http://now.unbox.org/all/trunk/doc/06/tellingmore/bayes0.tex

Download this paper at http://menzies.us/pdf/06anomalies-bayes0.pdf.

Improving IV&V Techniques Through the Analysis of Project Anomalies:
Bayes networks - preliminary report
Tim Menzies

Lane Department of Computer Science and Electrical Engineering, West Virginia University, USA
tim@menzies.us

Abstract The original plan of this work was the creation
of a process by which conclusions learned from one IV&V
project could be applied to another. In particular, we seek
methods whereby an agent can say “that’s odd”; i.e. detect
anomalies and propose repairs in active NASA projects.

Given the current state of business knowledge and IV&V
project data recorded at the IV&V facility, the methods pro-
posed in the original plan (semantic web frame-based gener-
alization and specialization over ontologies describing IV&V
business practices) are not supportable, Hence, this report de-
scribes an alternate direction. Instead of working “top-down”
from descriptions of business knowledge (which may never
exist), or “bottom-up” from data (that may never be avail-
able), this project now focuses on “middle-out” and will try
to combine the available data/models into a semantic whole.
The currently available data/models are:

– SILAP, from the IV&V planning and scoping team;
– James Dabney’s Bayes networks that describe the IV&V

business practices of the L3 IV&V contractor;
– The PITS issue tracking data;
– The LINKER database project that intends to join PITS

to other data sources;
– Balanced score card strategy maps from NASA Langley.
– and the COCOMO data sets from JPL (note- these data

sets are being explored elsewhere; hence, this project will
not use its funds to directly explore COCOMO but may
lever conclusions from that other project).

This is a three year project that started in June 2006. After
five months, and even after the required redirection described
above, strong progress has been made. At SAS’06, a prelimi-
nary report described what had been learned from the SILAP
data. This report presents a preliminary report on our use of
the Dabney belief networks. It also offers some background
notes on the entire problem.

Subsequent reports will expand these preliminary reports
into final conclusions. Those reports will focus on each of the
above data sources, one by one, as well as exploring how to
combine the above data sources into one anomaly detector.

Acknowledgments: This work would have been impos-
sible without James Dabney’s thorough modeling of IV&V
processes in belied networks. Also, special thanks are owed
to Wesley Deadrick for arranging access to the case study
material.

Credits: This research was conducted at West Virginia
University under NASA sub-contract project 100005549, task
5e, award 1002193r.

Cautions Reference herein to any specific commercial
product, process, or service by trade name, trademark, man-
ufacturer, or otherwise, does not constitute or imply its en-
dorsement by the United States Government.

Software:All software discussed here is available from
http://unbox.org/wisp/qnet under the GNU Pub-
lic License (version 2: see www.gnu.org/copyleft/gpl.
html).

Menzies: Bayes nets- preliminary report 2 of 13

Contents

1 Introduction: From Data to Information 2
2 Components . 2

2.1 Data hooks . 3
2.2 Model . 3
2.3 Calibration . 4
2.4 Anomaly detector 4
2.5 Fault Localization 4
2.6 Repair . 4
2.7 Modeling Tools 4

3 QNET . 4
3.1 Distributions . 4
3.2 User Distributions 6
3.3 Combination Rules 7
3.4 Caching Assumptions 7
3.5 Summary . 8

4 Learning from the Output 8
4.1 Multi-Dimensional Optimization using “BORE” . . 8
4.2 Treatment Learning with TAR3 8

5 Case Study . 10
6 Discussion . 10

6.1 Data Hooks . 10
6.2 Model . 10
6.3 Calibration . 10
6.4 Anomaly Detection 10
6.5 Fault Localization 11
6.6 Repair . 12
6.7 Modeling Tools 12

7 Future Work . 13
7.1 Better conditional probabilities 13
7.2 Scale up . 13
7.3 Add data hooks 13

8 Conclusion . 13

List of Figures

1 Example score cards & strategy map 3
2 About belief networks 3
3 A sample belief network 4
4 Some definitions 5
5 QNET: example 6
6 Triangular distributions 6
7 TAR3: Playing golf. 8
8 TAR3: Class distributions 9
9 Case study 1 9
10 Case study 2 11
11 Anomaly detection 11
12 Case study 3: fault localization 12

1 Introduction: From Data to Information

Worms and humans both see data. Worms dig in mud while
humans ride rockets to outer space. Why?

Humans can get out of the mud since they use model-
based reasoning that transforms data into information. Model-
based reasoning lets us generalize from the past, and form
predictions about the future.

Models let us look before we leap. For every bridge that
is built, a hundred more are designed and rejected via math-
ematical models showing a bridge’s statics and dynamics, fi-
nite element models, or numerous legislative models that try
to maximize for safety/ aesthetics/ etc.

Models not only let us make decisions- they let us audit
them as well. Returning to the bridge example, engineers use
their models and the calculations they make from those mod-
els to justify their decisions.

Models can also be used for training. Newcomers can be
shown an organization’s business models in order to explain
how processes work in that organization

This project is about getting NASA’s software develop-
ment “out of the mud”. Specifically, we seek model-based
tools that allow data collected from active NASA develop-
ment projects to be converted into the information that some
project requires urgent management action. Experienced an-
alysts at the NASA IV&V facility already perform this task.
Sadly, those decisions are rarely modeled-based. Based on an
eight year association with that facility, I assert that IV&V
lacks the models that a critical external auditor could use to
certify or criticize the decisions made at this facility.

In our target scenario, the IV&V team has access to mod-
els connecting what is observable within IV&V projects to
high-level business objectives. The model can be used to raise
alerts when newly arrived data shows that the business objec-
tives for a project are under threat.

This is a three year project that started in June 2006. This
report described half of the work done since then. For the
remaining work, see the report on the SILAP data made to
SAS’06 and a presentation to the IEEE RE’06 conference on
the relative merits of tractability1.

2 Components

The original vision of this project was “anomaly detection”.
However, on reflection, it was clear that anomaly detection is
about 1

7 th of what is required.
An anomaly detector is really one of seven components

needed to intelligently monitor a device. If this project levers
prior and current NASA research projects, then the the fol-
lowing seven components are achievable in the time frame of
this project.

1 At http://unbox.org/wisp/trunk/silap/doc see
ebev.pdf and re06.pdf.

Menzies: Bayes nets- preliminary report 3 of 13

Fig. 1 A strategy map, left, and a balanced score card, right, modeling business knowledge of a regional airline.

2.1 Data hooks

Without data hooks, the anomaly detectors have no raw data
to work from.

2.2 Model

Raw data, without some interpretation model, can’t be inter-
preted (by definition). Leake advises that interpretation (which
he calls explanation) is situation-specific construct that must
be tuned to (1) the audience; and (2) the goals of the audi-
ence [5]. Hence, prior to the construction of a model that can
interpret data, some commitments must be made regarding
the who will read the model, and why.

One way to model the audience and their business goals
is via balanced score card (BST) [4], like the one shown in
Figure 1, that contains:

– High level business objectives;
– Measures that connect raw data to objectives;
– Targets values for the variables, as set by defined initia-

tives.

The score card’s measures and objectives are then wired up
into strategy map; e.g. see Figure 1. Score cards and strategy
maps are succinct representations that teams of business users
can review, audit, improve, and use to train newcomers about
local business practices.

Note that without such a model, it is hard to know what
data should be collected. Further, anomaly detectors can’t in-
terpret if an anomaly drastically impacts an important busi-
ness goal.

At the NASA IV&V facility, as far as I am aware, there
is no stated BST-style targets or BST-style initiatives. How-
ever, James Dabney’s recent ROI study. has generated some
knowledge of objectives and measures. Dabney’s knowledge
is represented graphically in the belief network style [7] de-
scribed in Figure 2.

One advantage of belief networks is that they are intu-
itively easier for a human to understand direct dependencies
and local distributions than complete joint distribution. For
example, a sample belief network for requirements defect
introduction is shown in Figure 3. In that figure, the objec-
tive is reqQual (requirements quality) and the other nodes
are the measures (for definitions of each term, see Figure 4).
For space reasons, only part of Dabney’s networks are shown
here- the full system has 161 inputs and 260 nodes in to-
tal. With Wesley Deadrick, this project is exploring which
of those 260 can be collected via the LINKER data hooks. It
is anticipated that only a subset of the nodes will be informed
via LINKER. Inference propagation across the networks will
be used to fill in, or check, the remaining nodes (see below).

A belief network (also known as a Bayesian network) is a di-
rected acyclic graph of

– nodes representing variables (nodes can represent any kind
of variable, be it a measured parameter, a latent variable or
an hypothesis);

– arcs representing probabilistic dependency relations among
the variables and local probability distributions for each vari-
able given values of its parents.

If there is an arc from node A to another node B, then variable B
depends directly on variable A, and A is called a parent of B. If
there are n variables, then for each variable Xi (1 ≤ i ≤ n), the
set of parent variables is denoted by parents(Xi) then the joint
distribution of the variables is product of the local distributions

Pr(X1, . . . , Xn) =

nY
i=1

Pr(Xi | parents(Xi))

If Xi has no parents, its local probability distribution is said to
be unconditional, otherwise it is conditional. If the variable
represented by a node is observed, then the node is said to be an
evidence node.

Fig. 2 About belief networks. From wikipedia.org.

Menzies: Bayes nets- preliminary report 4 of 13

 reqQual

 reqDevTrnOvr

 reqDevResAvail

 reqDevStaff

 reqDevStfLev

 reqDevExpr

 reqDevDomain

 reqDevSched

 reqExtCstr

 reqProcAdhere

 reqDevBudget

 reqStab

 reqProbSpc sysDocQual

 reqCplx

 reqProcRigor

 reqDevProcEff

 reqDevQualOrg devCMM

 reqDevTool

 userExper

 reqQualUserInput

 userInvolve

 novel

Fig. 3 “Requirements defect introduction”: part of the Dabney be-
lief nets. For an explanation of the node names, see Figure 4.

2.3 Calibration

Before users accept the anomaly reports from our models, the
models must be calibrated, lest the users dismiss our anomaly
report with “that model is not relevant to our domain”.

2.4 Anomaly detector

Once the above is in place, we can operationalize a anomaly
detector.

2.5 Fault Localization

The first thing the users will ask is “what is the cause of
the anomaly?”; i.e. anomaly detectors need fault localization
methods.

2.6 Repair

The second thing the users will ask is “how do we fix the
anomaly?”; i.e. anomaly detectors need repair modules.

2.7 Modeling Tools

It is unlikely that any model we create will appeal to all users.
Hence, not only do we need a model, but we also need to give
our users access to modeling tools to let them create alternate

models or modify existing ones. If we do not do so, then we
run the risk of reporting anomalies that are irrelevant to cer-
tain users.

Currently, the available models are not supported by readily-
available modeling tools. Dabney’s models require a Mat-
lab license and he has indicated that part of the system re-
quires further funding before he can release it. Also, Dab-
ney has stated that he is unable at this time to support other
users working with his tool. Further, the Dabney system was
designed to answer certain questions about ROI. Numerous
modifications will be required. before it use be used by:

– users and IV&V to refine Dabney’s networks or to define
new ones;

– anomaly detectors and fault localization algorithms;

Therefore, this project must build its own belief network in-
terpreter. This turns out not to be difficult. The case studies
in this paper describes QNET a public-domain belief net in-
terpreter written as part of this project. QNET is distributed
under the GNU public license version 2 and is available for
download from http://unbox.org/wisp/trunk/qnet.

3 QNET

QNET (quality net) lets us represent belief networks like Fig-
ure 3 using a Prolog interpreter [2]. The value of QNET is that
is it much simpler than alternate belief network implementa-
tions (e.g. Dabney’s Matlab implementation) and it is fully
open source (so it can it be delivered and customized, right
now).

As shown in Figure 3, a QNET program starts by loading
the [qnet] source code, then defining the goal to be maxi-
mized. This is followed the by the definition of the leaf vari-
ables (e.g. devCmm = trig(3, 1, 2)) and the network that
connects the leaves to the goal. Finally, there is a call to
maximize to tell QNET to try and maximize the goal.

The next section describes the tool used that augments
QNET with the calibration, fault localization, etc. This will
be followed by a case study. Since this is a preliminary re-
port, the presented case study will be brief (and will just use
Figure 3).

3.1 Distributions

QNET connects a set of variables in an acyclic directed graph.
The value of each variable is set by its parents. The variables
with no parents draw their value from some user supplied
distributions. Therefore, to understand QNET, two things are
needed:

– Rules for setting the user distributions;
– Rules for combining values into parents.

Menzies: Bayes nets- preliminary report 5 of 13

base? name notes
y devCMM This is an overall assessment of the effectiveness of the development process related to development of

requirements. The assessment should include methods for requirements elicitation, coordination, documen-
tation, and validation. It should correlate fairly well with CMM level, but includes an assessment of what is
really happening in addition to what is documented.

y novel Relative novelty (to the developer or user) of the application/mission or the solution approach. For exam-
ple, entry GN&C for a new vehicle where all algorithms are adapted from Shuttle would be low novelty
(10) (provided the new mission is very similar to the Shuttle mission), completely new algorithms or new
application would be high novelty (1).

y reqCplx Qualitative estimate of overall system/problem complexity. Related to technical difficulty, required interfaces
(developer and system), and unity of users. Not correlated with code complexity metrics. Simple (10) to
complex (1)

y reqDevBudget How tight is the development budget? Assessment of flexibility in cost growth.
y reqDevDomain Average experience of development staff in the specific application domain (e.g., laser guidance system,

space telescope, crew rescue, etc). Consider all individual domains within the system (e.g., space telescope
will require GN&C, optics, propulsion, system management, telemetry, etc).

y reqDevExpr Average experience level of development staff, not specific to the problem domain, but overall experience in
software development for the domain type (e.g., real-time embedded flight, financial, ground, manned , etc).

y reqDevProcEff How much emphasis does development management place on quality (as opposed to productivity)? For
example, does development management participate in reviews, ensure that action items are tracked, and
encourage extra analysis of suspected problems? Assessment of effectiveness of process problem reports
(like our CPAR to document discrepancies in following the process), process improvement actions, activity
of a board to assess effectiveness of process, etc. An assessment of the ’aliveness’ of the developer process
and attention to making it work to produce better products.

y reqDevQualOrg How effective is the embedded quality organization? This measure includes consideration of size, breadth
and depth of capability, and level of authority granted to quality organization applied to this project.

n reqDevResAvail Resource availability
reqDevResAvail = reqDevTrnOvr + reqDevStfLev.

y reqDevSched How much margin is in the development schedule? Assessment of flexibility in end date.
n reqDevStaff Staff ability

reqDevStaff = reqDevExpr + reqDevDomain + reqDevResAvail.
y reqDevStfLev Assessment of whether the quantity and distribution of staff is sufficient for the problem space
n reqExtCstr External constraint pressure

reqExtCstr = reqDevSched + reqDevBudget.
n reqProcAdhere Process adherence

reqProcAdhere = reqExtCstr + reqDevProcEff + reqDevQualOrg.
n reqProcRigor Process rigor

reqProcRigor = devCMM + reqProcAdhere + reqDevTool.
n reqProdSpc Problem space

reqProbSpc = reqStab + sysDocQual + reqCplx.
n reqStab Requirements stability

reqStab = reqQualUserInput + novel.
n reqQual Requirements quality

reqQual = reqProbSpc + reqDevStaff + reqProcRigor.
y reqDevTool Degree to which the developer uses tools in developing and analyzing requirements. Tools here include

requirements management tools (DOORs, for example), traceability tools, simulations, process support, etc.
y reqDevTrnOvr Experienced or historical rate of change of staff involved with requirements development
n reqQualUserInput Quality of user input.

reqQualUserInput = userExper + userInvolve.
y sysDocQual Qualitative estimate of the quality (completeness, correctness, and consistency) of system documentation

from which software requirements may be derived.
y userExperR Experience level of system users with similar (or the same) systems or solution approach. Maturity level of

users in understanding technical aspects of system to be implemented and the scenarios in which it will be
used.

y userInvolveR Degree to which the system users are involved in the requirements definition process and the timeliness of
that involvement. Note that a high score here requires involvement or representation of all key system users,
not just system operators.

Fig. 4 Some definitions of nodes in the Dabney model. Scored 1 to 10.

Menzies: Bayes nets- preliminary report 6 of 13

:- [qnet].

goal = reqQual.

devCMM = trig(3, 1,2).
novel = trig(5,1,1).
reqCplx = trig(3,1,1).
reqDevBudget = trig(8,2,2).
reqDevDomain = trig(7,2,2).
reqDevExpr = trig(6,2,2).
reqDevProcEff = trig(6,2,2).
reqDevQualOrg = trig(2,1,1).
reqDevSched = trig(2,1,1).
reqDevStfLev = trig(5,4,4).
reqDevTool = trig(3,2,2).
reqDevTrnOvr = trig(5,4,4).
sysDocQual = trig(2,1,1).
userExperR = trig(8,1,2).
userInvolveR = trig(8,1,1).

reqStab = reqQualUserInput + novel.
reqDevResAvail = reqDevTrnOvr + reqDevStfLev.
reqExtCstr = reqDevSched + reqDevBudget.
reqQualUserInput = userExper + userInvolve.
reqDevStaff = reqDevExpr +reqDevDomain +reqDevResAvail.
reqProbSpc = reqStab +sysDocQual +reqCplx.
reqProcAdhere= reqExtCstr +reqDevProcEff +reqDevQualOrg.
reqProcRigor = devCMM +reqProcAdhere +reqDevTool.
reqQual = reqProbSpc +reqDevStaff +reqProcRigor.

:- maximize.

Fig. 5 QNET: example; representing Figure 3.

Fig. 6 Triangular distributions: pdf (left) and cdf (right)

3.2 User Distributions

Dabney’s belief networks specify the distributions of the leaf
nodes as triangular distributions. Such distributions are often
used in business simulations or project management simula-
tions when there is only limited sample data (e.g. the rela-
tionship between variables is known but data is scarce). It is
based on a knowledge of the minimum and maximum and an
”inspired guess” as to the modal value. Triangular distribu-
tions are preferred to Gaussians when there is some imbal-

ance left and right of the mean, or the min/max values are
much smaller than offered by a standard deviation.

A sample triangular pdf is shown in Figure 6 (top). For-
mally, a triangular distribution is a continuous probability dis-
tribution with lower limit a, mode c and upper limit b with the
ranges a ∈ (−∞,∞), b > a, a ≤ c ≤ b and probability den-
sity function (PDF):

PDF (x | a, b, c) =

0 for x < a

2(x−a)
(b−a)(c−a) for a ≤ x ≤ c

2(b−x)
(b−a)(b−c) for c < x ≤ b

0 for x > b

These four cases are represented inside QNET as follows:

trPDF(A,_,_,X,0) :- X < A,!.
trPDF(A,B,C,X,Y) :- X >= A, X =< C,!,

Y is 2*(X - A)/((B-A)*(C-A)).
trPDF(A,B,C,X,Y) :- X > C, X =< B,!,

Y is 2*(B - X)/((B-A)*(B-C)).
trPDF(_,B,_,X,0) :- X > B.

Also shown in Figure 6 is the triangular cumulative distribu-
tion function (CDF):

CDF (x | a, b, c) =

0 for x < a

(x−a)2

(b−a)(c−a) for a ≤ x ≤ c

1− (b−x)2

(b−a)(b−c) for c < x ≤ b

1 for x > b

These four cases are represented inside QNET as follows:
trCDF(A,_,_,X,0) :- X < A,!.
trCDF(A,B,C,X,Y) :- X >= A, X =< C,!,

Y is (X - A)ˆ2/((B-A)*(C-A)).
trCDF(A,B,C,X,Y) :- X > C, X =< B,!,

Y is 1 - (B - X)ˆ2/((B-A)*(B-C)).
trCDF(_,B,_,X,1) :- X > B.

The CDF is used when sampling from the distribution. A
random number r (0 ≤ r ≤ 1) is generated and the CDF is
searched left to right. The returned x-value is the smallest x
such that CDF (x | a, b, c) ≥ r.

:- arithmetic_function(ranf/0).
ranf(X) :- X is random(65535)/65536.

tr(A,B,C,_) :- (C < A; C > B),!,
print(bad(tr(min = A,max = B,mode = C))),nl,fail.

tr(A,A,_,A) :- !.
tr(A,B,C,Z) :- R is ranf, tr1(R,0.01, A,B,C,A,B,Z).

Pragmatically, it is useful to search for this x-value using
a binary search (O(log(n)) time, not O(n)). This requires
setting some threshold value P such that two numbers are
“equal enough” when they are withing P of each other. Here,
we use P = 0.01.

Menzies: Bayes nets- preliminary report 7 of 13

tr1(R,P,A,B,C,Min,Max,Z) :-
Half is Min + (Max - Min)/2,
trCDF(A,B,C,Half,Sample),
myCompare(Op,P,R,Sample),
tr2(Op,R,P,A,B,C,Min,Half,Max,Half,Z).

tr2(=,_,_,_,_,_,_ ,_ ,_ ,Z,Z).
tr2(>,R,P,A,B,C,_ ,Half,Max,_,Z) :-

tr1(R,P,A,B,C,Half,Max,Z).
tr2(<,R,P,A,B,C,Min,Half,_ ,_,Z) :-

tr1(R,P,A,B,C,Min,Half,Z).

myCompare(=, P,X,Y) :- abs(X - Y) =< P,!.
myCompare(Op,_,X,Y) :- compare(Op,X,Y).

Dabney he spent much time (and NASA funding) to col-
lect representative distributions from NASA projects; e.g. the
trig ranges in Figure 5 come from domain experts at IV&V.
Note that Dabney expresses tr(Min,Max,Mode) as

trig(Mode,Max−Mode,Mode−Min)

Also, our triangular distributions take the range 0..1.0 while
Dabney uses 1..10. So, in Figure 3, Dabney’s trig(3, 1, 2) can
be rewritten as tr(0.2, 0.5, 0.3). QNET handles this conver-
sions automatically:

goal_expansion(trig(Mode0,Down,Up), tr(Min,Mode,Max)) :-
Mode is Mode0/10,
Min is (Mode - Down)/10,
Max is (Mode + Up)/10.

3.3 Combination Rules

The values generated at the leaves (from triangular distribu-
tions) are propagated up the network. At each internal node,
the results from child nodes are combined then normalized to
the range 0 ≤ x ≤ 1. Hence, a = b+c is expressed internally
in QNET as two lookups for the values of b and c, followed
by the normalization step.

set(a,Value) --> b = Value0, c = Value1,
{Value is (Value0 + Value1)/2}.

Note that this combination rule is rather simplistic: merely
averaging values can loose information about the details of
the distributions being combined. In a complete belief net-
work a conditional probability table is defined for each node
that describes how combinations of values in the parents ef-
fect the child. The next version of QNET will allow for the
definition of arbitrary combination rules.

QNET automates the conversion of (e.g.) a = b + c into
the combination rules shown above. This converter accepts
statements of the form

y = c1 ∗ x1 ± c2 ∗ x2 ± . . .

(where ci is the weight of xi) and outputs normalization rules
of the form:

set(y,Value) --> x1 = Value1, x2 = Value2,...,
{(Value is Value1 + Value2 + ..)/(c1+c2+...)}.

The converter is succinct and easy to modify:

xpand(Head=Body0,[got(Head),Rule|Rest]) :-
xpand1(Body0,Head,Arg,N0,Body,Rest,[]), N is N0,
expand_term((set(Head,Out) -->

Body,{Out is Arg/N}), Rule).

xpand1(A0 + B0, H,A1 + B1, A2+B2,(A,B)) --> !,
xpand1(A0,H,A1,A2,A), xpand1(B0,H,B1,B2,B).

xpand1(A0 - B0, H,A1 - B1, A2+B2,(A,B)) --> !,
xpand1(A0,H,A1,A2,A), xpand1(B0,H,B1,B2,B).

xpand1(A * N, H,P, N , Goal) --> !,
[want(A,H)],
{xpand2(A=X,X*N,P,Goal)}.

xpand1(A / N, H,P, 1/N , Goal) --> !,
[want(A,H)],
{xpand2(A=X,X/N,P,Goal)}.

xpand1(tr(Min,Max,Mode),_,X,1,{tr(Min,Max,Mode,X)}) --> [],!.
xpand1(trig(Min,Max,Mode),_ ,X,1,{trig(Min,Max,Mode,X)})-->[],!.
xpand1(A , H,P, 1, Goal) -->

[want(A,H)],
{xpand2(A=X,X,P,Goal)}.

xpand2(- A = X, P, -1*P, A=X) :- !.
xpand2(A = X, P, P, A=X).

Note one special case: when the rule is a leaf node and refer-
ences a triangular distribution, the combination rule becomes
just a look up rule for the leaf value. For example, the first
rule in Figure 5 is devCMM = trig(3, 1, 2). After convert-
ing Dabney’s trig function to a standard tr function, this rule
becomes
set(devCMM,Value) --> {tr(2,5,3,Value)}.

3.4 Caching Assumptions

Consider the network:
healthy = trig(7,1,3).
wealthy = trig(8,1,1).
happy = wealthy + healthy.
serene = healthy.
goal = happy + serene.

Note that the healthy leaf node influences two other nodes
happy and serene. Hence, when exploring the goal of serene,
we will sample the healthy distribution twice (once from
serene and once from happy). For a single run, the same
value should be returned each time; i.e. QNET needs to cache
old values before computing new ones.

QNET’s cache is a list of pairs variable = value that is
passed around between the goals. That is, combination rules
like
set(a,Value) --> b = Value0, c = Value1,

{Value is (Value0 + Value1)/2}.

are converted internally to rules that pass around a Cache
variable:
set(a,Value, Cache0, Out) :-

=(b,Value0, Cache0, Cache1),
=(c,Value1, Cache1, Cache),
{Value is (Value0 + Value1)/2}.

Here, b = V alue0 became = (b, V alue0, Cache0, Cache1).
QNET’s “=” procedure controls the cache:
=(X,Y,Cache,Cache) :- # case 1

member(X=Z,Cache),!,Y=Z.
=(X,Y,Cache0,[X=Y|Cache]) :- # case 2

clause(set(X,_,_,_),_),!,
set(X,Z0,Cache0,Cache),
ones(Z0,Z),Y=Z.

=(X,Y,Cache,[X=Y|Cache]) :- # case 3
Y is random(1000)/999.

ones(N0,N) :- within(0,1,N0,N).

Menzies: Bayes nets- preliminary report 8 of 13

Its three clauses handle the three cases of interest:

1. If X is in the cache, just use the old value.
2. If there exists a rule to compute X , then call it (remem-

bering to pass the Cache to it).
3. Otherwise, generate a random number.

In case one, the cache does not change. In cases two and
three, a new value is added to the head of the cache.

3.5 Summary

The above code fragments show the semantic core of QNET.
The full system isn’t much longer- just 243 lines of Prolog.

The ability to build small, easily customizable, systems is
pointless unless those systems can do something useful (see
the case study, later in this paper).

4 Learning from the Output

QNET generates case studies. If called N times, it will gen-
erate N case studies. This can lead to a data analysis prob-
lem since an analyst might be buried under an overwhelming
amount of information.

To simplify the analysis, we therefore combine QNET
with a data miner. Outputs from QNET are classified into best
or rest using the BORE alogrithm. The TAR3 data miner is
then used to find the least number of changes to the inputs
that most effect the output. TAR3 was previously developed
using NASA funding.

The rest of this section describes BORE and TAR3.

4.1 Multi-Dimensional Optimization using “BORE”

BORE inputs instances scored on multiple utilities and clas-
sifies each of them “best” or “rest”. BORE maps the instances
outputs into a hypercube which has one dimension for each
utility. In the case studies that follow, the output will scored
on only one dimension (requirements quality) but, in the fu-
ture, we will score based on quality, minimal deviation from
known behaviors, etc etc.

These utilities are normalized to “zero” for “worst”, and
“one” for “best”. The corner of the hypercube at 1,1,... is
the apex of the cube and represents the desired goal for the
system. All the examples are scored by their normalized Eu-
clidean distance to the apex.

For each run i of the simulator, the n outputs are normal-
ized to the range 0..1 as follows:

Ni = Xi−min(X)
max(X)−min(X)

The Euclidean distance of {N1, N2, ...} to the ideal position
of {N1 = 1, N2 = 2, ...} is then computed and normalized
to the range 0..1 as follows:

Wi = 1−
√

N2
1 + N2

2 + ...√
n

Wi has the following properties:

outlook temp(oF) humidity windy? class
sunny 85 86 false none
sunny 80 90 true none
sunny 72 95 false none

rain 65 70 true none
rain 71 96 true none
rain 70 96 false some
rain 68 80 false some
rain 75 80 false some

sunny 69 70 false lots
sunny 75 70 true lots

overcast 83 88 false lots
overcast 64 65 true lots
overcast 72 90 true lots
overcast 81 75 false lots

Fig. 7 TAR3: Playing golf.

– 0 ≤ Wi ≤ 1.
– The higher Wi, the better the run.
– That is, improving Wi can only be achieved by increasing

all of the utilities.

To determine the “best” and “rest” values, all the Wi scores
were sorted. The top BEST% are then classified as “best” and
the remainder as “rest”.

4.2 Treatment Learning with TAR3

Once the above models run, and BORE classifies the output
into best and rest, a data miner is used to find input settings
that select for the better outputs. This study uses the TAR3
data miner since this learning method return the smallest the-
ories that most effect the output. In terms of software process
changes, such minimal theories are useful since they require
the fewest management actions to improve a project.

TAR3 inputs a set of training examples E. Each exam-
ple maps a set of attribute ranges to some class symbol; i.e.
{Ri, Rj , ... → C} The class symbols C1, C2.. are stamped
with some utility score that ranks the classes; i.e. {U1 <
U2 < .. < UC}. With E, these classes occur at frequencies
F1%, F2%, ..., FC%. A “treatment” T of size X is a conjunc-
tion of attribute ranges {R1 ∧ R2... ∧ RX}. Some subset of
e ⊆ E are consistent with the treatment. In that subset, the
classes occur at frequencies f1%, f2%, ...fC%. TAR3 seeks
the seek smallest T which most changes the weighted sum of
the utilities times frequencies of the classes. Formally, this is
called the lift of a treatment:

lift =
∑

C UCfC∑
C UCFC

For example, consider the log of golf playing behavior
seen in Figure 7. In that log, we only play lots of golf in

6
5+3+6 = 43% of cases. To improve our game, we might
search for conditions that increases our golfing frequency.
Two such conditions are shown in the WHERE test of the se-
lect statements in Figure 8. In the case of outlook= overcast,

Menzies: Bayes nets- preliminary report 9 of 13

input:

SELECT class
FROM golf

SELECT class
FROM golf
WHERE
outlook = ’overcast’

SELECT class
FROM golf
WHERE
humidity >= 90

output:
none none none none none
some some some lots lots
lots lots lots lots

lots lots lots lots none none none some lots

distributions:

0
2
4
6

5 3 6
0
2
4
6

0 0 4
0
2
4
6

3 1 1

legend: none some lots

Fig. 8 TAR3: Class distributions selected by different conditions in Figure 7.

Fig. 9 Case study 1. The green output is best explained by the combination of all the red inputs.

Menzies: Bayes nets- preliminary report 10 of 13

we play lots of golf all the time. In the case of humidity ≤
90, we only play lots of golf in 20% of cases. So one way to
play lots of golf would be to select a vacation location where
it was always overcast. While on holidays, one thing to watch
for is the humidity: if it rises over 90%, then our frequent golf
games are threatened.

The tests in the WHERE clause of the select statements in
Figure 8 is a treatment. Classes in treatment learning get a
score UC and the learner uses this to assess the class frequen-
cies resulting from applying a treatment (i.e. using them in a
WHERE clause). In normal operation, a treatment learner does
controller learning that finds a treatment which selects for
better classes and reject worse classes By reversing the scor-
ing function, treatment learning can also select for the worse
classes and reject the better classes. This mode is called moni-
tor learning since it finds the thing we should most watch for.
In the golf example, outlook = ’overcast’ was the controller
and humidity ≥ 90 was the monitor.

Formally, treatment learning is a weighted-class minimal
contrast-set association rule learner. The treatments are asso-
ciations that occur with preferred classes. These treatments
serve to contrast undesirable situations with desirable situ-
ation where more of the outcomes are favorable. Treatment
learning is different to other contrast set learners like STUCCO [1]
since those other learners don’t focus on minimal theories.

Conceptually, a treatment learner explores all possible sub-
sets of the attribute ranges looking for good treatments. Such
a search is impractical in practice so the art of treatment learn-
ing is quickly pruning unpromising attribute ranges. This study
uses the TAR3 treatment learner [3] that uses stochastic search
to find its treatments.

5 Case Study

Figure 9 shows the kind of analysis supported by this sys-
tem. After 1000 samples of the leaf nodes, the inputs and the
goal (i.e. reqQual, a.k.a. requirements quality) scores were
passed to TAR3 to find the fewest changes to the current situ-
ation that most improved reqQual. Here, most improved was
defined to be the top 15% of the reqQual scores (shown in
Figure 9 as a green circle).

It turns out that of the 16 factors that influence goal (reqQual),
management attention should be most focused on just two
factors. The machine learner found that driving reqDevDomain
and reqDevExpr to the top 1

4 of their range (shown in red in
Figure 9) is sufficient to select for the most improvement in
reqQual. Both these factors relate to the development experi-
ence in the particular problem domain (e.g. space telescopes)
and in the domain type (e.g. flight systems).

This kind of conclusion can start a detailed discussion of
management options. One question that might arise from the
above is as follows: “ok, you are telling us that our people
have to be experienced- but just how good do our people have
to be?”. To answer this question, we run the system again
but this time we tell the learner that we aren’t divided the
inputs into four ranges, but only two. That is, we are asking
the learner “relax, don’t be so strict”.

In this second case, it turns out that such relaxation is
counter-indicated. If allow a project to be staffed using any
of the top-half of our people (measured in terms of devel-
opment and domain experience). then we will be forced into
taking other management actions. As before we have to in-
crease reqDevDomain and reqDevExpr, but now we also
have to improve the software maturity levels and demand a
higher level of documentation from which the system will be
derived (see the devCMM and sysDocQual results, circled
in red, in Figure 10).

6 Discussion

The start of this article defined seven criteria for a useful
anomaly detector. This section reviews those criteria.

6.1 Data Hooks

This paper has been silent about the data hooks issue. In the
future, this project will hook into the LINKER database, cur-
rently under development. The details of those hooks will be
discussed in a report due December 31, 2006.

6.2 Model

This paper has modeled IV&V knowledge using belief net-
works. Subsequent reports will offer cases studies on the full
Dabney belief networks.

6.3 Calibration

BORE+TAR3 can perform prediction (as in the above case
study) and offer calibrate the model. Recall from the above
that BORE is a multidimensional optimization method. If we
score each node by their distance to known values as well as
quality, then a single run of TAR3 could optimize for a certain
value while moving the distributions of other values towards
their known positions.

6.4 Anomaly Detection

Figure 9 and Figure 10 show the distributions in input and
output nodes of Figure 3. If we collect distributions on all the
nodes in our network, then we can build an anomaly detector
as follows.

The probability that some value falls at a certain point in
the distribution is the area under the curve at that value. By
multiplying together all those probabilities, we can compute
the likelihood of a particular instance. Note that all the terms
in this product are less than one. Hence, if two or three of
these values move to a low probability region, the total prod-
uct will drop by an order or two of magnitude. A monitor
could watch for that drop and call a fault localization tool to
explain that drop.

Menzies: Bayes nets- preliminary report 11 of 13

Fig. 10 Case study 2. The green output is best explained by the combination of all the red inputs.

Figure 11 shows this kind of anomaly detector operating
on data from an F-15 flight simulator. The large drops on the
right-hand-side all occurred when five different errors where
injected into five different simulations. In all cases, the mo-
ment that the anomaly appeared was very clear (note the two
orders of magnitude drop in monitored variable). Elsewhere
we have confirmed that this anomaly detector works in 27
other data sets [6]. In later reports from this project, we will
check if we can detect anomalies in software engineering data
sets.

6.5 Fault Localization

Without any modification, QNET+BORE+TAR3 can be used
for fault localization. All that is required is a small change to
the scoring function applied to each run of QNET: instead of
trying to maximize goal = reqQual (as done in case stud-
ies 1&2), TAR3 could be used to find explanations of (say)
goal = reqQual being low.

To demonstrate that, imagine that the observed quality is
“medium low” to “very low”. In Figure 10, , such a quality
range could be modeled as goal ≈ 0.15. The goal outputs

 1e-06

 1e-05

 0.0001

 15
error

9
monitor

 5 1
train

Average Max Likelihood

a
b
c
d
e

Fig. 11 Anomaly detection.

from QNET are then replaced by the distance of goal from
0.15 (i.e. abs(0.15−goal)). TAR3 is then asked to find treat-
ments that minimize this distance. Another way to say that is
as follows:

Menzies: Bayes nets- preliminary report 12 of 13

Fig. 12 Case study3 : fault localization. The green output is best explained by any of the inputs shown in red, orange, blue, black.
.

– Let low quality be the fault;
– Let fault localization be the factors that lead to that fault.

Figure 12 shows that TAR3 found four alternate theories that
explain low requirements quality. Two of them (low
reqDevDomain and low reqDevExpr) are the reverse of
our previous conclusions regarding what most improves re-
quirements quality. However there are two new conclusions:
either of low reqDevTool or reqDevTrnOvr could explain
a low goal = reqQual.

Why did case studies one and two return one theory and
this fault localization study return four? The answer can be
found in the topology of Figure 3. Observe how this graph
is a single parent network that connects many inputs (on the
left) to a single goal (on the right). Case studies one and two
returned one theory since it reasoned from many inputs to a
single goal. However, this fault localization study reasoned in
the opposite direction. The bad news is that there many fac-
tors that could result in low requirements quality (and this is
why this case study resulted in multiple theories). To narrow
down the true fault, test engineers would now have to collect
more information from the projects in order to narrow down
the four alternate hypotheses of Figure 12.

On the other hand, the good news is that of the 15 pos-
sible causes, there are only four singleton theories that seem
most likely to cause low quality. Hence, our test engineers
only have four issues to explore, and not the 215 = 32, 768
possible faults supported by Figure 3 (i.e. all combinations of
all possible inputs).

6.6 Repair

In this framework, repair is trivial to implement: just ask the
treatment learner how to change some undesired state towards
a desired state.

6.7 Modeling Tools

As shown in this report, QNET supports an interesting range
of modeling tools. Prior work on IV&V process improvement
(Dabney, Raffo, Eickelmann) was very heavy on initial model
construction and very light on subsequent analysis. The above
case studies show that QNET+BORE+TAR3 can be quickly
reconfigured to support numerous different kinds of analysis.

Menzies: Bayes nets- preliminary report 13 of 13

7 Figure Work

7.1 Better conditional probabilities

The current QNET system make simplistic assumptions about
how children effect parents in the network. This must be changed-
in QNET v2.0 it will be possible to specify the combination
rules on a node-by-node basis.

7.2 Scale up

The current results, while promising, are only for for a small
part of the belief networks specified by Dabney. Further, the
use only one of the three case studies documented by Dabney.
Subsequent work needs to focus on larger models and more
case studies.

7.3 Add data hooks

While the current results are promising, they are not informed
by real data from live projects. We look forward to the link to
LINKER.

8 Conclusion

The ability to do model-based reasoning seperates humans
from worms. Models lets look before we leap; to poke around
our ideas and plan our actions before squandering scarce re-
sources on a bad idea.

Once a community agrees on a shared vision of their do-
main, then a variety of powerful tools can be employed for
calibration, anomaly detcion, fault localization, and repair.
The results here assume that IV&V can be modeled using be-
lief nets. It is hoped that the current results will prompt IV&V
civil servants to spend some time in modeling their processes
in the notation of QNET or belief networks.

References

1. S. Bay and M. Pazzani. Detecting change in categorical data:
Mining contrast sets. In Proceedings of the Fifth International
Conference on Knowledge Discovery and Data Mining, 1999.
Available from http://www.ics.uci.edu/∼pazzani/
Publications/stucco.pdf.

2. I. Bratko. Prolog Programming for Artificial Intelligence. (third
edition). Addison-Wesley, 2001.

3. Y. Hu. Treatment learning, 2002. Masters thesis, Unviersity of
British Columbia, Department of Electrical and Computer Engi-
neering. In preperation.

4. R. Kaplan and D. Norton. The Balanced Scorecard: Translating
Strategy into Action. Harvard Business School Press. Boston,
1996.

5. D. Leake. Goal-based explanation evaluation. Cognitive Science,
15:509–545, 1991.

6. T. Menzies, D. Allen, and A. Orrego. Bayesian anomaly de-
tection (bad v1.0). In Proceedings of the Machine Learn-
ing Algorithms for Surveillance and Event Detection Work-
shop, ICML’06, 2006. Available from http://menzies.
us/pdf/06bad.pdf.

7. J. Pearl. Fusion, propagation, and structuring in belief networks.
Artificial Intelligence, 29:241–88, 1986.

