Learning IV&V strategies (from approximate models)

marcus.s.fisher@nasa.gov IV&V, NASA, USA

> tim@menzies.us WVU, USA

Promise2Prototype : Promise2006 HomePage | Site map | Index | What's new | Comments | Legal

2nd International Workshop on Predictor Models in Software Engineering (PROMISE 2006)

Sunday September 24, 2006, Philadelphia, Pennsylvania USA

An ICSM 2006 workshop, http://icsm2006.cs.drexel.edu/~

NEWS: Papers accepted to PROMISE 2006 will be eligable for submission to a special issue of the Journal of Empirical Software Engineering on repeatable experiments in software engineering.

IMPORTANT: PROMISE 2006 gives the highest priority to case studies, experience reports, and presented results that are based on publicly available datasets, preferably lodged at the PROMISE repository.

http://promise.unbox.org/Promise2006

"design as search"

- Herbert Simon:
 - * "Design = quintessential human activity"

Allen Newell:

- Cognition is a search for operators which we believe will take us towards our desired goals
- Q: what if our beliefs are approximate?
 - I don't believe that you can always get rid of subjective judgments in these kinds of studies.
 -- Rick Kazman, Jan 6, 2006,10:53:47
- * A: "Design" means doing lots of what-ifs.
 - * Find consistent set(s) of beliefs a.k.a. "worlds"
 - * What selects for worlds with results we want?

3

Surprisingly, don't need to explore all settings to all variables

If sort attributes on "infogain" and learn using first N attributes then good theories with low N $\,$

So, we can "cheat"

Method:

- 1. Stochastic sampling of lightweight notations
 - * Explore all the what-ifs

2. Data mining to find the master variables

- Treatment" = policy
 - what to do
 - what to watch for

• TAR3

- Seek attribute ranges that are often seen in "good"
- and rarely seen in "bad".
- Treatment= constraints that changes baseline frequencies

A few variables are (often) enough

5

Case study 1

- JPL satellite design (Feather, Menzies 2002)
- # 99 binary options.
 - Huge space of costs/benefits
 for those options

 TAR3 found 30 choices that collapsed options space
 * 66 choices that didn't matter

Case study 2: XOMO: Optimization of COCOMO-family models

COCOMO:effort estimation

COQUALMO:
 bugs introduced - bugs removed

Madachy model:
 how many dumb things are you doing today?

Incremental optimization over 26 variables

Case study: building autonomous systems

Case study 3 (SILAP)

Q: What most increases project errorPotential? SILAP

- * from DELPHI sessions with experienced NASA IV&V managers
- * a network of weighted project factors

₩ E.g.

function the(X) { return one (X) * all(X) }

**One:* project data*All:* DEPHI knowledge

卷 E.g.

function development() {
 return the("experience") +
 the("organization") }
function software() {
 return the("complexity") +
 the("innovation") +
 the("softwareSize")

just a notation we made up one night

Passes the "elbow test"

- * Domain experts elbow us out of the way ...
- * ... in their haste to fix some error.

SILAP models contain "hedges"

*

just a notation we made up one night One and All are defined using hedges; e.g. * One["complexity"] = usually 2 * One["configManagement"] = sometimes 5; * One["defectTracking"] = rarely 3;

- * All["Experience"]= 0.8 to 0.9
- All["Reuse"] = often 0.226
- Hedges define the spread (a.k.a. standard deviation) of a value:
 - * usually(X) : mean=X, sd = 0.1*X
 - * often(X) : mean=X, sd = 0.25*X
 - Sometimes(X) : mean=X, var = 0.5*X
 - * Rarely(X) : mean=X, var = 0.75*X

Are there any stable conclusions in such space of maybes?

Commissioning SILAP

Sampling studies:

Is Monte Carlo exploring enough of the model?
 Distributions stabilize after 5000 samples

Stability studies:

- * TAR3 is a stochastic search engine.
- * Do subsets of the data offer the same conclusions?

Specialization studies:

- * Is there too much stability?
- * Do different software types yield different results?

Stability Studies (1)

✤ Run 5000 simulations

✤ Ten times,

- * divide data into 90% train, 10% test
- ✤ Only report treatments found in ≥ 7 samples
- Score treatments by what makes error potential worse
 I.e. explore the worst case scenario

Worst case scenarios:

- * Very poor developer experience and any one of
 - High resuse is a goal
 - Similar software has been used on prior missions
 - * Software very simple; e.g. no intense numerical solutions.
 - * Software being built by a team at one location

(so no one thinks to monitor these projects)

Stability Studies (2)

(not reported in paper)

Recall the SILAP constructs

- One["complexity"] = usually 2
- One["configManagement"] = sometimes 5;
- One["defectTracking"] = rarely 3;

₩ ..

- * All["Experience"] = 0.8 to 0.9
- # All["Reuse"] = often 0.226

*

One: what is true about one project

All: what is true about all projects (background expert knowledge).

* Vary both the "One" and the "All" values

- What changes the conclusion first?
 - * In certain cases, the Delphi "All" values
 - So, in those cases, managers could push back and say "those conclusions just come from your crazy values"
 - Action item: need to better justify those particular "All" values

Specialization Studies

Criterion	Value	Explanation
Experience	1	The developer's have built these systems before and have several years of domain experience.
Development Organization	4	Usually more than one NASA Center is involved with Human Space Flight missions.
Degree of Innovation	1	Normally, the software is not doing anything that has not been tested during a previous flight.
Use of Standards	1	Developers incorporate NASA standards as well as accepted industry standards.
Use of Configuration Management	1	Tools, as well as established methods, for configuration management are integrated into the development effort.
CMM Level	3	Methods and processes are characteristic of a Level 3 organization.
Use of Formal Reviews	1	Formal reviews are essential for the Human Space missions and they are followed and have predefined criteria.
Use of a Defect Tracking System	1	Defect tracking tools are well established at the software level and in place for the development efforts.
Use of a Risk Management System	3	Risk management tools are established at the Project level but they are not consistently used at the software level.
Artifact Maturity	1	The majority of the software artifacts are logically in a state that is similar to the schedule.

Above:

- * all inputs picked at random
- ✤ Here:
 - * pick inputs from human space flight
 - * conduct a stability study on the result
- Yielded very different stable treatments
 - * "Developer's experience": no longer vital
 - * Rather, it is the "product complexity"

Summary

- Monte Carlo and data mining
 Can express and explore business knowledge
- Express business knowledge in lightweight notations
 The "elbow test"

Stability study #1:

Can find stable conclusions in a large space of business possibilities

Stability study #2:

- Can also be used to perform V&V on the model
- Specialization study:
 - * Beware general conclusions
 - Your project exists in a small corner of the space of all possible projects
 - * Learn local solutions for local problems

Counter proposals

- Won't the learning just recreate the original model?
 - * No: summary much smaller
 - * Finds relationships that are obscure in model.
- Why not use standard Monte Carlo methods?
 * TAR3 produces much smaller theories
- Why not model with fuzzy logic, Bayes nets, decision diagrams,..?
 - * All of these impose restrictions on the modeling language
 - Funnel theory: a few master variables that set the remaining "slaves:
 - Language details less important than sampling output
 - * Our goal: decisions from models written any way at all
- Why not search with genetic algorithms, neural nets, ...?
 Wasted time.
 - * If master variables , master variables will be obvious
- Why not search for master variables with an ATMS?
 - * ATMS' complete search takes exponential time;
 - * TAR3's stochastic search takes time linear on data set size

16

Questions? Comments?

Promise2Prototype : Promise2006 HomePage | Site map | Index | What's new | Comments | Legal

Change settings/Logout | You are TimMenzies

2nd International Workshop on Predictor Models in Software Engineering (PROMISE 2006)

Sunday September 24, 2006, Philadelphia, Pennsylvania USA

An ICSM 2006 workshop, http://icsm2006.cs.drexel.edu/~

NEWS: Papers accepted to PROMISE 2006 will be eligable for submission to a special issue of the Journal of Empirical Software Engineering on repeatable experiments in software engineering.

IMPORTANT: PROMISE 2006 gives the highest priority to case studies, experience reports, and presented results that are based on publicly available datasets, preferably lodged at the PROMISE repository.

http://promise.unbox.org/Promise2006

