
Bayesian Anomaly Detection (BAD v0.1)

Tim Menzies TIM@MENZIES.US

Lane Department of Computer Science and Electrical Engineering, West Virginia University, USA

David Allen DAVE@ANTIFORM.COM

Portland State University, Oregon, USA

Andres Orrego ANDRES.ORREGO@IVV.NASA.GOV

Global Science & Technology Inc, Fairmont, West Virginia

Abstract
Prior experiments with Bayesian rule generation
produced a scalable anytime learner. At its core,
that tool computes the likelihood of new events
as the product of frequencies of old events. Or-
rego and Menzies applied that tool to logs of an
F-15 flight simulator and showed that the same
tool can detect anomalous events which have not
been seen previously. This paper checks the
external validity of that prior experiment. In
twenty-five data sets, anomalous new situations
could be identified with high probabilities of de-
tection (average pd over 80%) and low probabili-
ties of false alarm (usually, pf ≤ 5%). These re-
sults strongly suggest that we can detect anoma-
lous events, even among very large data sets.

1. Introduction
Our goal is the development of a context-aware learning
system that:

• Goal1: Can understand what normal means for com-
plex software;

• Goal2: Can detect anomalous situations and alert as-
tronauts or ground control that urgent actions is re-
quired;

• Goal3: Can propose control actions to drive a sys-
tem from dangerous anomalous situations to safe and
known operational conditions.

The rest of this paper describes experiments with BAD (a
Bayesian anomaly detector), our best current candidate for

Appearing in Workshop on Machine Learning Algorithms for
Surveillance and Event Detection at the 23rd ICML, Pittsburgh,
PA, 2006. Copyright 2006 by the author(s).

achieving Goal1, Goal2, and Goal3. Our results will be
quote promising, but need further work if they are to be
applied in a NASA context. Hence, our next experiments
will be to see if the effects reported here can be repeated
in TRICK (a simulation framework) and ARES (a CEV in-
stantiation of TRICK).

2. Background
BAD relies on Bayes classifiers and the SPADE incremen-
tal discretizer.

2.1. Bayes Classifiers

Naı̈veBayes classifiers are based on Bayes’ Theorem. In-
formally, the theorem says next = old ∗ new i.e. what
we’ll believe next comes from how new evidence effects
old beliefs. More formally:

P (H |E) =
P (H)
P (E)

∏
i

P (Ei |H)

i.e. given fragments of evidence Ei and a prior probability
for a class P (H), the theorem lets us calculate a posteri-
ori probability P (H |E). Bayes classifiers are often called
naı̈ve since they assume that the frequencies of different
attributes are independent. In practice [Z. Zheng & Webb,
2000], the absolute values of the classification probabilities
computed by Bayes classifiers are often inaccurate. How-
ever, the relative ranking of classification probabilities is
adequate for the purposes of classification. Many studies
(e.g. [Hall & Holmes, 2003, Dougherty et al., 1995]) have
reported that, in many domains, this Naı̈veBayes classi-
fiers scheme exhibits excellent performance compared to
other learners. Domingoes and Pazzini [Domingos & Paz-
zani, 1997], offer an extensive theoretical analysis which
concludes, in the vast majority of cases, the independence
assumption will only confuse a Naı̈veBayes classifier in a
vanishingly small number of cases. Hence, Domingoes and

Bayesian Anomaly Detection (BAD v0.1)

GLOBALS: ‘‘F’’: frequeny tables; ‘‘I’’ : number of instances;
‘‘C’’: how many classes?; ‘‘N’’: instances per class
function update(class,train)

OUTPUT: changes to the globals.
INPUT: a ‘‘train’’ing example containing attribute/value pairs

plus that case’s ‘‘class’’
I++; if (++N[class]==1) then C++ fi

for <attr,value> in train
if (value != "?") then

F[class,attr,range]++ fi
function classify(test)

OUTPUT: ‘‘what’’ is the most likely hypothesis for the test case.
INPUT: a ‘‘test’’ case containing attribute/value pairs.
k=1; m=2 # Control for Laplace and M-estimates.
like = -100000 # Initial, impossibly small likelihood.
for H in N # Check all hypotheses.
{ prior = (N[H]+k)/(I+(k*C)) #⇐P (H)
temp = log(prior)
for <attr,value> in attributes
{ if (value != "?") then
inc= F[H,attr,value]+(m*prior))/(N[H]+m) #⇐P (Ei |H)
temp += log(inc) fi

}
if (temp >= like) then like = temp; what=class fi

}
return what

Figure 1. A simple Bayes Classifier. “?” denotes “missing values”. Probabilities are multiplied together using logarithms to stop numeric
errors when handling very small numbers. The m and k variables handle low frequencies counts in the manner recommended by Yang
and Webb [Yang & Webb, 2003, §3.1].

Pazzini suggest renaming Naı̈veBayes to Simple Bayes.

The function update in Figure 1 illustrates the simplic-
ity of a Bayes classifier: just increment a frequency table
F holding counts of the attribute values seen in the new
training examples. Note that a simple Bayes classifier only
needs the memory required for the F frequency counts, plus
a buffer just large enough to hold the test instance passed
to Figure 1’s classify function. Hence, it can scale to
very large data sets.

2.2. Discretization with SPADE

Bayes classifiers can be extended to numeric attributes in
several ways. The standard kernel estimation method as-
sumes the central limit theorem and models each numeric
attribute using a single Gaussian. Other methods don’t as-
sume a single Gaussian; e.g. John and Langley’s Gaussian
kernel estimator models distributions of any shape as the
sum of multiple Gaussians [John & Langley, 1995]. Other,
more sophisticated methods are well-established [Fayyad
& Irani, 1993], but several studies report that even sim-
ple discretization methods suffice for adapting Bayes clas-
sifiers to numeric variables [Dougherty et al., 1995,Yang &
Webb, 2002].

John and Langley note that their method needs all the nu-
meric values to build their kernel estimator. This is im-
practical for large data sets. Many discretization methods
violate the one pass requirement of a data miner: i.e. the
need to execute using only one scan (or less) of the data

since there many not be time or memory to go back and
look at a store of past instances. For example, Dougherty
et.al.’s [Dougherty et al., 1995] straw man discretization
method is 10-bins which divides attribute ai into bins of
size MAX(ai)−MIN(ai)

10 . If MAX and MIN are calculated
incrementally along a stream of data, then instance data
may have to be cached and re-discretized if the bin sizes
change. An alternative is to calculate MAX and MIN after
seeing all the data. Both cases require two scans through
the data, with the second scan doing the actual binning.
Many other discretization methods (e.g. all the methods
discussed by Dougherty et.al. [Dougherty et al., 1995] and
Yang and Webb [Yang & Webb, 2002]) suffer from this
two-scan problem.

In order to process infinite streams of data, we developed
a one-pass discretization method called SPADE (Single
PAss Dynamic Enumeration). SPADE scans the input data
once and, at anytime during the processing of X instances,
SPADE’s bins are available. SPADE adjusts bins (e.g.
when merging bins with very small tallies), the informa-
tion used for that merging comes from the bins themselves,
and not some second scan of the instances. Hence, it can be
used for the incremental processing of very large data sets.

Unlike standard Naı̈veBayes classifiers, SPADE makes no
assumptions about the underlying numeric distributions.
SPADE is similar to 10-bins but the MIN and MAX change
incrementally. The first value N creates one bin and sets
{MIN=N, MAX=N}. If a subsequent new value arrives in-
side the current {MIN,MAX} range, the bins from MIN

Bayesian Anomaly Detection (BAD v0.1)

to MAX are searched for an appropriate bin. Otherwise,
a SubBins number of new bins are created (default: Sub-
Bins=5) and MIN/MAX is extended to the new value. For
example, here are four bins:

i 1 2 3 4 min max
border 10 20 30 40 10 40

Each bin is specified by its lower border value. A variable
N maps to the first/last bin if it is the current {MIN,MAX}
value (respectively). Otherwise it maps to bin i where
borderi < N ≤ borderi+1. Assuming SubBins = 5,
then if a new value N = 50 arrives, five new bins added
above the old MAX to a new MAX=50:

i 1 2 3 4 5 6 7 8 9 min max
border 10 20 30 40 42 44 46 48 50 10 50

If the newly created number of bins exceeds a MaxBins pa-
rameter (default=the square root of all the instances seen
to date) then adjacent bins with a tally less than MinInst
(default: same as MaxBins) are merged if the tally in the
merged bins is less than a MaxInst parameter (default:
2*MinInst). Preventing the creation of very few bins with
big tallies is essential for a practical incremental discretizer.
Hence, SPADE checks for merges only occasionally (at the
end of each era), allowing for the generation of multiple
bins before they are merged.

SPADE runs as a pre-processor to update to Naı̈veBayes.
Newly arrived numerics get placed into bins and it is this
bin number that is used as the value passed to update or
Figure 1. Also, when SPADE merges bins, this causes a
similar merging in frequency tables entries (the F variable
of Figure 1).

The opposite of merging would be to split bins with un-
usually large tallies. SPADE has no split operator since we
did not know how to best divide up a bin without keeping
per-bin kernel estimation data (which would be memory-
expensive). Our early experiments suggested that adding
SubBins = 5 new bins between old ranges and newly ar-
rived out-of-range values was enough to adequately divide
the range. Our subsequent experiments (see below) were
so encouraging that we are not motivated to add a split op-
erator.

Figure 2 compares results from SPADE and John and Lan-
gley’s kernel estimation method using the display format
proposed by Dougherty, Kohavi and Sahami [Dougherty
et al., 1995]. In that figure, a 10*10-way cross validation
used three learners:

1. Naı̈veBayes with a single Gaussian for every numeric;
2. Naı̈veBayes with s kernel estimation method
3. The Figure 1 classifier with data pre-discretized by

SPADE.

 18

 15

 12

 9

 6

 3

 0

-3

ONMLKJIHGFEDCBA%
de

lta
 to

 N
B

 w
ith

 s
in

gl
e

ga
us

si
an

s

data sett

spade
nbk

Figure 2. Comparing SPADE and kernel estimation. Data
sets: {A=vowel, B=iris, C=ionosphere, D=echo, E=horse-
colic, F=anneal, G=hypothyroid, H=hepatitis, I=heart-c,
J=diabetes, K=auto-mpg, L=waveform-5000, M=vehicle,
N=labor, O=segment}.

Mean classification accuracies were collected and shown in
Figure 2, sorted by the means (c−a)−(b−a); that is, by the
difference in the improvement seen in SPADE or kernel es-
timation over and above a simple single Gaussian scheme.
Hence, the left-hand-side data sets of Figure 2 show exam-
ples where kernel estimation worked better than SPADE,
while the right-hand-side shows results where SPADE did
comparatively better. In two cases, SPADE’s one scan
method lost information and performed worse than assum-
ing a single Gaussian. In data set A, the loss was min-
imal (-1%), and in data set B SPADE’s results were still
within 3% of kernel estimation. In our view, the advantages
of SPADE (incremental, one scan processing, distribution
independent) compensate for its occasionally performing
less well than state-of-the-art alternatives, which require far
more memory.

3. BAD
BAD implements incremental anomaly detection by mon-
itoring the internals of a simple Bayes classifier. The core
of the classify function is the computation of the like-
lihood like value using the product of a set of frequency
counts divided by the frequency of each class These num-
bers are normalized between one and zero. If new examples
fall into poorly sample portions of the past behavior, then
that product will include several unusually small frequency
counts . The product of these reduced values will, in turn,
be much smaller than the usual likelihoods. That is, anoma-
lies can be detected when the likelihoods start dropping.

For example, Figure 3 shows an unsupervised learning ex-
periment (where instances lack any class symbol). In Fig-
ure 3, the modes of an F-15 simulator were labelled with
one of several symbols: nominal, errorA, errorB, etc. For
this experiment, when this data was passed to an incre-

Bayesian Anomaly Detection (BAD v0.1)

 1e-06

 1e-05

 0.0001

 15
error

9
monitor

 5 1
train

Average Max Likelihood

a
b
c
d
e

Figure 3. Learning normal flight (eras 1 to 8); monitoring five dif-
ferent flights a,b,..e (eras 9 to 16); injecting errors into eras 15,16.

mental simple Bayes classifier (running SPADE), the class
of all instances were replaced with a single label: class0.
The data was processed in eras of 100 instances. The first
eight eras (800 instances) show the learner nominal flight
simulator data. Updating of the frequency tables was then
disabled and the system watched over five entirely differ-
ent flights, each ending with one of our errors a,b,c,d,e.
The classify routine of Figure 1 was modified to return
the classification with the maximum likelihood, as well as
that maximum likelihood value. Figure 3 shows the aver-
age maximum likelihood seen in each era. In all cases, the
era 15,16 errors dramatically changed the likelihoods: they
dropped by two orders of magnitude from the pre-error val-
ues, and dropped below the likelihoods seen during training
(eras 1 to 8).

While an encouraging result, the results of Figure 3 come
from a single data set. The rest of this paper explores the
external validity of Figure 3. We will see that in 25 data
sets, BAD could identify the point at which a previously
unseen class appeared in a dataset.

4. Experiments
In the following experiments, data sets from the UCI
database are sorted such that a jumbled set of N classes
are presented to BAD followed by a new class N + 1. It
will be shown that BAD can recognize the moment when
the anomaly that has not been seen before (New) presents
itself. To make the experiment interesting, the rig runs in
a one-pass incremental learning mode (this is the mode re-
quired when processing very large data streams).

4.1. Data Filtering

A supervised batch learner can search all the data before
drawing any conclusions. An unsupervised incremental

learner, on the other hand, makes it conclusions using just
part of the data:

• i.e. just the data seen to date
• i.e. just the independent attributes without any knowl-

edge of the dependent class values.

Hence, by definition, an incremental unsupervised learner
must perform worse than a supervised batch learner.

A corollary of this is that we should not ask an unsuper-
vised incremental learner to find what can’t be found by a
supervised batch learner. Consequently, we remove from
the data sets classes with PDs (as found by supervised
batch learning) below a certain threshold T%. In our ex-
periments we used T ∈ {80, 60, 40, 20} and, for reasons of
space, present only T ∈ {80, 20} Note that at T = 80%,
we are searching for classes that are very easy to find while
at T = 20%, we are searching classes that are very hard to
find.

Phase one of our experiments was to remove classes with a
supervised batch PD < T . The filtering was performed it-
eratively as follows. WEKA’s [Witten & Frank, 1999] sim-
ple Bayes Classifier was run on the data. After each itera-
tion, the class with the lowest probability of detection lower
than I was removed. This was repeated until all remaining
classes had a PD higher than or equal to the threshold.

Any data sets that ended up with zero or one class were re-
moved. At low T values, all the data sets were used but at
high T values, 40% of the classes were pruned. The results
of pruning at PD < 0.8 are shown in Figure 4. Ten data
sets had no classes with PD ≥ 0.8 (breast-cancer, colic,
credit-a, credit-g, diabetes, heart-c, heart-h, sick, sonar,
vehcile) so these were not used in the T < 80% experi-
ments.

4.2. Training/Test Set Generation

Having filtered the classes, the data within each data set
was sorted ten times as follows. All our subsequent results
are averages over the ten trial.s

If a data set contained (say) classes A, B, etc and C, then
three experiments were performed: one each for A / not-A,
B / not-B, etc. For each class in a data set, a pair of files
were created, one for the training set, and one for the test
set.

For a training set, if the target class was A, then the set
was created by sampling instances from the filtered data
that were not classified as A. The number of instances per
class was chosen randomly between 300 and 3000 and the
instance sampling from each class was done randomly with
replacement. In the final file, the instances were grouped by
class, with the class order randomly chosen.

Bayesian Anomaly Detection (BAD v0.1)

dataset Classes Attributes Instances
anneal.arff 5 / 5 38 898 / 898
audiology 24 / 4 69 226 / 134
autos 6 / 3 25 205 / 103
breast-cancer 2 / 0 9 286 / 0
colic 2 / 0 22 368 / 0
credit-a 2 / 0 15 690 / 0
credit-g 2 / 0 20 1000 / 0
diabetes 2 / 0 8 768 / 0
heart-c 2 / 0 13 303 / 0
heart-h 2 / 0 13 294 / 0
hypothyroid 4 / 2 29 3772 / 3576
ionosphere 2 / 2 34 351 / 351
kr-vs-kp 2 / 2 36 3196 / 3196
letter 26 / 11 16 20000 / 8498
mushroom 2 / 2 22 8124 / 8124
primary-tumor 21 / 3 17 339 / 133
segment 7 / 5 19 2310 / 1650
sick 2 / 0 29 3772 / 0
sonar 2 / 0 60 208 / 0
soybean 19 / 18 35 683 / 592
splice 3 / 3 61 3190 / 3190
vehicle 4 / 0 18 846 / 0
vote 2 / 2 16 435 / 435
vowel 11 / 5 13 990 / 450
waveform-5000 3 / 2 40 5000 / 3308

Figure 4. Data sets before/after pruning classes with PD < 0.8.

The test sets contained two parts:

Test1: If the target class was A, then the first part contained
only instances that were not classified as A. These in-
stances were chosen first by randomly selecting a not-
A class, then by randomly sampling an instance of that
class with replacement.

Test2: The other part contained only instances of class A, se-
lected randomly with replacement from the data set.

The number of instances for both sections were chosen in-
dependently, randomly selecting a size between 600 and
3000. The values for minimum train and test size (multiples
of 300) come from the SAWTOOTH research. That work
showed that the performance of many learners plateaued
after a few hundred instances. Very few needed more than
300 instances to learn all that they could from the source
data. Note also that the way our rig is defined, if a data set
has less than 300 (or 600) instances, this experiment just
over-sampled (at random, with replacement) the available
data.

Figure 5 details the training and test sets generation
method.

4.3. Training

Training was performed on the training sets. For a par-
ticular pair of trainingSet, testSet files, the training set
contains all classes from the data set except one.

Training on these sets was performed exactly as it was done
in the original SAWTOOTH [Menzies & Orrego, 2005].
Training was performed on instances with a window size of
150, in a supervised mode using a simple Bayes classifier.

trainMin = 300
trainMax = 3000
testMin = 600
testMax = 3000

foreach targetClass in dataSet
{ #----------- generate training data -----------

tempClassList = Classes(dataSet); # all classes
RemoveClass(tempClassList, targetClass); # one class
classOrder = RandomOrder(tempClassList); # randomize
foreach class in classOrder
{ instanceArray = GetInstanceArray(dataSet, class);

instanceCount = random number in trainMin ... testMin;
foreach (1 ... instanceCount)
{ # randomly select one instance

instance = SelectRandomEntry(instanceArray);
write instance to training file
WriteTrainingFileInstance(instance);

} }
#----------- generate test data -----------
instanceCount = random number in testMin ... testMax;
write theses instances from all classes but target
foreach (1 .. instanceCount)
{ class = SelectRandomEntry(classOrder);

instanceArray = GetInstanceArray(dataSet, class);
instance = SelectRandomEntry(instanceArray);
WriteTestFileInstance(instance);

}
instanceArray = GetInstanceArray(dataSet, targetClass);
instanceCount = SelectRandomNumber(600, 3000);
foreach (1 .. instanceCount)
{ # randomly select one instance

instance = SelectRandomEntry(instanceArray);
WriteTestFileInstance(instance);

} }

Figure 5. Generating training/test data.

Once stability was achieved updates to the theory are dis-
abled. If instability returned, learning was re-enabled until
stability returned. SPADE used to incrementally discretize
numeric attributes for the Bayes Classifier.

4.4. Testing

Testing followed the same outline as training, but instead
of training in an supervised mode, we attempted to detect
when the new class appeared in an unsupervised mode. The
code is shown in Figure 6. Just like during training, the
era window size was set to 150, stability was tested with
the statistical z-test, and learning was re-enabled when the
behavior became unstable.

The statistical tables for the simple Bayes classifier and
the bins for the SPADE discretizer were initialized during
training. At the beginning of testing, the first era was con-
sidered to be stable by default.

Since testing was run in an unsupervised mode, the classes
of the instances in the test data were ignored. Instead of
running the z-test on statistics of successful instance clas-
sification, it was run on statistics of the of the maximum
likelihood returned by classification. In general, if an in-
stance belongs to a class that the simple Bayes classifier
has been trained on, the maximum likelihood of that clas-
sification would be relatively high. If the instance belongs

Bayesian Anomaly Detection (BAD v0.1)

Globals:
testSet: the test data set
zThresh: the threshold for the z-test
expectedEra: the era where the new class appeared in the test data
only used for scoring

---------- initialize ----------
eraNum = 1; # current era number
stableCount = 3; # number of stable eras
detectedClass = -1; # number of the detected classes
totalCount = 0; # running total of instances
totalSum = 0; # running sum of log max likelihoods

---------- run over test set eras --------
foreach era in testSet
{ instanceCount = 0;

logMaxLikelihoodSum = 0;
foreach instance in era
{ # classify instance, get the log of the max likelihood

logMaxLikelihood = log(Classify(instance));
logMaxLikelihoods[instanceCount] = logMaxLikelihood;
logMaxLikelihoodSum += logMaxLikelihood;
if (detectedClass >= 0)

SetClass(instance, "__" + detectedClass + "__");
instanceCache[instanceCount] = instance; # cache
++instanceCount; # increment

}

eraMean = logMaxLikelihoodSum / instanceCount;
eraStdev = CalculateStdDev(logMaxLikelihoods);
handle the first era, this forces the first era to be treated as stable
if (eraNum == 1) totalMean = eraMean;
standardized z-test
zTest = ZTest(eraMean, totalMean, eraStdev, instanceCount);

if (zTest < zThresh) # if unstable
{ # only count as a new class if we are currently stable, otherwise

a double detection could result
if (stableCount >= 3)
{ ++detectedClass; # new class number

detectedClassEra[detectedClass] = eraNum; # record where found
}
stableCount = 0; # mark unstable

}
else # else, keep tracking
{ totalCount += instanceCount;

totalSum += logMaxLikelihoodSum;
totalMean = totalSum / totalCount;

}

if (stableCount < 3) # train if recently unstable
{ Train(instanceCache);

reset total values while unstable
totalCount = instanceCount;
totalSum = logMaxLikelihoodSum;
totalMean = eraMean;

}

++eraNum; # count eras
++stableCount; # count stable eras
delete instanceCache; # prep for next era
delete logMaxLikelihoods; # prep for next era

}
<PD, FP> = ScoreResult(expectedEra, detectedClassEra);

Figure 6. Training.

Bayesian Anomaly Detection (BAD v0.1)

Data Set Classes PD% FP%
segment 5 88.0 0.0
soybean 18 94.4 0.6
letter 11 99.1 0.0
audiology 4 100.0 0.0
ionosphere 2 100.0 0.0
kr-vs-kp 2 100.0 0.0
mushroom 2 100.0 0.0
primary-tumor 3 100.0 0.0
splice 3 100.0 0.0
vote 2 100.0 0.0
vowel 5 100.0 0.0
waveform-5000 2 100.0 0.0
anneal 5 100.0 2.0
autos 3 100.0 3.3
hypothyroid 2 100.0 5.0

average: 98.8 0.7

Figure 7. Minumum PD = 0.8, z-test α = 0.00001.

to a new class, the maximum likelihood will be relatively
low. The z-test was used to recognize when the test data
switched from instances of known classes, to instances of
the new class.

The threshold for the z-test comparison was passed into the
algorithm. When the result of the z-test dropped below this
threshold, the era was marked as unstable and learning was
re-enabled. Each time this occurred, a new class was cre-
ated and later instances were marked as this class. Detec-
tion of new classes was then turned off until stability was
achieved to prevent duplicate detection of the new class.
After three eras of stable behavior the data was marked as
stable and learning was disabled.

To score the results of testing, the code stored the era where
each new class was detected. Depending on where within
an era the new class appeared, the new class might be de-
tected within the era where it first appeared, or it might be
detected in the next era. In either case this class detection
was counted as a positive detection (PD). Any other class
detections were counted as false positives (FP).

4.5. Results

Initially, large false alarm rates were were seen until the
z-statistic α threshold was adjusted from 0.01 to 0.00001.
The results for {α = 0.00001, T = 80%} are shown in
Figure 7. Since T = 80% selects for the most detectable
classes so it is hardly surprising that these results are quite
good: mean PD ≈ 99% and mean PF < 1%.

The T = 20% results are shown in Figure 8. Note as T de-
creases, we search for a larger number of less detectable
classes (so the number of rows in the results tables in-
crease). The hardest test of our rig is Figure 8 where BAD
searches for anything down to T = 20%. Even here, the
results are promising: mean PD ≈ 80%; mean PF < 5%.

Data Set Classes PD% FP%
credit-g 2 30.0 35.0
breast-cancer 2 50.0 0.0
sick 2 50.0 0.0
waveform-5000 3 53.3 10.0
diabetes 2 55.0 10.0
primary-tumor 10 56.0 10.0
vehicle 3 56.7 0.0
vowel 11 74.5 4.5
colic 2 75.0 20.0
letter 26 82.7 0.8
autos 6 86.7 0.0
splice 3 93.3 6.7
soybean 19 94.7 0.5
kr-vs-kp 2 95.0 0.0
segment 6 95.0 0.0
hypothyroid 3 96.7 0.0
anneal 5 100.0 0.0
audiology 8 100.0 0.0
credit-a 2 100.0 0.0
heart-c 2 100.0 0.0
heart-h 2 100.0 0.0
ionosphere 2 100.0 0.0
mushroom 2 100.0 0.0
sonar 2 100.0 0.0
vote 2 100.0 0.0

average: 81.8 3.9

Figure 8. Minimum PD = 0.2, z-test α = 0.00001.

5. Conclusion
Repeating our introduction, our goal is the development of
a context-aware learning system that:

• Goal1: Can learn “normal” for complex software;
• Goal2: Can detect anomalous situations and alert as-

tronauts or ground control that urgent actions is re-
quired;

• Goal3: Can propose control actions to drive a sys-
tem from dangerous anomalous situations to safe and
known operational conditions.

It turns out that Goal1 and Goal2 are complimentary: if a
system understands “normal” it can recognize “anomaly”
and vice versa. Hence, this paper has explored the specula-
tion that an incremental simple Bayes classifier can also be
used for Goal1 and Goal2. There are many systems engi-
neering advantages to using one tool for multiple purposes,
not the least of which is that optimizations of that single
tool can benefit many purposes. For example, the particu-
lar data miner use here has a very small memory footprint
and hence should scale to very large data sets.

Our results are very promising: even for hard to detect
classes, this rig had over an 80% probability of detection
of the arrival of a class that has never been seen before.
Hence, we are motivated to persist with this approach.

Nevertheless, while promising, these results are not based
based on NASA flight systems. Our next experiments plans
to use TRICK (a simulation framework) and ARES (a CEV
instantiation of TRICK) to attempt the construction of a
real-time flight monitor and repair agent for CEV.

Bayesian Anomaly Detection (BAD v0.1)

References
Domingos, P., & Pazzani, M. J. (1997). On the optimal-

ity of the simple bayesian classifier under zero-one loss.
Machine Learning, 29, 103–130.

Dougherty, J., Kohavi, R., & Sahami, M. (1995). Super-
vised and unsupervised discretization of continuous fea-
tures. International Conference on Machine Learning
(pp. 194–202).

Fayyad, U. M., & Irani, I. H. (1993). Multi-interval dis-
cretization of continuous-valued attributes for classifi-
cation learning. Proceedings of the Thirteenth Inter-
national Joint Conference on Artificial Intelligence (pp.
1022–1027).

Hall, M., & Holmes, G. (2003). Benchmarking attribute
selection techniques for discrete class data mining. IEEE
Transactions On Knowledge And Data Engineering, 15,
1437– 1447.

John, G., & Langley, P. (1995). Estimating continuous
distributions in bayesian classifiers. Proceedings of
the Eleventh Conference on Uncertainty in Artificial In-
telligence Montreal, Quebec: Morgan Kaufmann (pp.
338–345). Available from http://citeseer.ist.
psu.edu/john95estimating.html.

Menzies, T., & Orrego, A. (2005). Incremental discre-
atization and bayes classifiers handles concept drift and
scaled very well. . Submitted, IEEE TKDE, Available
from http://menzies.us/pdf/05sawtooth.
pdf.

Witten, I. H., & Frank, E. (1999). Data mining: Practical
machine learning tools and techniques with java imple-
mentations. Morgan Kaufmann.

Yang, Y., & Webb, G. (2003). Weighted propor-
tional k-interval discretization for naive-bayes classi-
fiers. Proceedings of the 7th Pacific-Asia Conference
on Knowledge Discovery and Data Mining (PAKDD
2003). Available from http://www.cs.uvm.edu/
∼yyang/wpkid.pdf.

Yang, Y., & Webb, G. I. (2002). A comparative study of
discretization methods for naive-bayes classifiers. Pro-
ceedings of PKAW 2002: The 2002 Pacific Rim Knowl-
edge Acquisition Workshop (pp. 159–173).

Z. Zheng, Z., & Webb, G. (2000). Lazy learning
of bayesian rules. Machine Learning, 41, 53–84.
Available from http://www.csse.monash.edu/
∼webb/Files/ZhengWebb00.pdf.

