
On the Distribution of Property Violations in Formal Models: An Initial Study

Jimin Gao, Mats Heimdahl
Dept. of Computer Science and Engineering

University of Minnesota

David Owen
Prologic Inc.

Tim Menzies
Dept. of Computer Science
Portland State University

Abstract

Model-checking techniques are successfully used in the
verification of both hardware and software systems of in-
dustrial relevance. Unfortunately, the capability of current
techniques is still limited and the effort required for verifi-
cation can be prohibitive (if verification is possible at all).
As a complement, fast, but incomplete, search tools may
provide practical benefits not attainable with full verifica-
tion tools, for example, reduced need for manual abstrac-
tion and fast detection of property violations during model
development.

In this report we investigate the performance of a simple
random search technique. We conducted an experiment on a
production-sized formal model of the mode-logic of a flight
guidance system. Our results indicate that random search
quickly finds the vast majority of property violations in our
case-example. In addition, the times to detect various prop-
erty violations follow an acutely right-skewed distribution
and are highly biased toward the easy side. We hypothe-
size that the observations reported here are related to the
phase transition phenomenon seen in Boolean satisfiability
and other NP-complete problems. If so, these observations
could be revealing some of the fundamental aspects of soft-
ware (model) faults and have implications on how software
engineering activities, such as analysis, testing, and relia-
bility modeling, should be performed.

1 Introduction

Automatic verification by model-checking has been ef-
fective in many domains including computer hardware de-
sign, networking, telecommunications protocols, automated
control systems, and more [14, 7, 6]. Many real-world soft-
ware models, however, are large enough that the time re-
quired for full verification can be unacceptable (if full ver-
ification is possible at all). Incomplete, but faster, analy-
sis techniques, capable of finding property violations but
not formally proving their absence (commonly referred to
as refutation techniques) are useful for early feedback dur-

ing development. With the wider industrial interests and
adoption ofmodel-based developmentthese light-weight
techniques are becoming increasingly important since quick
feedback after model changes is essential to practicing en-
gineers.

In this paper, we investigate the performance of one
such incomplete technique—random search—on a close-
to-production model of the model-logic of a flight guid-
ance system. We found that random search can find the
vast majority of the property violations in models with re-
alistic seeded faults, generally much faster than the sym-
bolic model checker NuSMV [6]. Further experiments re-
vealed a skewed long-tailed distribution of the times to de-
tect property violations, a distribution showing a large num-
ber of “big” (obvious) violations and a very small number
of “small” (subtle) ones. We speculate that this distribu-
tion is closely linked to the phase transition effect observed
in complex systems in thermodynamics, economics, neuro-
science, and computation [5, 13, 17], and, therefore, this
distribution of failures could be a general phenomenon of
complex computational systems. If so, our results may have
a broad impact on the method selection for verification and
refutation, testing, debugging, and reliability estimation of
software systems.

Random search is simple; we execute the software model
with random inputs and monitor its internal state and out-
puts for property violations. We choose to explore random
search for two reasons. First, in software testing there are
indications that random testing can be an effective tech-
nique compared with partition testing [8, 12, 32]. Simi-
larly, we expect random search to be an effective incom-
plete method in property refutation of formal models; a
method that can be effectively used as a complement to
more costly methods such as model-checking and theorem
proving. Second, random search is essentially a Monte-
Carlo simulation performed on the model input domain and
can thus be used as a measurement tool to offer us statistical
insights into the verification problem, e.g., the “size” of the
fault (how much of the input domain leads to a property vi-
olation and a witness of a fault), the generality of a property
(how many of the faulty behaviors the property covers), and



the structure of the model (to what degree the model reveals
its faults as deviant behaviors).

Our motivations for pursuing this work are intrinsically
connected since the performance and effectiveness of ran-
dom search are direct results of the collective characteris-
tics of the model, the particular property, and the fault that
causes a violation of the property. High performance and
fault-finding ability of random search techniques can be ex-
pected only if the vast majority of the property violations are
“big”; in other words, the probability of randomly finding
input vectors that witness these property violations should
be reasonably high. Many NP-complete problems, for ex-
ample, Boolean satisfiability and graph coloring, are known
have this characteristic. These problems exhibit what is
commonly known as phase transition [5, 13]; a majority of
the instances are easy to solve (either by providing a solu-
tion or to prove there is no solution), while a small set of
the problem instances take disproportionately larger efforts.
Consequently, many heuristic algorithms work amazingly
well on typical instances of these problems. In this paper,
we argue that this phenomenon may also apply to our prob-
lem domain of formal verification.

The rest of this report provides the necessary background
information and our detailed experimental results. Section 2
describes the phase transition and its possible connections
with formal verification. Section 3 details the experimental
setup and results running the random search tool LURCH
on fault-seeded flight guidance system models. Section 4
further analyzes the implications of or results. The final
three sections discuss related work, internal and external
threats to our results and present our conclusion.

2 Phase Transition and Stochastic Search

It has long been observed that for many NP-complete
problems, the typical cases are easy to solve [5, 13]. For ex-
ample, various studies [11, 9] have shown that the average-
case complexity for the Boolean satisfiability (SAT) of ran-
domly generatedvariable-clause-lengthconjunctive nor-
mal form (CNF) formulas is polynomial for almost all pa-
rameter settings. The hard instances are very rare.

For randomfixed-clause-lengthformulas, however, the
hard cases are located within a narrow parameter region.
Mitchell et al. [25] studied the satisfiability of 3CNF for-
mulas (CNF formulas with clause length 3) randomly gen-
erated with two parametersM andN . Each formula con-
tained a total ofM clauses and each clause was generated
by randomly selecting three fromN variables and randomly
negating them. The ratio betweenM andN was found to
be predictive of the fraction of the formulas that are unsatis-
fiable. When the ratio is low (a lot of variables from which
to select and few clauses), the percentage of unsatisfiable
formulas is close to zero, and when the ratio is high (a lot

of clauses and few variables), the percentage of unsatisfi-
able formulas is close to 100. Between these two phases
there is a sharp transition at the ratio value 4.3. That is,
if the ratio M/N is less than4.3 the formulas are under-
constrained so that the vast majority have multiple solu-
tions. If the ratioM/N is greater than4.3, the formulas
are over-constrained so that vast majority have no solution.
In general, an under-constrained formula is easy since any
reasonable algorithm could stumble on one of its many solu-
tions. An over-constrained formula is also easy since using
a backtracking algorithm most of the search paths will be
cut off early. The really hard cases fall within the narrow
region around the phase transition.

The phase transition can be observed in many other NP-
complete problems as well,e.g., graph K-coloring, Hamil-
ton circuits and number partitioning.

In dealing with the hard instances of satisfiability prob-
lems around the phase transition, stochastic search strate-
gies have been found to substantially outperform backtrack-
ing searches [29, 10]. In general, these algorithms first
pick a random solution, and then modify the solution step-
wise greedily trying to reach a valid solution. The ran-
dom restarts effectively prevent the search procedure being
trapped in local minima. Nevertheless, these algorithms are
usually incomplete search strategies unable to show the un-
satisfiability of a formula. In our experiments, we also used
a random search strategy with restarts. It should be noted,
however, we did not attempt to demonstrate the superior-
ity of any stochastic search strategies. Instead, we used a
simplistic pure random search, which we believe is a more
objective measurement of problem instance difficulties by
eliminating the idiosyncracies caused by different heuristic
choices.

Although drastically different approaches have been
used, temporal property verification over finite state sys-
tems can be mapped to the Boolean satisfiability problem.
Bounded model checking, for example, translates the transi-
tional behavior of the system within the initialk steps into a
propositional formula, which is then input into a SAT solver
[3]. More recently, a method of unbounded model checking
based entirely on SAT has been proposed and experimen-
tal results on hardware verifications have shown it is sub-
stantially more efficient than a BDD (Binary Decision Dia-
gram) based approach [21]. Since the verification problem
in which we are interested is an instance of the satisfiabil-
ity problem, it is likely that phase transition also applies to
verification of formal software models. Should the phase
transition effect be present the vast majority of property vi-
olations should be easy to reveal with a random search tech-
nique. If this phenomenon can be confirmed it has implica-
tions for the choice of verification and testing techniques;
applying random techniques to catch all easy problems may
be highly cost effective.

2



3 Flight Guidance System Experiment

In our experiment we set out to investigate two issues.
First, we wanted to know what percentage of faults in a
model will a random search procedure reveal (given “rea-
sonable” time)? Second, we aimed to get an indication of
how the difficulty (as measured in search time) of revealing
property violations was distributed.

In an effort to get results indicative of models appearing
“in the wild”, we conducted a large experiment based on a
model of the mode logic for a production-sized flight guid-
ance system developed at Rockwell Collins Inc. The mode
logic is captured inRSML−e [19], a fully formal synchro-
nous specification language, and automatically translated to
NuSMV [6] and LURCH [27] through NIMBUS [30], the
development environment forRSML−e.

3.1 The Flight Guidance System

A Flight Guidance System (FGS) is a component of the
overall Flight Control System (FCS) in a commercial air-
craft. It compares the measured state of an aircraft (po-
sition, speed, and altitude) to the desired state, generating
pitch and roll guidance commands to minimize the differ-
ence between the measured and desired state. The FGS can
be broken into two parts: the mode logic, which determines
which lateral and vertical modes of operation are active and
armed at any given time; and the flight control laws, which
accept information about the aircrafts current and desired
state and compute the pitch and roll guidance commands.
In this case study we use only the mode logic.

3.2 LURCH

LURCH [27, 22] is a temporal random-search engine for
models of finite-state concurrent systems. Like a model
checker, LURCH aims to detect faults and for each fault
detected produces a trace file showing a path from initial
conditions to a state where the fault is revealed. LURCH
is an incompleterefutation tool while model checkers are
generally used asverificationtools.

LURCH’s basic search procedure is both partial and ran-
dom. The search is partial in that there is no guarantee
that the entire state space will be explored. LURCH’s algo-
rithm is random in that both the order of exploration and the
choice of what portion of the state space to explore is non-
deterministic. In its main search procedure, user-defined pa-
rametersmaxpathsandmaxdepthdetermine how long the
search will run.maxpathsis the number of iterations, each
of which generates a path from the initial state through the
state space. Path length is limited bymaxdepth, although
shorter paths may be generated if, for example, a state is

reached from which no more transitions are possible. Dur-
ing state exploration, acheckfunction acts a synchronous
observer and checks the current state to see if it represents
a fault.

3.3 Experimental Setup

For our experiments we used the largest FGS model de-
veloped at Rockwell Collins Inc.—a model close to their
production systems. TheRSML−e FGS model consists of
2,564 lines ofRSML−e code defining 142 state variables.
When translated to NuSMV, we get 2,902 lines of code, re-
quiring 849 BDD variables for encoding. ThisRSML−e

model has been extensively validated through testing and
we have previously verified close to 300 required properties
using NuSMV [24].

To get targets for our experiment, we created a collec-
tion of faulty specifications and selected a subset of the 300
properties that would reveal the faults. In an attempt to cre-
ate realistic faulty specifications, we first reviewed the revi-
sion history of the FGS model to understand what types of
faults were removed during the original verification process.
We then implemented a random fault seeder to inject repre-
sentative faults to create a suite of faulty specifications. The
faults we seeded fell into the following four categories:

Variable Replacement: A variable reference was replaced
with a reference to another variable of the same type.

Condition Insertion: A condition that was previously
considered a “don’t care” (*) in one of theRSML−e

condition tables was changed to T (the condition is re-
quired to be true).

Condition Removal: A condition that was previously re-
quired to be true (T) or false (F) in a table was changed
to “don’t care” (*).

Condition Negation: A condition that was previously re-
quired to be true (T) in a table was changed to false
(F), or vice versa.

We used our fault seeder to generate 100 faulty spec-
ifications (25 for each fault class). As an example,
Fig. 1 shows a missing condition fault contained in
macroWhen LGA Activated , the fault was created by
changing the table from requiring the Boolean variable
Is This Side Active to be true to a “don’t care.”

After the fault seeding we reran the complete verification
suite of 300 properties on the 100 faulty FGS models using
NuSMV. We performed this step for two reasons. First, we
needed to determine which fault seeded models led to vi-
olations of at least one of the properties in the verification
suite. Second, we needed to provide a baseline to use as
a comparison with the fault finding ability of the random

3



MACRO When_LGA_Activated() :
TABLE

Select_LGA() : T;
PREV_STEP(..LGA) = Selected : F;
Is_This_Side_Active : * ; / * Was T * /

END TABLE
END MACRO

Figure 1. An example fault seeded into the
FGS model.

search; with this baseline we knew exactly which properties
were violated in which fault seeded model. This extraordi-
narily time consuming exercise [28] revealed that 45 of our
100 faulty models contained faults that could be revealed
by our suite of properties. In addition, we found that 60 of
the original 300 properties were violated in at least one of
the faulty specifications. Therefore, for our experiment we
selected the 45 specifications with faults we could reveal
and the 60 properties that we knew were violated by at least
one faulty specifications. The properties, unfortunately, are
currently considered proprietary Rockwell Collins Inc. in-
formation and we can only paraphrase their informal defini-
tions in this report. Nevertheless, the informal examples be-
low should give the reader some understanding of the type
of properties we used in this experiment.

Property 1: If the flight director cues are off, the flight di-
rector cues shall not be turned on when the Transfer
Switch is pressed, (provided that no lateral or vertical
mode is selected and〈additional conditions〉).

Property 2: If mode annunciation are off, auto pilot en-
gagement shall causeROLLmode to be selected (pro-
vided〈additional conditions〉).

With a collection of 45 faulty models and 60 properties
we were in a position to perform our experiment evaluating
the effectiveness of random search as a property refutation
tool as well as gaining insight into the distribution of prop-
erty violations in the models.

3.4 Results

In our initial experiments we ran LURCH for 30 minutes
on the faulty models and 60 properties. (The 30 minutes
was an arbitrary cutoff-time selected as a “reasonable time”
largely based on the extent of our patience.) To run these
experiments, the faulty models were automatically trans-
lated into the LURCH input language and the properties
were translated into B̈uchi automaton machines before they
were composed with the models. To eliminate potential
bias caused by accidental success in the random searches
(or accidentally very poor search results), we conducted 5
test runs for each fault-property combination. Note here

Violations
found

Percentage of
total

Total property violations 155
LURCH found in all 5 runs 106 68.4%
Found in at least four runs 115 74.2%
Found in at least three runs 123 79.4%
Found in at least two runs 128 82.6%
Found in at least one run 131 84.5%

Figure 2. Summary of LURCH ’s fault finding
capability.

that since each specification (containing a single fault) may
cause violations of several properties and a property may
be violated in several specifications, we counted each viola-
tion of a fault-property pair separately leading to 155 prop-
erty violations. The results (Fig. 2) indicated that random
search can find most of the property violations before the
cut-off of 30 minutes was reached. 68% of the violations
were detected by every test run and 85% were detected by at
least one of the five test runs, and LURCH generally found
these violations much faster than NuSMV. The detailed per-
formance results can be found in [28].

Using a relatively crude random search technique, the re-
sults obtained with LURCH were quite surprising. To gain
a better insight into the nature of the property violations, in
our next experiment we attempted to quantify the inherent
difficulty of revealing each property violation. LURCH is
well suited to this task because its randomness eliminates
any algorithmic biases.

We ran LURCH on the same faulty models and with the
same properties, but this time with an extended cut-off time
of 3 hours (10800 seconds) to give LURCH a chance to de-
tect a larger percentage of the property violations and give
us more data to determine the difficulty of revealing a spe-
cific property violation.

During the 3 hour run, we recorded the number of times
we encountered each property violation. We then used this
result to divide the total time (10800 seconds) to obtain the
average detection time for each property violation. Again,
we counted each violation of a fault-property pair sepa-
rately. Out of the total of 155 violations found by NuSMV
in all faulty specifications, 149 (96%) were detected by
LURCH’s 3 hour run.

Figure 3 shows distribution histograms of the property
violations in terms of their average detection time. The up-
per panel of Fig. 3 contains data for all detected property vi-
olations. It displays a clearly right-skewed and long-tailed
distribution pattern. Although the average detection time
ranged from 0.5 to 10800 seconds, 90% of all violations fell
within the left 13% range (average detection time less than
1440 seconds), and 85% fell within the left 7% range (aver-
age detection time less than 720 seconds). The lower panel

4



0 1080 2160 3240 4320 5400 6480 7560 8640 9720 10800
0

50

100

150

AVERAGE DETECTION TIME (IN SECONDS)

N
U

M
B

E
R

 O
F

 V
IO

L
A

T
IO

N
S

0 80 160 240 320 400 480 560 640 720
0

10

20

30

40

50

60

70

80

90

100

AVERAGE DETECTION TIME (IN SECONDS)

N
U

M
B

E
R

 O
F

 V
IO

L
A

T
IO

N
S

Figure 3. Distribution of the average detection
time for property violations.

of Fig. 3 shows a finer scaled histogram, displaying data
contained in the first bar of the upper panel. Given such a
distribution of the difficulty of finding a property violation
(as measured in time for a random search to encounter the
violation) the effectiveness of random search as a refutation
tool is no longer surprising; the vast majority of the property
violations reveal themselves very quickly.

To find a good fit for this distribution, we computed its
maximum probability plot correlation coefficient (PPCC)
for some well-known right-skewed probability distribu-
tions with single shape parameters using the Dataplot soft-
ware [1] (Fig. 4). We also computed our results exclud-
ing the data points with average detection time greater than
2700 seconds (right column) because these property viola-
tions only saw 1 to 3 hits during the 3 hour run and their
average detection time may be inaccurate due to the insuf-
ficient sampling. Out of the examined probability distrib-
utions, the Birnbaum-Saunders, Pareto and lognormal dis-
tributions seem to provide best fits for the truncated data,
with max PPCC’s of 0.993, 0.980, and 0.976, respectively.
Because the data were truncated at the right end, yet the
distinction of these distributions requires analysis of the as-
ymptotic behavior of the tail, we leave this task to future
studies.

Figure 5 illustrates the average detection time for indi-
vidual faults. (To make Fig. 5 readable we have excluded
four data points in the long tail of the distribution; one data
point 982 seconds, two at 1800 seconds, and one at 5400
seconds.) Out of the 45 faulty specifications that caused

Probability Distributions All Data Truncated Data

Weibull 0.780 0.909
Lognormal 0.914 0.976
Pareto 0.903 0.980
Gamma 0.780 0.909
Birnbaum-Saunders 0.908 0.993

Figure 4. Computed max PPCC for right-
skewed distributions.

0 20 40 60 80 100 120
0

5

10

15

20

25

30

AVERAGE DETECTION TIME (IN SECONDS)

N
U

M
B

E
R

 O
F

 F
A

U
L

T
S

0 20 40 60 80 100 120
0

5

10

15

20

25

30

AVERAGE DETECTION TIME (IN SECONDS)

N
U

M
B

E
R

 O
F

 F
A

U
L

T
S Figure 5. Distribution of the average time to

detect individual faults.

violations (as indicated by NuSMV), 43 (96%) had faults
revealed by at least one property during the 3 hour LURCH
run. For each one of these specifications we calculated the
average time it took LURCH to encounter any property vi-
olation. Note here that many properties might reveal the
same fault in a specification. This fault detection time re-
flects the effort needed to find a fault when all properties
are used (not individual violations corresponding to single
property-fault pairs as in Fig. 3). This distribution is of in-
terest since in actual development the same fault can cause
incorrect behaviors caught by several properties; any one
of these property violations is sufficient for the developer
to discover and remove the fault. Again, the distribution is
heavily biased towards easily detected faults.

The distributions discussed in this section support our
hypothesis that random search is an effective fault removal
tool far a large portion of the faults in the FGS model. From
our understanding of the phase transition and previous re-
ports on the effectiveness of random search (-like) tech-
niques [31, 23], we believe there is sufficient data to argue
that the result on the FGS model is not an isolated case.
The skewed distribution could be indicative of some funda-
mental aspects of faults in a large class of software mod-
els/programs.

4 Discussion

At first, it may seem preposterous we want to use a tech-
nique that can only find “easy” faults for a system worthy of

5



formal modeling and analysis. Nevertheless, our interests in
such techniques was motivated by practical concerns. In our
collaborations with industry we are starting to face models
that are simply too large and have too many properties to be
repeatedly checked with standard model-checkers (if they
can be checked at all). As an extreme example, in our ex-
periments [28] one of the faulty models took about 40 hours
to model-check. Even for those non-pathological cases, the
median time taken by model checking is still quite long.
The duration of the change-check cycle is obviously too
long to make model-checking practical for the immediate
in-development feedback the engineers would like to see.
Clearly, light-weight incomplete fault-finding methods can
be very useful in practice if they are sufficiently effective.

Although we collected performance data form the ran-
dom search implemented in LURCH and the model-checker
NuSMV—and found that LURCH generally found property
violations much faster than NuSMV—our experiment was
never intended as a performance comparison. An incom-
plete refutation tool cannot be fairly compared with a verifi-
cation tool since they are deigned with completely different
goals in mind. Therefore, our results in this study should
not be interpreted as an argument that random search would
in any way be a replacement for model-checking or theo-
rem proving. Instead, we believe random search will be
a highly useful complement to model checking, especially
when the model is large (and thus not practical to model
check) or during early stages of model development when
there are many model problems to remove. Random search
would help us quickly and easily detect the obvious prop-
erty violations—violations that account for the vast major-
ity of all violations—while leaving the subtle faults for a
more costly full verification effort. In sum, the most ben-
eficial time for using random search is therefore in the be-
ginning of model development or just after some substantial
changes to a model have been made; situations when we are
likely to have introduced a substantial number of new faults.
Given the distribution of the difficulty of revealing faults in
a model discussed in this paper, after applying a random
search technique for a relatively short time (in our case a
few minutes) the easy (but numerous) property violations
have been detected and only very hard ones remain. At this
point random (and most likely heuristic) search techniques
rapidly loose their usefulness and are highly unlikely to reli-
ably reveal any significant number of additional violations;
this is the time to switch to more powerful refutation and
verification techniques.

Although random search is probably the simplest of all
incomplete techniques, it is implemented to monitor for
all property violations simultaneously as the state space
is explored. This may provide an advantage as compared
to some other methods. For example, in bounded model
checking the properties are checked one by one and the time

required is in the worst case exponential in the length of the
property under investigation. Given the goals of our study
(determining the percentage of property violations revealed
through random search and the distribution of the difficulty
of revealing the property violations) we did not compare
the effectiveness of random search with other incomplete
techniques, for example, bounded model checking. Such a
comparison will be a subject of future study.

Naturally, our observations have implications outside
verification of formal models. Random testing is in most re-
spects similar to the search technique we investigated in this
report. Random testing with automated oracle support, for
example, run-time monitors translated from properties or a
monitor generated from an executable specification, can be
used as the first pass to detect most easy software faults,
while more costly testing techniques, for example, bound-
ary value testing or testing to achieve MC/DC coverage, can
be reserved for later stages in the testing process.

Besides analysis and testing, the distribution we ob-
served may have important bearings on other areas of soft-
ware engineering. For example, in software reliability, the
two-parameter exponential model is the basic form of soft-
ware reliability growth and is based on the assumption that
all software faults are equally likely to be encountered and
lead to a failure [15]; an assumption that is clearly erro-
neous given our observations in this report. Littlewood [18]
has developed a generalized model that does not assume any
specific fault distribution. Understandably, this model has
one more parameter and—as a result—is difficult to use in
practice. The two-parameter logarithmic model proposed
by Musaet. al. [26] does assume decreasing effectiveness
per fault (which amounts to non-uniform sizes of all faults)
with time during random testing, though the assumed dis-
tribution is quite arbitrary. Some studies have suggested
that the logarithmic model is superior in predictive valid-
ity compared with the exponential model [20]. We believe
with a better understanding of program fault distribution,
potentially using strictly controlled experimental methods
like ours we may be able to gain significant insights into the
validity of the myriads of software reliability growth mod-
els.

5 Related Work

Many studies have investigated the phase transition and
stochastic searches in the SAT community [5, 25, 29, 10].
The study of the phase transition in complex systems is
also increasingly gaining attention [17, 4]. Nevertheless,
these studies were conducted on randomly generated sys-
tems (usually with very simple rules) and formulas, and ev-
idence for real-world applicability is lacking.

Random walk has been studied as a state space explo-
ration technique. In [31], West gave probably the first ev-

6



idence of its effectiveness in finding faults in realistic pro-
tocol specifications. Mihail and Papadimitriou [23] identi-
fied a family of protocols, the systems of symmetric dyadic
flip-flops, and theoretically argued that random walk can be
used to test these protocols efficiently. Various heuristic en-
hancements on random walk, such as those by Kuehlmann
et al. in [16] and Yuanet al. in [33] have been pro-
posed. Nevertheless, there seem to be considerable con-
fusions over “random walk” and “random simulation”, as
these two terms are often used interchangeably in the lit-
erature. Our random search is essentially a “random sim-
ulation” executing the model oninputsof equal probabil-
ities, not a “random walk”, which describes the approach
where the probabilities oftransitionsout of the same state
are equal.

A significant difference between the study in this report
and many other studies is that we do not believe it is suf-
ficient to study random simulation/walk (and other partial
state space exploration techniques) in isolation. Other stud-
ies have typically explored how quickly and how much of
the state space is explored by a search technique; the di-
mensions of properties and property violation are missing.
A property violation may be revealed in a large part of the
state space and we are interested in how quickly a technique
will expose this corrupt portion of the state space. Thus,
techniques that may seem to only cover a very small per-
centage of the state space may still be highly effective if the
portions of the state space that lead to property violations
are large and easy to reach. To our knowledge, this report is
the first study applying random simulation to a large realis-
tic software system with a large realistic property suite, and
the distribution patterns for property violations presented in
this report are completely new.

6 Threats to Validity

Although the results from our experiment provide some
indication of the effectiveness of random search in prac-
tice and initial insight into the distribution of failures in
formal-models, they only represent a small step towards un-
derstanding the interaction of properties, models, and faults
in the domain of automated verification. In our study there
are three threats to external validity that prevent us from
generalizing our observations. First, and most seriously, we
are using only one instance of a formal model. The charac-
teristics of the FGS model—modelled only using Boolean
and enumerated variables—most certainly affects our re-
sults and makes it unwise to generalize the results to sys-
tems that, for example, contain numeric variables and con-
straints.

Second, we are using seeded faults in our experiment.
Although we took great care in selecting fault classes that
represented actual faults we observed during the develop-

ment of the FGS model, and some studies have shown that
seeded faults do reflect realistic fault distributions [2], fault
seeding always leads to a threat to external validity and may
not reflect the dynamic, ever-changing fault profiles of real
software development processes. However, we do believe
fault seeding provides controlled conditions that better fa-
cilitate understandings on the problem itself.

Finally, we only considered a single fault per model. Us-
ing a single fault per specification makes it easier to control
the experiment. Nevertheless, we cannot account for the
more complex fault patterns that may occur in practice.

The question as to whether the observed effectiveness
of random search is related to the specific design decision
made in the LURCH tool and the specific search parameters
used in the experiment pose a threat to the internal validity
of the results. For example, LURCH can be set to a specific
search depth; would deeper or more shallow searches have
produced different results? Nevertheless, we do not believe
the implementation of LURCH and the specific search para-
meters have any discernable impact on our results, but this
is something that should be investigated in future studies.

Although there are several threats to both external and
internal validity in our experiment, we believe these results
are representative of a large class of models in the con-
trol systems domain and constitute a significant early step
towards understanding the complex interrelationships be-
tween properties, models, and faults in automated verifica-
tion.

7 Conclusion

In summary, through empirical studies on the flight guid-
ance system we have found that random search is an ef-
fective incomplete method for property refutation of formal
models; a technique that potentially can be used in com-
bination with more powerful analysis techniques such as
model checking and theorem proving. The effectiveness of
random search is due to a sharply skewed distribution of
property violations, a vast majority of which are relatively
easy to find. We hypothesize this distribution is a manifes-
tation of the phase transition effect observed in many NP-
complete problems. We believe more investigations and
better understandings of this distribution,e.g. its mathe-
matical characterization and dependence on model/program
structure, can lead to more effective use of the various meth-
ods for software verification, testing and reliability engi-
neering.

References

[1] NIST/SEMTECH e-Handbook of Statis-
tical Methods. NIST. Available at
http://www.itl.nist.gov/div898/handbook/ .

7



[2] J. H. Andrews, L. C. Briand, and Y. Labiche. Is mutation an
appropriate tool for testing experiments? InICSE ’05: Pro-
ceedings of the 27th international conference on Software
engineering, pages 402–411, New York, NY, USA, 2005.
ACM Press.

[3] A. Biere, A. Cimatti, E. M. Clarke, M. Fujita, and Y. Zhu.
Symbolic model checking using SAT procedures instead of
BDDs. InProceedings of the 36th ACM/IEEE conference on
Design automation, pages 317–320. ACM Press, 1999.

[4] E. Bilotta, A. Lafusa, and P. Pantano. Research article:
searching for complex CA rules with GAs.Complex.,
8(3):56–67, 2003.

[5] P. Cheeseman, B. Kanesfy, and W. Taylor. Where the re-
ally hard problems are. InProceedings of the Twelfth Inter-
national Joint Conference on Artificial Intelligence IJCAI,
1991.

[6] A. Cimatti, E. Clarke, F. Giunchiglia, and M. Roveri.
NUSMV: A new symbolic model checker.International
Journal on Software Tools for Technology Transfer, 2(4),
2000.

[7] E. Clarke, O. Grumberg, and D. Peled.Model Checking.
MIT Press, Cambridge, MA, 1999.

[8] J. W. Duran and S. C. Ntafos. An evaluation of random test-
ing. IEEE Transactions on Software Engineering, 10:438–
444, July 1984.

[9] J. Franco and M. Paull. Probabilistic analysis of the Davis
Putnam procedure for solving the satisfiability problem.
Discrete Applied Math., 5:77–87, 1983.

[10] I. P. Gent and T. Walsh. Towards an understanding of
hill-climbing procedures for SAT. InProceedings of the
Eleventh National Conference on Aritificial Intelligence,
pages 28–33, 1993.

[11] A. Goldberg. On the complexity of the satisfiability prob-
lem. Courant Computer Science Report No. 16. New York
University, New York, 1979.

[12] R. Hamlet and R. Taylor. Partition testing does not inspire
confidence. InProc. 2nd Workshop on Software Testing, Ver-
ification and Analysis, pages 206–215, July 1988.

[13] B. Hayes. On the threshold.American Scientist, 91(1), 2003.
[14] G. Holzmann. The model checker SPIN.IEEE Transactions

on Software Engineering, 23(5), 1997.
[15] S. H. Kan. Metrics and Models in Software Quality En-

gineering. Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA, 2002.

[16] A. Kuehlmann, K. L. McMillan, and R. K. Brayton. Prob-
abilistic state space search. InICCAD ’99: Proceedings of
the 1999 IEEE/ACM international conference on Computer-
aided design, pages 574–579, Piscataway, NJ, USA, 1999.
IEEE Press.

[17] C. G. Langton. Computation at the edge of chaos: phase
transitions and emergent computation.Emergent computa-
tion, pages 12–37, 1991.

[18] B. Littlewood. Stochastic reliability growth: A model
with applications to computer software faults and hardware
design faults. InProceedings of the 1981 ACM work-
shop/symposium on Measurement and evaluation of soft-
ware quality, pages 139–152, New York, NY, USA, 1981.
ACM Press.

[19] M. P. Whalen. A formal semantics forRSML−e. Master’s
thesis, University of Minnesota, 2000.

[20] Y. K. Malaiya, N. Karunanithi, and P. Verma. Predictability
of software reliability models.IEEE Transactions on Relia-
bility, 41:539–546, Dec. 1992.

[21] K. L. Mcmillan. Interpolation and SAT-based model check-
ing. In Proceedings of Computer Aided Verfication, pages
1–13, 2003.

[22] T. Menzies, D. Owen, and B. Cukic. Saturation effects in
formal verification. InProceedings of the International Sym-
posium on Software Reliability Engineering (ISSRE), 2002.

[23] M. Mihail and C. H. Papadimitriou. On the random walk
method for protocol testing. InCAV ’94: Proceedings of the
6th International Conference on Computer Aided Verifica-
tion, pages 132–141, London, UK, 1994. Springer-Verlag.

[24] S. P. Miller, A. C. Tribble, and M. P. E. Heimdahl. Prov-
ing the shalls. In K. Araki, S. Gnesi, and D. Mandrioli,
editors,Proceedigns of the International Symposium of For-
mal Methods Europe (FME 2003), volume 2805 ofLecture
Notes in Computer Science, pages 75–93, Pisa, Italy, Sep-
tember 2003. Springer.

[25] D. Mitchell, B. Selman, and H. Levesque. Hard and easy
distributions of SAT problems. InProceedings of the Tenth
National Conference on Artificial Intelligence, pages 459–
465, July 1992.

[26] J. D. Musa and K. Okumoto. A logarithmic poisson exe-
cution time model for software reliability measurement. In
ICSE ’84: Proceedings of the 7th international conference
on Software engineering, pages 230–238, Piscataway, NJ,
USA, 1984. IEEE Press.

[27] D. Owen and T. Menzies. Lurch: a lightweight alternative
to model checking. InSEKE ’03, 2003.

[28] D. Owen, T. Menzies, M. Heimdahl, and J. Gao. On the ad-
vantages of approximate vs. complete verification: Bigger
models, faster, less memory, usually accurate. InProceed-
ings of the 28th Annual IEEE/NASA Software Engineering
Workshop, pages 75–81, December 2003.

[29] B. Selman, H. Levesque, and D. Mitchell. A new method for
solving hard satisfiability problems. InProceedings of the
Tenth National Conference on Aritificial Intelligence, pages
440–446, July 1992.

[30] J. M. Thompson and M. P. E. Heimdahl. An integrated de-
velopment environment for prototyping safety critical sys-
tems. In IEEE International Workshop on Rapid System
Prototyping, pages 172–177, 1999.

[31] C. H. West. Protocol validation in complex systems. InSIG-
COMM ’89: Symposium proceedings on Communications
architectures & protocols, pages 303–312, New York, NY,
USA, 1989. ACM Press.

[32] E. J. Weyuker and B. Jeng. Analyzing partition testing
strategies.IEEE Trans. Softw. Eng., 17(7):703–711, 1991.

[33] J. Yuan, J. Shen, J. A. Abraham, and A. Aziz. On combin-
ing formal and informal verification. InCAV ’97: Proceed-
ings of the 9th International Conference on Computer Aided
Verification, pages 376–387, London, UK, 1997. Springer-
Verlag.

8


