v, ?WestVu’gimaUniversigz@.

November 26, 2006
download: http://menzies.us/pdf/06anomalies-pits0.pdf

wp: http://now.unbox.org/all/trunk/doc/06/tellingmore/report2.

Improving IV&YV Techniques Through the Analysis of Project Anomalies:
Text Mining PITS issue reports - preliminary report

Tim Menzies

Lane Department of Computer Science and Electrical Engineering, West Virginia University, USA

tim@menzies.us
http://menzies.us

Abstract This project is in two parts. The second part will
try to combine two (or more) of the IV&V data sources into
an active monitoring framework where data collected during
an active IV&V project will trigger an alert if a project be-
comes unusual” (and defining “unusual” is one of the goals
of this project).

But before we can generalize between sources, we need to
study each source in isolation to determine its strengths and
weaknesses. Hence, the first part of this project aims to gain
experience with the various IV&V data sources available to
researchers like myself; i.e.

SILAP, from the IV&V planning and scoping team;
James Dabney’s Bayes networks that describe the IV&V
business practices of the L3 IV&V contractor;

The PITS issue tracking data;

The LINKER database project that intends to join PITS
to other data sources;

Balanced score card strategy maps from NASA Langley.
and the COCOMO data sets from JPL.

This is the first year of a three year project that started in
June 2006. The project is data-rich project and much progress
has already been achieved.

— At SAS’06, a preliminary report described what had been
learned from the SILAP data. A ranking was offered on
the most common V&V work-breakdown structure (WBS)
activities. This ranking can be used for (e.g.) identifying
what WBS tasks would benefit most from optimization.

— In early October, a preliminary report was delivered on
the Bayes network. On a limited case study, it was shown
that Bayes nets and treatment learning could generate par-
simonious explanations for project events.

This report presents a preliminary report on our use of the
PITS issues tracking database. It will be shown that, using
text mining, PITS can be used to generate an expert system
that audits a test engineer’s proposed severity level for an is-
sue.

Credits: This work was made possible due to the heroic ef-
forts of Ken Costello (chief engineering at NASA IV&V)
who provided the PITS defect reports. The text mining tech-
nology used here was inspired by the trace-ability work of
Jane Hayes and Alex Dekhtyar. Alex was particularly help-
ful is mapping out the ABCs of text mining. This research
was conducted at West Virginia University under NASA sub-
contract project 100005549, task Se, award 1002193r.

Cautions Reference herein to any specific commercial prod-
uct, process, or service by trade name, trademark, manufac-
turer, or otherwise, does not constitute or imply its endorse-
ment by the United States Government.

Code:All software discussed here is available from http:
//unbox.org/wisp/tmine under the GNU Public Li-

cense (version 2: see www .gnu.org/copyleft/gpl.html).

Menzies: Text Mining PITS - preliminary report 2of 11
Contents List of Figures
1 Introduction: We don’t need another hero 3 1 Heroic successes with PITS 3
Concept of Operations 4 2 Severities for robotic missions. 4
3 HowitWorks 6 3 Severities for human-rated missions. 4
3.1 Token.ization 6 4 Reviewing severity levels 5
32 Stoplists 6 5 Tokenization. 6
33 Stemming 6 6 Stop words 6
34 TE¥IDF.o o 7 . oL
3.5 IfoGRIN .« o v et e 7 7 Applyingastop-list.. 6
4 Results. 8 8 Some stemming rules. 6
4.1 Data o o 8 9 Using a downloaded stemmer. 7
4.2 Stopping and Stemming 8 10 thdfawk. 7
43 TEdf ... 8 11 Finding the 100 highest Tf*Idf words 7
44 Learning 9 12 Domains in the this study. 7
5 Discussion 11 13 Severities. o 8
14 Leakage matrices 8
15 Effects of stopping and stemming. 8
16 Tf*Idf scoring for the stopped, stemmed tokens 9
17 Re-writing issue reports as frequency counts. 9
18 Project “I"’s results, using 100 attributes. . . . 9
19 Project “I"’s results, using 10 attributes. 9
20 Project “p’s results, using 10 attributes. . . . 10
21 Project “s”’s results, using 10 attributes. 10
22 Percent probabilities of detection 10

Menzies: Text Mining PITS - preliminary report

3o0f11

1 Introduction: We don’t need another hero

NASA'’s software IV&V
Program captures all of
its findings in a database
called the Project and
Issue Tracking System
(PITS). The data in PITS
has been collected for
more than 10 years and
includes issues on robotic
satellite missions and
human-rated systems.

It is difficult, to say
the least, to generate
conclusions from a mov-
ing target like PITS. Several heroic studies have made signif-
icant conclusions using PITS data (see Figure 1). These stud-
ies were heroic in the sense that the “heroes” reached their
goals after tedious and complex struggling. Worse, the ex-
tracted data was only accessible with the help of NASA civil
servants- a scarce and expensive resource.

— Ken Costello (IV&V’s chief engineer) compiled statistics for
NASA headquarters that showing, in nine IV&V tasks, the
majority of issues found by IV&V were found via an analy-
sis of requirements documents.

— Marcus Fisher (IV&V’s research lead) applied a “mid-
course correction” to one IV&V project after checking the
progress of the IV&V against historical records in PITS.

— David Raffo (University of Portland), working with Ken
Costello and other civil servants, found enough cost data to
partially tune his waterfall-based model of IV&V;

— In a prior report in this project, Melissa Northey (Project
Manager) performed some joins across PITS to return costs
for different IV&V tasks;

Fig. 1 A partial list of past heroic successes with PITS.

The problem with PITS is that there is a lack of con-
sistency in how each of the projects collected issue data. In
virtually all instances, the specific configuration of the infor-
mation captured about an issue was tailored by the IV&V
project to meet its needs. This has created consistency prob-
lems when metrics data is pulled across projects. While there
was a set of required data fields, the majorities of those fields
do not provide information in regards to the quality of the
issue and are not very suitable for comparing projects.

NASA is very aware of the problems with PITS and is
taking active steps to improve it. At the time of this writing,
there is an on-going effort to implement a mandatory data set
in each IV&V project database to support IV&V effective-
ness metrics. This effort has been in development for about
a year and is currently being executed by several projects.
However, it is too early to make any useful observations from
that data.

To be fair, PITS is hardly unique. Based on my experi-
ence with data mining at other corporations, I assert that PITS
is a typical database, useful for storing day-to-day informa-
tion and generating small-scale tactical reports (e.g. “list the
bugs we found last Tuesday”), but difficult to use for high-
end business strategic analysis (e.g.. “in the past, what meth-
ods have proved most cost effective in finding bugs?”). Like
many other databases, it takes heroes to extract information
from PITS. Sadly, most of the heroes I know are so busy sav-
ing their own part of the world that they have little time to
save researchers like me.

Hence, in this report, we try a new approach for extracting
general conclusions from PITS data. Unlike previous heroic
efforts, our text mining and machine learning methods are
low cost, automatic, and rapid. We find we can build an agent
to automatically review issue reports and alert when a pro-
posed severity is anomalous. Better, the way we generated
the agent means that we have probabilities that the agent is
correct. These probabilities can be used to intelligently guide
decision making. For example, with our system, the follow-
ing dialogue is possible:

Tim wrote the problem report and he says this is a
severity 5 issue. But the agent says that its a severity 3
issue with probability 83%. Hmmm... the agent seems
pretty sure of itself- better get someone else to take a
look at the issue.

An extremely surprising conclusion from this report is
that the unstructured text might be a better candidate for gen-
erating lessons learned than the structured data base fields.

— While the database fields in PITS keep changing, the na-
ture of the unstructured text remains constant.

— In other words, the reason it is so hard in the past to reason
about PITS is that we have been looking at the wrong
data.

If we could properly understand unstructured text, this would
be a result of tremendous practical importance. A recent study’
concluded that

— 80 percent of business is conducted on unstructured in-
formation;

— 85 percent of all data stored is held in an unstructured
format (e.g. the unstructured text descriptions of issues
found in PITS);

— Unstructured data doubles every three months;

That is, if we can tame the text mining problem, it would
be possible to reason and learn from a much wider range of
NASA data than ever before.

' http://www.b—eye-network.com/view/2098

Menzies: Text Mining PITS - preliminary report

4 of 11

2 Concept of Operations

NASA uses a five-point scale to score issue severity. The
scale ranges one to five, worst to dullest, respectively. A dif-
ferent scale is used for robotic and human-rated missions (see
Figure 2 and Figure 3). The data used in this report comes
from robotic missions.

Using text mining and machine learning methods, this re-
port shows that it is possible to automatically generate a re-
view agent from PITS issue reports via the process of Fig-
ure 4. This agent can check the validity of the severity levels
assigned to issues:

— After seeing an issue in some artifact, a human analyst
generates some text nofes and assigned a severity level
severityX.

— An agent learns a predictor for issue severity level from
logs of {notes, severityX}. A training module (a) up-
dates the agent beliefs and (b) determines how much self-
confidence a supervisor might have in the agent’s conclu-
sions.

— Using the learned knowledge, the agent reviews the ana-
lysts’s text and generates its own severityY level.

— If the agent’s proposed severityY differs from the severi-
tyX level of the human analyst, then a human supervisor
can decide to review the human analyst’s severityX. To
help in that process, the supervisor can review the self-
confidence information to decide if they trust the agent’s
recommendations.

This agent would be of useful under the following circum-
stances:

— When a less-experienced test engineer has assigned the
wrong severity levels.

— When experienced test engineers are operating under ur-
gent time pressure demands, they could use the agent to
automatically and quickly audit their conclusions.

— For agents that can detect severity one and two-level er-
rors with high probability, the agent could check for the
rare, but extremely dangerous case, that an IV&V team
has missed a high-severity problem.

Severity 1: Prevent the accomplishment of an essential capability;
or jeopardize safety, security, or other requirement designated
critical.

Severity 2: Adversely affect the accomplishment of an essential ca-
pability and no work-around solution is known ; or adversely
affect technical, cost or schedule risks to the project or life cycle
support of the system, and no work-around solution is known.

Severity 3: Adversely affect the accomplishment of an essential ca-
pability but a work-around solution is known; or adversely af-
fect technical, cost, or schedule risks to the project or life cycle
support of the system, but a work-around solution is known.

Severity 4: Results in user/operator inconvenience but does not af-
fect a required operational or mission essential capability; or
results in inconvenience for development or maintenance per-
sonnel, but does not affect the accomplishment of these respon-
sibilities.

Severity 5: Any other issues.

Fig. 2 Severities for robotic missions.

Severity 1: A failure which could result in the loss of the human-
rated system, the loss of flight or ground personnel, or a perma-
nently disabling personnel injury.

Severity IN: A failure which would otherwise be Severity 1 but
where an established mission procedure precludes any opera-
tional scenario in which the problem might occur, or the number
of detectable failures necessary to result in the problem exceeds
requirements.

Severity 2: A failure which could result in loss of critical mission
support capability.

Severity 2N: A failure which would otherwise be Severity 2 but
where an established mission procedure precludes any opera-
tional scenario in which the problem might occur or the number
of detectable failures necessary to result in the problem exceeds
requirements.

Severity 3: A failure which is perceivable by an operator and is nei-
ther Severity 1 nor 2.

Severity 4: A failure which is not perceivable by an operator and is
neither Severity 1 nor 2.

Severity 5: A problem which is not a failure but needs to be cor-
rected such as standards violations or maintenance issues.

Fig. 3 Severities for human-rated missions.

Menzies: Text Mining PITS - preliminary report

5of11

artifact

self-

confidence severityX
A
notes S
visor
| 4
training
agent
severityY

Fig. 4 An agent for reviewing issue severity levels. Gray nodes denote humans.

Menzies: Text Mining PITS - preliminary report

3 How it Works

The essential problem of text mining is dimensionality re-
duction. Standard machine learners work well for instances
that are nearly all fully described using dozens (or fewer) at-
tributes [6]. But text mining applications (e.g. analyzing PITS
detect reports) must process thousands of unique words, and
any particular paragraph may only mention a few of them [1,
5]. Therefore, before we can apply machine learning to text
mining, we have to reduce the number of dimensions (i.e. at-
tributes) in the problem.

There are several standard methods for dimensionality re-
duction such as tokenization, stop lists, stemming, Tf*Idf and
InfoGain. All these methods are discussed below.

3.1 Tokenization

Figure 5 shows the tokenizer used in this study. Words are
reduced to simple tokens via (e.g.) removing all punctuation
remarks, then sending all upper case to lower.

This code assumes that the input is some tab separated
columns, one record per line. Two special columns are rec-
ognized: the Wanted column (i.e. the column with the text)
and a Klass column (i.e. the column with the goal value- in
our case, the severity level). The Wanted column is extracted,
tokenized, and printed one record per line with the associated
Klass (severity) value.

3.2 Stop lists

Another way to reduce dimensionality is to remove “dull”
words via a stop list of “dull” words. Figure 6 shows a sample
of the stop list used in this study. IV&V’s chief engineer, Ken
Costello, reviewed this list and removed “counting words”
such as “one”, “every”, etc, arguing that “reasoning about
number of events could be an important requirement”. Fig-
ure 7 shows code for a stop-list function.

config
Want=4 # analyst’s notes are in column 4
Klass=5 # severity is in column 5

workers

tokenize () { column $1 | lowerCase | alphasNotLasts; }
lowerCase() { tr A-Z a-z $1 ; }
column () {

gawk —-F"\t" ’/ NR > 1 {if($Klass) Class=$Klass;
print $Goal " " Class}
’ Klass=${Klass} Goal=$Want $1 ; }
alphasNotLast () {
don’t tokenize last column- it holds the class
gawk ' { for (I=1;I<NF; I++)

gsub (/["abcdefghijklmnopgrstuvwxyz]/," ",$I);

print $0
sl
}

main

cat report | tokenize > words

Fig. 5 Tokenization.

6of 11
a about across again against
almost alone along already also
although always am among amongst
amongst amount an and another
any anyhow anyone anything anyway
anywhere are around as at

Fig. 6 24 of the 262 stop words used in this study.

stops () { gawk '
NR==1 {
while (getline < Stops) Stop[$0] = 1;
while (getline < Keeps) Keep[$0] = 1;

}
{ for(I=1;I<=NF;I++)
if (Stop[$I] && ! Keep[$I])
$I=""
print $0
oA
Stops="$Here/stop_words.txt" \
Keeps="$Here/keep_words.txt" \
S1

Fig. 7 Applying a stop-list.

RULE EXAMPLE
ATIONAL -> ATE relational -> relate
TIONAL -> TION conditional -> condition
rational -> rational
ENCI -> ENCE valenci -> valence
ANCI -> ANCE hesitanci -> hesitance
IZER -> IZE digitizer -> digitize
ABLI -> ABLE conformabli —-> conformable
ALLI -> AL radicalli -> radical
ENTLI -> ENT differentli -> different
ELI -> E vileli -> vile
OUSLI -> 0USs analogousli —-> analogous
IZATION -> 1IZE vietnamization -> vietnamize
ATION -> ATE predication -> predicate
ATOR -> ATE operator -> operate
ALISM -> AL feudalism -> feudal
IVENESS -> 1IVE decisiveness -> decisive
FULNESS -> FUL hopefulness —-> hopeful
OUSNESS -> 0US callousness -> callous
ALITI -> AL formaliti -> formal
IVITI -> 1IVE sensitiviti -> sensitive
BILITI -> BLE sensibiliti -> sensible

Fig. 8 Some stemming rules.

3.3 Stemming

Terms with a common stem will usually have similar mean-
ings. For example, all these words relate to the same concept.

CONNECT
CONNECTED

CONNECTING
CONNECTION

— CONNECTIONS

Porter’s stemming algorithm [3] is the standard stemming
tool. It repeatedly replies a set of pruning rules to the end of
words until the surviving words are unchanged. The pruning
rules ignore the semantics of a word and just perform syntac-
tic pruning (e.g. Figure 8).

Menzies: Text Mining PITS - preliminary report

7 of 11

stemming () { perl S$Here/stemming.pl $1 ; }

Fig. 9 Using a downloaded stemmer.

#update counters for all words in the record
function train/() {
Documents++;
for (I=1; IKNF; I++) {
if(++In[S$I,Documents]==1)
Document [$I]++
Word[$I]++
Words++
}
}
computer tfidf for one word
function tfidf (i) {
return Word[i]/Words*log (Documents/Document [1])

}

Fig. 10 tfidf.awk.

tfidf () {
gawk —-f tfidf.awk --source ’
{ train() }
END { OFS=","; for(I in Word) print I, tfidf(I) } ’ $1 ;
)8t

}
tfidf | sort -t, -n +0 | tail -100

Fig. 11 Finding the 100 highest Tf*Idf words using the ¢ fidf.awk
code of Figure 10.

Porter’s stemming algorithm has been coded in any num-
ber of languages® such as the Perl stemming.pl used in this
study (see Figure 9).

3.4 Tf<IDF

Tf*1df is shorthand for “term frequency times inverse docu-
ment frequency”. This calculation models the intuition that
jargon usually contains technical words that appear a lot, but
only in a small number of paragraphs. For example, in a doc-
ument describing a space craft, the terminology relating to
the power supply may be appear frequently in the sections
relating to power, but nowhere else in the document.
Calculating Tf*Idf is a relatively simple matter:

— Let there be Words number of documents;

- Let some word I appear Word[I] number of times inside
a set of Documents;

- Let Document][I] be the documents containing I.

Then:
T fxId = Word[i]/Wordsxlog(Documents/Document]i])

The standard way to use this measure is to cull all but
the £ top Tf*Idf ranked stopped, stemmed tokens. This study
used k£ = 100 (see Figure 10 and Figure 11).

2 http://www.tartarus.org/martin/
PorterStemmer

data set Domain number % of total
1 FSW 104 67%
Ground 17 11%

Instruments 33 21%

p Payload 584 75%
Spacecraft 188 24%

S AIA 62 4%
EVE 68 4%

SDO 1 0%

Ground 17 1%

Spacecraft 1353 90%

Fig. 12 Domains in the this study.

3.5 InfoGain

According to the In foGain measure, the best words are those
that most simplifies the target concept (in our case, the distri-
bution of severities). Concept “simplicity” is measured us-
ing information theory. Suppose a data set has 80% sever-
ity=5 issues and 20% severity=1 issues. Then that data set
has a class distribution Cy with classes ¢(1) = severity5
and c¢(2) = severityl with frequencies n(1) = 0.8 and
n(2) = 0.2. The number of bits required to encode an ar-
bitrary class distribution Cy is H(C)) defined as follows:

N = Zcec n(c)
p(c) = n(c)/N (1)
H(C) = =3 ccp(c)logap(c)

After discretizing numeric data® then if A is a set of at-
tributes, the number of bits required to encode a class after
observing an attribute is:

HECA) = =3 p@3__plcla)loga(p(cla)

The highest ranked attribute A; is the one with the largest
information gain; i.e the one that most reduces the encoding
required for the data affer using that attribute; i.e.

InfoGain(A;) = H(C) — H(C|4;))

where H(C') comes from Equation 1. In this study, we will
use InfoGain to find the top N = 10 most informative tokens.

3 E.g. given an attribute’s minimum and maximum values, replace
a particular value n with (n —min)/((max —min)/10). For more
on discretization, see [2].

Menzies: Text Mining PITS - preliminary report

8of 11

1 p s
700 700 700
600 + 1 600 ~ 1 600 + -
500 r 1 500 + 1 500 E
400 . 400 . 400 -
300 r R 300 + 1 300 + -
200 E 200 E 200 q
100 - 4 100 - |1 100 - 11K

0 e N 0 I | | | O i |
12345 12345 12345
severity severity severity

Fig. 13 Severities.

4 Results

4.1 Data

LLENTPRIN

The above methods where applied to p’, “s”; i.e. three
anonymous PITS projects supplied by Ken Costello. The do-
mains mentioned in these data sets are shown in Figure 12.
This data contained 155, 773, 4661 issue reports for projects
“l,p,s” (respectively); i.e. “I” was quite small and “s” was
quite large. The issues were created and found in various
phases (see Figure 14- note that there is no created/found data
for project ““s” since that project lacked phase information).

“1’7 113
>

As shown in Figure 13, the severities in this data were not
evenly distributed:

— Most of the severities where 3 or 4
— The data contained only one severity 1 record and 91
severity 2 records.

4.2 Stopping and Stemming

Figure 15 shows some disappointing results for stopping and
stemming. In these data sets, stopping and stemming methods
barely reduced the number of tokens.

4.3 TFIdf

Tf*1df proved to be more powerful: Figure 16 shows that in
all three data sets, there exist a very small number of words
with high Tf*Idf scores. The 100 top Tf*Idf tokens from each
data set were extracted and the issue reports were rewritten
as frequency counts for those top 100 tokens, with the sever-
ity value for each record written to the end of line (see Fig-
ure 17). A review of the top 100 tokens showed little similar-
ity in the top-ranked tokens; i.e. this study of three data sets
found no general pattern in the terminology associated with
severity.

project=l Found in
Requirements | Design Implementation
Created in Requirements | 28 8 79
Design 23
Implementation 15
project=p Found in
Design SW require- | SW Prelimi- | Implementation | SW
ments design nary design imple-
mentation
Created in Design | 362
SW requirements design 50 87
Subsystems requirements design 19
Implementation 69
SW implementation 165
Fig. 14 Leakage matrices for project=I1 (above) and project=b (below).
1 p s
project | project p project s
100000 [ynigee] 100000 | yniges] 100000 [yriges .
%) %2} (2] —_
B2 10000 ¢ E 2 10000 ¢ . E ° 10000 ¢ - E
o o +—+ o
= - 2 3
1000 ¢ I a———— 1000 ¢ E 1000 ¢ E
100 Il Il Il 100 Il Il Il 100 Il Il Il
T % 3 T % £ § B
= o c = o £ = o =
£ 8. g £ 8. £ £ % [
® 2 1] L] 2

Fig. 15 Effects of stopping and stemming.

Menzies: Text Mining PITS - preliminary report 9of 11
1 P S
ok_| ok_p
T T T T T ; T T T T T T M
L i ¥ 0.1
5 0.04 ; 5 004 7 s 008
: 2 : oo
= 002 1 0.02 | 8 = .
m*"f 0.02
4 T—— L 1 1 h
o O O ©O O o o
°©c 33833883 3 ©c88388888 R § 3388
I < N N M A N M < O © N~ —
unique words unique words unique words

Fig. 16 Tf*Idf scoring for the stopped, stemmed tokens. Note that most tokens can be ignored since they have very low Tf*Idf scores.

NR ==1 {
grab the words we want to count
while (getline < "toplO0") Want[$0]
write the header
for (I in Want)
printf("%s,",I);
print "severity"

1;

}

NR > 1 { # rewrite each record as counts of "Want"
gsub(/ /,"",$2); counts(S$1l,Want, $2)

}

function counts(str,want,klass, sum, out, i, j, n, tmp,got) {

n=split (str,tmp," ");
for (i=1;i<=n;i++)
if (tmp[i] in want)

got [tmp[i]]++;
for(j in want) {
sum += got[7j]
out out got[3J]+0 ", ";

}

if (sum)

print out "_" klass

Fig. 17 Re-writing issue reports as frequency counts.

4.4 Learning

A classier was then called to learn a predictor for the sever-
ity attribute using the other 100 attributes. The classifier used

here was a JAVA version of Quinlan;s C4.5 decision tree learner [4

6]. C4.5 applies InfoGain to find the best root of a tree. Data
is then split according to the values of the attribute and the
algorithm recurses into every split.

For each data set, the classifier was called twice:

— Once using 100 independent attributes;
— Once using the 10 independent attributes ranked as “top
ten” by InfoGain.

Figure 18 and Figure 19 show the decision trees learned from
100 and 10 attributes for project “I”. As might be expected,
the tree learned from 100 attributes is larger than the one
learned from 10 attributes.

At the bottom of Figure 18 and Figure 19 are confusion
matrices that report how many times records of each severity
were classified as severity 1,2,3,4, or 5. This matrix shows
average performance results of decision trees learned from
ten 90% samples of project “1”, then tested on the remain-
ing 10% of the data. These confusion matrices offer the self-
confidence measures discussed in §2:

— For example, in Figure 18, severity 3 issues were classi-

fied as severity 3 in 767+611 = 87% of cases. That is, if the

decision tree:

child <= 0

buffer <= 0

| sr <= 0

| after <= 0

gnac <= 0

| statement <= 0

potenti <= 0

| fswr <= 0

| | sb <=0

| | | variabl <= 0: _3
| | | variabl > 0: _4
| | sb > 0: _4

| fswr > 0: _4

potenti > 0: _3

| statement > 0: _4
gnac > 0: _4
fter > 0: _4

§ - - -

a b c <-- severity classified as
76 11 0 | a =3
3221 0| b=4

1 0 0| c=2

Fig. 18 Project “I"’s results, using 100 attributes.

0 ..
decision tree:

child <= 0

| after <= 0

| | gnac <= 0: 3
| | gnac > 0: _4
| after > 0: _4
child > 0: _4

confusion matrix:

a b c <-— severity classified as
87 0 0] a=3
48 5 0| b =4

1 0 0| c¢c=2

Fig. 19 Project “I"’s results, using 10 attributes.

agent reports that the issue is severity 3, then it is highly
likely that the agent is right and other severity allocations
are wrong.

However, in the same figure, the results for severity 4
classification is not as impressive: these severities were
only correctly classified in % = 39% of the tests.
That is, if the agent reports that the issue is severity 4,
then it is unlikely that the agent is right.

Menzies: Text Mining PITS - preliminary report

10 of 11

decision tree:

convent <= 0
| unus <= 0: _3

| unus > 0: _4
convent > 0: _4

confusion matrix:

a b c <-- classified as
46 171 0 | a=_4

3 473 0 | b =_3

0 38 0 | c=_2

Fig. 20 Project “p”’s results, using 10 attributes.

(Note that that the classifiers of Figure 18 and Figure 19
never correctly classified any issue as severity 1 or 2- thought
one severity 2 issue was incorrectly classified as severity 3.
This is not a fault of our method; rather it is a quirk of the
training data in Figure 13 that has no severity 1 issues and
only one severity two issues. In the future, we will repeat this
method for data sets with more severe issues.)

One problem with decision tree learning is that the tree
can be unreadable. Project “1” is our smallest data set and its
decision tree (in Figure 18) would be hard to explain to most
users. Worse, other larger data sets yield far larger and far
more confusing decision trees. For example, the decision tree
from project “s” is ten times larger than Figure 18.

The trees learned from the ten attributes selected by Info-
Gain are much more readable (see Figure 19, Figure 20, Fig-
ure 21). For example, Figure 19 has only six nodes and the
tree learned from ten project ““s” attributes has only 40 nodes
(see Figure 21). Such smaller trees have interesting perfor-
mance properties:

— Smaller trees can’t handle as many special cases as the
larger trees. Hence, the performance of the smaller the-
ory can be worse than the more elaborate theory. For ex-
ample, the first and last lines of Figure 22 shows that the
probabilities of detecting severity 2 and 4 errors is always
decreased by InfoGain.

— InfoGain can also discard attributes that tend to confuse
a decision tree learner. Hence, the performance of the
smaller theory can be better than the more elaborate the-
ory. For example, the middle row of Figure 22 shows
that InfoGain improved the ability of our agent to de-
tect severity 3 errors in projects “1” and “p” (but not in
“s”). Some of the improvements were remarkable In-
foGain+decision tree learning for projects “I” and “p”
yielded detectors with a 99% to 100% probability of de-
tecting severity 3 errors.

decision tree:

arrai <= 0

verifi <= 0

| s <=0

| test <=1

requir <= 0: _4
requir > 0

I doe <= 0

| | requir <= 1: _3
| | requir > 1: _4
| doe > 0

| | requir <= 2
I

I

I

| | requir <= 1: _3
| | requir > 1: _4
| requir > 2: _3

scenario <=1

| line <= 0: _3

| line > 0

| | scenario <= 0: _4
| | scenario > 0: _3

I
|
|
|
|
|
|
|
|
I
t
|
|
|
|
|
| scenario > 1: _4
0
doe <= 0
| test <= 0: _4
| test > 0: _3
doe <= 0
| line <= 0
| s <=0
| | requir <= 1: _3
requir > 1: _4

comm <= 0: _3

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
|
I
I
I
I
I
I
I
I
I
I
I
I
I
a
I
| comm > 0: 2

confusion matrix:

a b c d <-- classified as
411 273 0 0 | a=_3
212 411 0 0 | b =_4
18 18 16 0 | c=_2
0 1 0 0 | d=_1

Fig. 21 Project “s”’s results, using 10 attributes.

1 P s

100 100 100
100 10 S+ 100 10 S+ | 100 10 <&

0 0 0.00 520 00 38 31 082
83 100 1.20 9 99 1.1 73 60 0.82
39 9 023 52 21 04] 71 65 091

& W ol severity

Fig. 22 Perecent robabilities of detection using 100 attributes or just
the 10 selected by InfoGain for projects “1”, “p”, “s” The difference
in performance is shown in the columns marked with L 10 O (and num-
bers greater than one mean that InfoGain has made the performance
better).

Menzies: Text Mining PITS - preliminary report

11of 11

5 Discussion

Over the years, the Project Issue Tracking System (PITS) has
been extensively and repeatedly modified. Prior attempts at
generating generalized conclusions from PITS have required
significant levels of manual, hence error-prone, processing.

Here, we show that conclusions can be reached from PITS
without heroic effort. Using text mining and machine learn-
ing methods, we have shown that it is possible to automati-
cally generate predictors for severity levels from the free text
entered into PITS.

Better yet, the detectors learned via the methods described
in this report come with a set of self-confidence measures. In
some cases, that self-confidence was very high (e.g. a 100%
confidence in our ability to recognize severity 3 errors in
project “I” using the tiny decision tree of Figure 19). That
is, the user of our proposed agent would know when to trust,
and when to ignore, the agent’s conclusions.

The current implementation of the agent has its limits. For
example:

— The training data used in the study had very few level
1 and level 2 severity problems. Hence, there was not
enough data for our agent to learn high probability de-
tectors for high severity issues.

— In each of the three data sets studied here, useful predic-
tors were learned for each data set but the data sets were
so different that the predictors are not general outside of
their training domain.

— Some of the predictions have low probability, particularly
for severity 1 and severity 2 errors.

Hence, for the next version of this report, we will:

— Repeat this study using different data sets containing higher
severities.

— Study more data sets looking for patterns that are general
to multiple training domains.

— Explore a wider range of text mining techniques to im-
prove our probability of detecting the severity. For exam-
ple:

— This study used various “magic numbers”; e.g. the
100 Tf*Idf token and the top 10 InfoGain-scored to-
kens. Subsequent studies should check how changing
those magic numbers effects the outcome.

— Stemming and stopping seemed to be of little value
in this study. Perhaps our performance changes if we
ignore one or both of them?

— Work with di-grams/ tri-grams of tokens instead of
one-grams;

— Faurther filter the tokens by removing tokens that score
less or more than some minimum or maximum counts;

— Using domain knowledge, add in special “keep words”
representing core domain concepts;

— Augment the syntactic analysis used in this study with
a more semantic analysis (e.g. more background knowl-
edge of error types);

— Normalize the Tf*Idf counts using different filters (e.g.
logarithms).

References

1. R. A. Baeza-Yates and B. Ribeiro-Neto, editors. Modern Infor-
mation Retrieval. Addison-Wesley, 1999.

2. J. Dougherty, R. Kohavi, and M. Sahami. Supervised and unsu-
pervised discretization of continuous features. In International
Conference on Machine Learning, pages 194-202, 1995.

3. M. Porter. An algorithm for suffix stripping. In K. S. Jones and
P. Willet, editors, Readings in Information Retrieval, San Fran-
cisco: Morgan Kaufmann. 1997.

4. R. Quinlan. C4.5: Programs for Machine Learning. Morgan
Kaufman, 1992. ISBN: 1558602380.

5. G. Salton and M. J. McGill. Introduction to Modern Information
Retrieval. McGraw Hill, 1983.

6. 1. H. Witten and E. Frank. Data Mining: Practical Machine
Learning Tools and Techniques with Java Implementations. Mor-
gan Kaufmann, 1999.

