
The Deviance Problem in Effort Estimation

Tim Menzies
Lane Department of Computer Science,

West Virginia University
tim@menzies.us

Karen Lum, Jairus Hihn
Jet Propulsion Laboratory, Pasadena, California

karen.t.lum@jpl.nasa.gov
jairus.m.hihn@jpl.nasa.gov ∗

Abstract

Selecting the best data miner for effort estimation is com-
plicated by the large deviations in estimation model perfor-
mance. Selection must therefore use other criteria than just
mean performance.

1. Introduction

According to our reading of the literature (e.g. [1, 2]),
“best practices” in model-based effort estimation include:

• Local calibration (or LC); i.e. using local data to set
two special tuning parameters;

• Stratification; i.e. given a database of past projects,
and a current project to be estimated, restrict local cal-
ibration to just those records from similar projects.

These two approaches can easily be shown to fall short of
what should be expected from a “best practice”. If stratifica-
tion improved performance, then subsets of the data should
usually generate better models with lower error rates than
models learned from all the data. As shown in Figure 1, this
is not necessarily the case. The horizontal lines of Figure 1
show the error rates of models learned from all data of three
different sources. The crosses of Figure 1 show error rates
seen in models learned from subsets of the data. Ten subsets
fall below the lines; i.e. those subsets generate models with
lower and better error rates; But an equal number fall above
the lines; i.e. they generate higher and worse error rates.

∗Submitted to the 2006 Promise Workshop.
Download from http://menzies.us/pdf/06deviations.pdf.

The research described in this paper was carried out at the Univer-
sity of West Virginia and the Jet Propulsion Laboratory, California
Institute of Technology, under a contract with the National Aeronautics
and Space Administration. Reference herein to any specific commercial
product, process, or service by trade name, trademark, manufacturer, or
otherwise, does not constitute or imply its endorsement by the United
States Government.

 25

 30

 35

 40

 45

 50

 55

 63 40 20 0m
ea

n(
ab

s(
ac

tu
al

 -
 e

st
im

at
e)

/a
ct

ua
l)

size

coc81

 5

 10

 15

 20

 25

 30

 161 100 50 0m
ea

n(
ab

s(
ac

tu
al

 -
 e

st
im

at
e)

/a
ct

ua
l)

size

cocII

 40
 60
 80

 100
 120
 140
 160
 180
 200

 93 60 30 0m
ea

n(
ab

s(
ac

tu
al

 -
 e

st
im

at
e)

/a
ct

ua
l)

size

nasa93

Figure 1. Models were learned from vari-
ous subsets of three sources: one confiden-
tial and two from the PROMISE repository
(nasa93 and coc81). The crosses show the
mean abs(predicted− actual)/actual found after
30 repeats of:
- randomizing the order;
- removing 10 instances for testing;
- training on the remaining instances.
Training was conducted using Boehm’s CO-
COMO local calibration method [1, p526-529].
The horizontal lines shows the mean perfor-
mance using all instances.

Similarly, while LC sometimes produces the best mod-
els, often it does not. Figure 2 compares standard LC with
the multiple data mining algorithms in our COSEEKMO ef-
fort estimation workbench. COSEEKMO is a general work-
bench containing multiple data mining tools, all of which
are unleashed on a data set and a best method is selected on
a dataset-by-dataset basis. Note the large differences be-
tween the performance of models derived using standard
methods (the black lines marked with squares) and those
derived using data mining (the dashed lines). While stan-
dard methods sometimes do well, data mining algorithms
yielded models with overall smaller mean error and much
smaller standard deviation.

The remainder of this paper describes data mining meth-
ods for effort estimation which, as shown in Figure 2 of-
ten out-perform standard methods. The most prominent re-
sults from this study is that comparing the performance of
learners to select a best learner is problematic. The vari-
ance in the performance seen over these small data sets is
very large. For example, in Figure 2, the standard devia-
tions are often much larger than the mean. Such large de-
viations complicates comparisons across different data sets.
Hence, we must compare model performance using some
heuristic rejection rules that compare more than just mean
performance.

Note that this paper is about finding better practices for
automatic model-based effort estimation. For a discussion
on best practices in manual expert-based estimation, see [5].

2. Experiment

2.1. Data

The data for this study comes in Boehm’s COCOMO for-
mat. COCOMO (the COnstructive COst MOdel) was de-
veloped in 1981 [1] and extensively revised in 2000 [3].
COCOMO-based estimation assumes effort grows expo-
nentially on size:

effort(personmonths) = a ∗
(
KLOCb

)
∗

(∏
j

EMj

)
(1)

Here, KLOC is thousands of delivered source instructions.
KLOC can be estimated directly or via a function point es-
timation. Also, EMj is one of the COCOMO effort multi-
pliers, such as cplx (complexity) or pcap (programmer ca-
pability). Lastly, a and b are two local calibration param-
eters that can be used to tune the model to local data. The
Figure 1 results and the solid line in Figure 2 were gener-
ated using a simple regression procedure that fixed EMj

while seeking a and b that minimized model error [1, p526-
529]. In a later variant to COCOMO, Boehm extended b

 150
 100

 50
 0m

ea
n(

M
R

E
)

27 data sets, sorted by sd(LC)

 600

 500

 400

 300

 200

 100

 0

sd
(M

R
E

)

standard LC
COSEEKMO

 150
 100

 50
 0

si
ze

nasa93
cocII

coc81

Figure 2. More results from the Figure 1 ex-
periment. The top plot shows the number
of projects in 27 subsets of our three data
sources. The middle and bottom plots show
the standard deviation and mean in perfor-
mance error. Data subsets are sorted by
the error’s standard deviation. Effort mod-
els were learned via either standard LC or
COSEEKMO.

to include a set of scalefactors that exponentially affected
effort (e.g. reuse) [2].

This study uses the standard linearization pre-processor;
i.e. Equation 1 is converted to

ln(effort) = ln(a) + b ∗ ln(KLOC) + ln(EM1) + . . .
(2)

In practice, this means taking the logarithm of all the nu-
merics in a COCOMO data set.

2.2. Learners

This study applied Boehm’s local calibration procedure
and a range of learners from the WEKA tool [9] to lin-
earized COCOMO data:

• LSR: least squares regression
• M5P: Quinlan’s model-tree learner [8].

Further, the WEKA’s WRAPPER feature subset selector [6]
was used with LC as the target learner. Starting with
the empty set, the WRAPPER adds some combination of

01 for Datum ∈ {nasa93,coc81,cocII}
02 for Part ∈ Datum
03 if Data.Part.size ≥ 20 # ignore very small data sets
04 then
05 30 times do
06 Test1 ← Data.Part.any(10) # note: random selection
07 Train1← Data.Part - Test1
08 Subset←WRAPPER(Train1)
09 for Subset ∈ Subsets
10 Test2 ← Test1.variables(Subset)
11 Train2← Train1.variables(Subset)
12 for Learn ∈ {LC, LSR, M5P}
13 print Test(Learn(Train2),Test2)

Figure 3. This experiment.

columns (of variables) and asks some learner (in our case,
the LC method discussed below) to build an effort model
using just those columns. The WRAPPER then grows
the set of selected variables and checks if a better model
comes from learning over the larger set of variables. The
WRAPPER stops when there are no more variables to se-
lect or when there has been no significant improvement in
the learned model for the last five additions (in which case,
those last five additions are deleted). Technically, this is a
forward select search with a “stale” parameter set to 5.

We use the WRAPPER since experiments by other
researchers strongly suggest that it is superior to many
other variable pruning methods. For example, Hall and
Holmes [4] compare the WRAPPER to several other vari-
able pruning methods including principal component analy-
sis (PCA- a widely used technique). Column pruning meth-
ods can be grouped according to:

• Whether or not they make special use of the target vari-
able in the data set such as “development cost”;

• Whether or not pruning uses the target learner.

PCA is unique since it does not make special use of the
target variable. WRAPPER is also unique, but for different
reasons: unlike other pruning methods, it does use the target
learner as part of its analysis. Hall and Holmes found that
PCA was one of the worst performing methods (perhaps be-
cause it ignored the target variable) while WRAPPER was
the best (since it can exploit its special knowledge of the
target learner).

These learners were applied using the Figure 1 proce-
dure, which is detailed in Figure 3. In the following sec-
tions, a treatment is some combination of {Subset, Learn}
(selected at line 8 and 12).

2.3. Performance Measures

The results for each treatment were compared using each
treatment’s MMRE, PRED(30), and correlation. MMRE

Treatment Results
mean mre

|Subset| Learn PRED(30) mean sd (sd/mean)% correlation
17 e 46 40 34 85 0.93
17 LC 48 38 34 88 0.86
17 LC 50 39 34 87 0.86
16 LC 50 39 34 87 0.85
16 LC 47 43 38 89 0.81
15 LC 47 43 38 88 0.85
15 LC 41 45 42 93 0.88
15 LSR 26 367 3177 863 0.64

Figure 4. Survivors of pair-wise regression
using t-tests on MMRE for Datum=coc81 and
Part=embeddedsystems.

comes from the magnitude of the relative error, or MRE,
the absolute value of the relative error:

MRE = |predicted− actual|/actual

The mean magnitude of the relative error, or MMRE, is the
average percentage of the absolute values of the relative er-
rors over an entire data set. Given T tests, the MMRE is:

MMRE =
100

T

T∑
i

|predictedi − actuali|
actuali

PRED(N) reports the average percentage of estimates
that were within N% of the actual values. Given T tests,
then:

PRED(N) =
100

T

T∑
i

{
1 if MREi ≤ N

100

0 otherwise

For example, a PRED(30)=50% means that half the esti-
mates are within 30% of the actual.

Another performance measure of a model predicting nu-
meric values is the correlation between predicted and actual
values. Correlation ranges from +1 to -1 and a correlation of
+1 means that there is a perfect positive linear relationship
between variables.

2.4. Cyclic Pair-wise Rejection

The treatments were examined in pairs and if either
seemed to perform worse, that one was rejected. This pro-
cess repeated until no treatment could be shown to be worse
than any other. The remaining treatments were called the
survivors and were printed.

3. Results

Initially, the results were hardly convincing. The devia-
tions in model performance over the 30 repeats of Figure 3

function worse(x,y)
if statisticallyDifferent(x,y)
then

if error(x) < error(y) then return y fi # rule1
if error(y) < error(x) then return x fi # rule1

else
if correlation(x) < correlation(y) then return x fi # rule2
if correlation(y) < correlation(x) then return y fi # rule2

if sd(x)/mean(x)< sd(y)/mean(y) then return y fi # rule3
if sd(y)/mean(y)< sd(x)/mean(x) then return x fi # rule3

if pred(x) < pred(y) then return x fi # rule4
if pred(y) < pred(x) then return y fi # rule4

if |Subset(x)| < |Subset(y)| then return y fi # rule5
if |Subset(y)| < |Subset(x)| then return x fi # rule5

fi
return 0 # if no reason to return true

Figure 5. Rejection rules. Error is MMRE.
Worse’s statisticallyDifferent test compares two
MMREs x and y using a two-tailed t-
test at the 95% confidence interval; i.e.

|mean(x)−mean(y)|√
(sd(x)2/(n(x)−1))+sd(y)2/(n(y)−1)

> 1.96

were alarmingly large. Figure 4 shows some results of pair-
wise rejection using standard statistical tests on MMRE.
Note the last row: a surviving treatment had a standard de-
viation of 863% (!!) bigger than the mean. Clearly, standard
statistical tests are insufficient in this domain to select pre-
ferred modeling methods.

In order to generate convincing results, we augmented
a pair-wise rejection procedure with the rejection rules of
Figure 5. These rules perform well-founded statistical tests
and, if those fail, they resort to more heuristic comparisons.
For example, rule#5 is a modeling heuristic from Miller [7]
who advises that regression models with fewer variables
have smaller deviations.

A trace facility was added so analysts could watch and
tune the rules. Figure 6 shows such a trace of the rejection
rules rule1 ∧ rule3 executing on the embedded systems of
coc81. The last two columns show a justification for re-
jecting a treatment. For example, the first row was rejected
since some other row (39) has a 124% lower MMRE. Row
38 contains the troubling example, with a disturbingly large
standard deviation. Observe how the rules rejected this row
in favor of the last row, which has a (much) lower coefficient
of variation.

The ordering of tests in Figure 5’s worse function im-
poses a rule priority (lower rules can fire only if higher
rules fail). Well-founded statistical tests are given higher
priority than heuristic tests. Hence, rule1 is listed first and
rule4 and rule5 are last. Rule2 was made higher prior-
ity than rule3, since that prioritization could still reproduce
Boehm’s 1981 result for embedded and organic systems.

This prioritization influences how frequently the differ-
ent rules are applied. As shown in Figure 7, lower priority
rules e.g. rule5 fire far less frequently than higher priority
rules (e.g. rule1), since the lower priority rules are only
tested when all the higher priority rules have failed.

Treatment Results Notes
treatment mean mre rejected

number |Subset| Learn PRED(30) mean sd (sd/mean)% correlation by treatment since...
1 13 LC 41 53 49 92 0.72 39 mmre / 124%
2 2 LC 29 72 92 127 0.65 39 mmre / 144%

...
23 17 M5P 33 81 104 127 0.52 39 mmre / 150%
24 17 LC 50 39 34 87 0.86 39 sd/mmre / 102%
25 16 LSR 19 172 356 206 0.3 39 mmre / 176%
...

37 14 LC 42 46 41 89 0.75 39 mmre / 114%
38 15 LSR 26 367 3177 863 0.64 39 sd/mmre / 190%
39 17 e 46 40 34 85 0.93 survivor

Figure 6. Partial trace of Rejection Rule 1 and Rule 2 running on coc81’s embedded systems. Deleted
lines marked with “...”.

COCOMO 81 COCOMO II
checks for.. (nasa93, coc81) (cocii)

rule1 mmre 59.2% 63.6%
rule2 correlation 34.5% 28.7%
rule3 sd/mmre 5.5% 3.6%
rule4 pred 0.1% 3.0%
rule5 subset size 0.7% 1.0%

Figure 7. Percent frequency of rule firings.

4. Discussion

Effort models should be learned from similar examples
and these are often in short supply. Generalizing from small
samples is inherently under-constrained. Minor changes in
that sample can lead to very large deviations in the perfor-
mance of the learned model.

Unless the large deviance problem is addressed, effort
estimates will be unreliable (due to large deviances), and
rival effort-estimation methods cannot be comparatively as-
sessed. For example, a standard t-test on MMRE accepted
all the results of Figure 4, including one with a extremely
large deviation. Hence, we propose an extension to stan-
dard tests; i.e. cyclic pair-wise rejection using the rules of
Figure 5.

One side-effect of the rejection rules is that they can
dramatically reduce the deviation in model performance.
In the results of Figure 2, nasa93’s normalized deviations
(sd
mean%) from Boehm’s local calibration method had a me-

dian of 254% and, in 10
12 cases, was over 200%. In the re-

sults selected using Figure 5 nasa93’s normalized devia-
tions have a median value of 122%, and in no case was it
over 200%.

The reason for deviance reduction is simple to explain.
In 14 of our 28 experiments, the WRAPPER discarded five
to six variables on average, and sometimes many more (e.g.
in five cases, the surviving models ignored half the vari-
ables). Miller noted that models with fewer variables have
smaller deviations. Hence, we argue that COSEEKMO re-
duces deviations by recognizing and removing noisy vari-
ables.

Since these rules are the core of our system, they were
written with great care. One requirement that we had was
that the rules could reproduce at least one historical expert
effort estimation study. We recommend the current rule set
since this one selects the same models proposed by Boehm
in his 1981 study [1] (while an earlier version of the rules
could not).

References

[1] B. Boehm. Software Engineering Economics. Prentice Hall,
1981.

[2] B. Boehm. Safe and simple software cost analy-
sis. IEEE Software, pages 14–17, September/October
2000. Available from http://www.computer.org/
certification/beta/Boehm Safe.pdf.

[3] B. Boehm, E. Horowitz, R. Madachy, D. Reifer, B. K. Clark,
B. Steece, A. W. Brown, S. Chulani, and C. Abts. Software
Cost Estimation with Cocomo II. Prentice Hall, 2000.

[4] M. Hall and G. Holmes. Benchmarking attribute selection
techniques for discrete class data mining. IEEE Transactions
On Knowledge And Data Engineering, 15(6):1437– 1447,
2003.

[5] M. Jorgensen. A review of studies on expert estimation of
software development effort. Journal of Systems and Soft-
ware, 70(1-2):37–60, 2004.

[6] R. Kohavi and G. H. John. Wrappers for feature subset selec-
tion. Artificial Intelligence, 97(1-2):273–324, 1997.

[7] A. Miller. Subset Selection in Regression (second edition).
Chapman & Hall, 2002.

[8] R. Quinlan. C4.5: Programs for Machine Learning. Morgan
Kaufman, 1992. ISBN: 1558602380.

[9] I. H. Witten and E. Frank. Data mining. 2nd edition. Morgan
Kaufmann, Los Altos, US, 2005.

