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Abstract
Modern business practices are complex. Consider, for 
example, NASA's software IV&V (independent 
verification and validation) team that monitors a 
diverse range of complex software written by a wide 
range of contractors from around the world. In an 
effort to better understand the core business of IV&V, 
the authors recently conducted DELPHI sessions with 
experienced IV&V analysts to build a model reflecting 
their understanding of what level of IV&V is 
appropriate for different projects.  The resulting 
model, while short, contains subtle interactions that 
are not immediately apparent. 

                                                                                                
To understand those interactions, we conducted 
Monte Carlo studies to grow data sets from the 
model. These data sets where summarized using TAR3 
(a minimal contrast set learner) to discover (a) the 
core business decisions that decide what level of 
IV&V is appropriate; and (b) whether or not 
specializations of the problem domain can lead to 
more simple and robust models. 

                                                                        
1. Introduction 
 
Here’s how to start a debate: in some public forum 
claim that software process X or software tool Y 
increases or decreases overall system quality. If you 
want the debate to last a long time, you might also 
care to claim that some combination of processes and 
tools are better/worse for software quality than some 
current practice in a current project. 

 
We are engaged in such a lengthy debate and want to 
optimize that dialogue. By “optimize” we mean that 
the debate terminates earlier and terminates on better 
decisions. Our domain is software IV&V policy.  
NASA’s Independent Verification and Validation 
(IV&V) Facility in Fairmont, West Virginia is 
responsible for verifying that software developed or 
acquired to support NASA missions complies with 
the stated requirements. Additionally, the Facility 
validates that the software is suitable for its intended 
use. In short, the Facility ensures that the software is 

being developed properly, and that the right software 
is being developed or acquired. 

 
A recent change in NASA’s funding policy for IV&V 
has led to much debate about appropriate software 
processes and tools.  Previously, IV&V had to market 
itself to individual projects. In that model, IV&V only 
occurred on projects where funds could be reallocated 
from other development activities. That funding 
model has now changed. NASA headquarters now 
maintains a funding pool for IV&V that is separate to 
project funds. The existence of this funding pool 
means that managers of NASA’s software projects no 
longer have to make hard decisions about cutting 
funds from one part of a project in order to fund 
IV&V. Instead, projects that need IV&V can draw on 
additional funding from the funding pool at 
headquarters. However, the new model has its 
administrative challenges. Before, IV&V 
requirements and methods could be debated project-
by-project amongst individual managers. Now, 
IV&V’s methods are audited at a national level.  
 
These additional auditing requirements have resulted 
in demands for greater precision and detail in defining 
IV&V processes and tools. In response to this 
increased domain for process details, IV&V analysts 
at Fairmont have conducted extensive DELPHI 
sessions to model that group’s consensus on what 
comprises good and bad IV&V practices. The result is 
the IV&V Facility Software Integrity Level 
Assessment Process (SILAP) [3] model.  
 
This paper uses data mining methods to analyze 
SILAP.  Using data mining methods, we find we can 
convert intricate domain models into succinct policy 
statements. Our analysis method is in two parts: 
 
1. Stochastic simulations of the model. Input values 

are picked from a profile representing common 
types of NASA projects. Unlike standard Monte 
Carlo simulations, we do not require detailed 
profile knowledge. In fact, for one of the runs 

HICSS (Hawaiian International Conference on Systems Science, Jan, 2006, Hawaii 
http://menzies.us/pdf/06hicss.pdf 



 

 

shown here, all the variables were picked totally 
at random (i.e. from a completely flat profile). 

 
2. Data mining of the output. Stochastic simulation 

can generate voluminous output. Data miners can 
summarize that output. 

 
2. Digressions 

 
Before beginning, we pause for the following 
digression. An opponent of our approach might argue 
that we will learn very little from a summary log of 
randomly selected behaviors of a model. One analyst 
put this most succinctly when she said “won’t you just 
learn the original model?” 
 
In reply we note that, in all our experience with   our 
approach, that the summary is very different to the 
original models. First, the learned model is often 
much smaller that the original model. Real-world 
models often contain irrelevant, redundant attributes, 
or attributes that have been tuned from noisy data (i.e. 
data containing spurious signals not associated with 
variations in the domain). Our data miners quickly 
strip away such noisy irrelevant redundancies.  
 
Second, our data miners make explicit relationships 
that are implicit or hard to find in the original models. 
Knowledge within models can be hard to assess.  It 
may be expressed verbosely or hidden within 
redundant or useless parts of the model.  
 
Third, using some domain model may be hard when 
that model is very large and slow to execute. In 
contrast, our learned models may be a far simpler and 
succinct record of the important knowledge. Since 
they are smaller, our learned models   can execute 
very quickly. 
 
3. Minimizing a Model 
 
The central thesis of this paper is that data mining 
can learn succinct theories of complex business 
models. To put that claim another way, we are 
saying that the essential details of a model are quite 
succinct. 
 
We have argued for this claim for some years. In 
many models, influences are linked in “chains” 
(strings of preconditions leading to effects that are 
preconditions for other effects). For such “chained 
models”, a negation of any part of the chain can 
negate the whole the chain.  
 

Models with these chains may still appear complex 
because human short-term memory is too small to 
process all the current chains in software and 
automatic tool support is required. Since the early 
1990s, we have been exploring abductive inference 
to fully exercise the space of options within a 
program to find the key issues.   
 
Abduction is the logic of argument: pre-conditions 
are inferred for all goals and those pre-conditions 
become the assumptions that the whole argument 
space must share [7]. Often, mutually incompatible 
assumptions can be inferred and the space of 
arguments must be resolved into alternate worlds of 
belief- each world comprises a maximal consistent 
set of beliefs. In the literature, these worlds are 
called many things including extensions [13], 
scenarios [12], or the environments of the a multiple 
worlds reeasoner like an assumption-based truth 
maintenance system (ATMS) [4].  
 
Worlds contain assumptions, and assumptions form 
chains of argument. The assumptions  the start of a 
chain are the core assumptions since they set the rest 
of the assumptions (in the language of the ATMS, 
these are called the minimal environments).  
Refuting any assumption in the chain refutes the 
whole chain.  
 
Previously [9], we have shown mathematically that 
on average, the core assumptions in any model are 
few in number.  We call this the funnel assumption; 
i.e. most models channel their inference through a 
small funnel comprising the core assumptions. In 
models where the funnel assumption holds, then the 
complexity of large models reduces to just the 
complexity of the variables in the funnel. When the 
funnel is small, this means that large complex 
models can be controlled via the appropriate settings 
to the funnel variables. 
 
There is much evidence for these theoretical results. 
A surprising and repeated result is that, in the usual 
case, a very small number of variables control the 
rest of the models [9].  Other evidence comes from 
the theories of Herbert Simon. Simon rebelled 
against traditional models of human decision where 
decisions reflect optimizations to some goal 
function. His preferred model [14] for human 
rationality was satisficing, not optimizing1. The 

                                                
1 Satisficing is a behavior which attempts to achieve 
at least some minimum level of a particular variable, 
but which does not strive to achieve its maximum 
possible value. 



 

 

distinguishing feature of a satisficing decision is that 
is sub-optimum. Somehow, humans following such a 
sub-optimum strategy still manage to make effective 
decisions about something as complex as the world.  
Our explanation for the surprising success of such a 
non-optimal strategy is the funnel assumptions. That 
is, making a few decisions about just the most 
important variables (i.e. those in the core) suffice for 
producing effective control strategies. 
 
Lest we oversell our case, we hasten to add that a 
premise to the above optimism is that the core 
assumptions can be found. Traditionally, this has not 
been the case since complete abductive inference can 
be impractically slow. For example, the ATMS’s 
runtimes were exponential on problem size [2].  
 
However, recent results suggest that an alternative 
approach may be useful.  If a model contains narrow 
funnels then, by definition, the funnel variables will 
be used very frequently. Consider the case of a 
model with narrow funnels and some oracle scored 
model output as (say) good and bad. In this model, 
certain ranges of the funnel variables will occur at 
very different frequencies in good than bad.  The 
TAR3 treatment learners tested if using those ranges 
with very different frequencies was enough for 
building minimal models.  
 
TAR3’s rule generator favors the smallest rules that   
most change the output of a simulation [10] (in the 
language of machine learning, treatment learning 
combines minimal contrast set learning [1] with a 
feature subset selection mechanism) [6]. TAR3 
orders variable ranges based on their frequency in 
good divided by their frequency in bad2. It then 
builds rules by randomly combining attribute range 
(here, “random” means that it favors attribute ranges 
with a high good/bad rating). 
 
This approach can be shown to simplify the task of 
understanding complex models.   When benchmarked 
against standard learners, we find that TAR3 often 
produces smaller theories. Those smaller theories can 
perform just as well as those found by a more 
complete search. For example, in comparisons of our 
data miners vs. more complete search algorithms 
such as simulated annealing [11] and genetic 
algorithms [5], Feather and Menzies found that their 
data miners heuristically generated alert points 

                                                
2 TAR3 is not restricted to binary classes. In the N-ary 
class case, TAR3 computes the weighted sum of a 
range frequency in class X times the utility of X. 

yielding solutions very close to the solutions 
generated by more complete methods.  
 
Figure 1 shows an example of TAR3 simplifying the 
analysis of a complete model. In that example, 
experts on satellite design at NASA’s Jet Propulsion 
Laboratory use this method to control their 
discussions. Given a requirements model, a 
simulator samples the space of design options to find 
the least number of critical decisions that most 
influence the design.   The impact on the design 
debates can be quite dramatic. For example, from a 
design model with 299 options, 30 key decisions 
could be found that dominated and rendered 
irrelevant the other 69 decisions. Applying those 30 
key decisions, the benefits and additional costs 

associated with a particular satellite design changed 
dramatically. Figure 1 illustrates the results. Note 
that the average cost has greatly reduced while the 
average benefit has increased [5].    Note further, that 
our JPL experts can now argue faster since our tools 
have removed at least 69/99 of the disputes. 
 
The rest of this paper applies the TAR3 technology 
to the IV&V modeling problem. 
 
4.  The SILAP Model 
 
The SILAP model has two major attributes, 
Consequence and Error Potential.  The combination 
of these attributes, whose numerical ranges are 
between 1 and 5, is used to characterize the software 
development project under assessment and define the 
tasks that IV&V shall perform and the software 
modules that shall be within IV&V’s scope.  Each 

 

 
Fig 1: Each dot is one project plan for JPL satellite 
design; i.e. one possible setting to nearly 100 design 
possibilities. The x axis = cost shows the sum of the 
cost of selected design decisions (lower is better). 
The y-axis shows coverage of requirement, based on 
different design decisions (more is better) 

before 

after 



 

 

attribute has a set of criteria that are used to further 
define the Consequence and Error Potential. 
 
Consequence is composed of the following criteria; 
• Human Safety,  
• Asset Safety, and 
• Performance.   

 
Each criterion has an associated weight and can take 
on values from 1 to 5.  Once the weights are applied 
to these criteria, their scores are summed and 
represent the Consequence score. 
 
Error Potential has more criteria than Consequence 
and is further broken down into 3 sub-categories: 
• Software Development,  
• Software Process, and  
• Software Characteristics.   
 
The Software Development sub-category is comprised 
of the following criteria: 
• Developer’s Experience, and  
• Development Organization’s  Communication 

Structure.   
 
The Software Process sub-category is comprised of 
the following criteria: 
• Developer’s use of standards, 
• Developer’s use of configuration management, 
• Developer’s CMM level,  
• Developer’s use of formal reviews,  
• Developer’s use of a defect tracking system,  
• Developer’s use of a risk management system,  
• Developer’s reuse approach, and  
• Maturity of the development artifacts.   

 
The Software Characteristics sub-category is 
comprised of the following criteria;  
• Complexity of the software,  
• Degree of innovation, 
• Size of the system.   
 
Each criterion is assessed and given a score between 1 
and 5.  The associated weight is applied to the score 
and then summed for each sub-category.  The sub-
categories have their weights applied to them and they 
too are summed for the resultant Error Potential score. 
 
The SILAP model was first written in C so that 
stochastic simulations could be ran.  The model 
contains 13 input variables and 3 internal variables 
(the sub-categories of “Consequences” which, in turn, 
get broken down to the other 13 variables). Each 
variable has a two parts: a “weight” and a setting from 

the user. The model calculates Error Potential (EP) as 
follows:  
//Weighted sub-categories and their criteria 
 //pre-defined as a result of the Delphi sessions 
// 13 weights for the 13 input variables:  

1. real CMM_weight=0.0764; 
2. real Complexity_weight=0.547; 
3. real ConfigManagement_weight=0.0962; 
4. real DefectTracking_weight=0.0873; 
5. real Experience_weight= 0.828; 
6. real FormalReviews_weight=0.1119; 
7. real Innovation_weight=0.351; 
8. real Maturity_weight=0.242; 
9. real Organization_weight= 0.172; 
10. real Reuse_weight=0.226; 
11. real RiskManagement_weight=0.0647; 
12. real SoftwareSize_weight=0.102; 
13. real Standards_weight=0.0955; 

// 3 weights for the 3 input variables 
14. real SoftwareCharacteristics_weight=0.172; 
15. real SoftwareDevelopment_weight = 0.579; 
16. real SoftwareProcess_weight=0.249; 

 
//Compute sub-category scores 
real DV = (Experience_weight * devpExperience) + 
(Organization_weight * devpOrganization) 
 
real SW = (Complexity_weight * swComplexity) + 
(Innovation_weight * swInnovation) + 
(SoftwareSize_weight * swSize) 
 
real PR = (Standards_weight * prUseOfStandards) + 
(ConfigManagement_weight * prUseOfConfigMgt) + 
(CMM_weight * prCMMLevel) + 
(FormalReviews_weight * prUseOfFormalReviews) + 
(DefectTracking_weight * prUseOfDfctTracking) + 
(RiskManagement_weight * prUseOfRiskMgt) + 
(Reuse_weight * prReuseApproach) + 
(Maturity_weight * prArtifactMaturity) 
 
//Compute final Error Potential Score 
real EP = (SoftwareDevelopment_weight * DV) + 
(SoftwareProcess_weight * PR) + 
(SoftwareCharacteristics_weight * SW)  
 
The model seems simple enough, but in practice is 
surprisingly difficult to reason about. After numerous 
fruitless sessions arguing the merits of different 
combinations of inputs, we turned to a three part 
automatic method to simplify those discussions: 
1. Sampling studies; 
2. Stability studies; 
3. Specialization studies; 
 
This three-part procedure is discussed below. 



 

 

 
5. Sampling Studies 
 
Before we can learn from the model, we need to know 
whether we have exercised the model sufficiently to 
uncover all of its nuances. Hence, the first step in our 
kind of studies is a sampling study to check that we 
are executing the model enough. 
 
In a sampling study, we compare the results from N 
runs and 10*N runs. If the distributions in the model 
output change, then we run again at 100*N. This 
repeats till the model’s output stabilizes. 
  
We chose to compare the results of 500, 5,000, and 
50,000 runs of the model.  We compared the results 
using simple visualization capabilities provided by the 
WEKA tool [15].  Figures 2 through 4 show the 
affects that each criterion, within Error Potential, has 
on the final Error Potential score as a result of 500, 
5,000, and 50,000 simulations. 
 

 
Fig 2.  Distribution affects for 500 simulations. 
 

 
Fig 3. Distribution affects for 5,000 simulations 
 

 
Fig 4. Distribution affects for 50,000 simulations 
 
As an example, for all three figures, the second bar 
chart in the first row represents the criterion 
“Developer’s Organization”.  The last bar chart in the 
last row represents the distribution of Error Potential 
scores, red represents an error potential score of 2, 
turquoise represents an error potential of 3, et cetera.  
In Figure 2 we see that roughly 25% of all the scores 
for “Developer’s Organization” (values range from 1-
5) belongs to an Error Potential score of 2.  Although 
it does fluctuate somewhat, a score of 1 contributes 
more to an Error Potential score of 1 than a score of 3 
does.  What we are looking for is stability across the 
simulation runs.  Also, we see that roughly 50% of all 
the scores belong to an Error Potential score of 3 and 
then the remaining 25% belong to an error potential 
score of 4. 
 
A visual comparison of these figures shows that there 
were differences between 500 and 5,000 simulations.  
For example, the second bar chart in the second row 
in all the figures represents the criterion “Developer’s 
Use of Standards”.  Comparing all the figures, you 
can see how the distribution of red scores (error 
potential of 2 ) for the criterion “Developer’s Use of 
Standards” goes from being very erratic to more 
stable, actually there is a large difference between 
Figure 2 and Figure 3 but not much between Figure 3 
and Figure 4. Performing the same comparisons for 
all the criterion allow us to conclude that 5000 runs 
are adequate for sampling our models and that there is 
not any difference between 5,000 simulations and 
50,000 simulations. 
  
6. Stability Studies 
 
TAR3 learned dozens of small rules describing the 
key factors that most changed the performance of the 
model.  A very small example of that output is shown 
here: 



 

 

 
Baseline: [as is]  
       bad: ~~~                 [  2 =  11%] 
      good: ~~~~~~~~~~~~~~~~~~  [ 16 =  89%] 
 
Treatment:[Performance=2] 
       bad:                    [  0 =   0%] 
      good: ~~~~~~~~~~~~~~~~~  [  6 = 100%] 
 
Treatment:[HumanSafety=2] 
       bad:                   [  0 =   0%] 
      good: ~~~~~~~~~~~~~~~~  [  9 = 100%] 
 
This example has been simplified for the purposes of 
exposition. The key features of this output are: 
 
• The first rule describes the baseline as is 

situation. In this tiny example, 18 examples were 
run through the model and 11% of them were 
scored bad by some oracle.  

• The subsequent rules describe strategies for 
changing that baseline. In this example, TAR3 
has been told to try to avoid bad and seek more 
good results. Hence its control rules try to reduce 
bad and increase good. Here, TAR3 is proposing 
two treatments: setting “performance” to 2 or 
setting “human safety” to 2. In either case, all the 
bad disappears and 100% of the outputs are good. 

 
A concern with TAR3’s rule generation is that the 
generated rules are just some of the rules which might 
be generated from the space of possible models.  
Hence we conduct a   stability study to see if the 
treatments are stable; i.e. occur in multiple sub-
samples of the data.    
 
Since our sampling study showed that 5000 runs are 
adequate for this domain, we designed our stability 
study as follows:  
 
• Ran the  simulations 5,000 times, 
• Ten times, randomly selected 90% of that data 

for learning. The models learned in this way were 
assessed using the remaining 10% of the data, 

• Only report the treatments found in the majority 
of the sub-samples (here, we declared that 
“majority” meant 7 or more of the sub-samples), 
and 

• Sort the majority treatments according to 
“worth”.  

 
In this study, we used a negative definition of “worth” 
and asked TAR3 for combinations of inputs that 
select for highest Error Potential (which, in this 
model, was an Error Potential of 5). That is, we were 
looking for the management actions with the worst 
possible effects. 

 
Initially, inputs were selected completely at random. 
This was changed later (see next section). 
 
The sorted results from the stability study are listed 
below. Recall that the top-ranked treatment is the 
worst thing we can do: 
 
1. Score the Developer’s Experience a 5, which 

means the developer has hardly any experience in 
building the system, or 

2. Score the Developer’s Experience a 5 and the 
Developer’s Reuse approach a 1.  This means the 
developer has hardly any experience in building 
the system but they are reusing software, their 
approach is well-established, and the software 
was originally built with reuse as an objective, or 

3. Score the Developer’s Experience a 5 and  
Software Innovation a 1, which means the 
developer has hardly any experience in building 
the system but similar software has been flown 
on previous mission, or 

4. Score the Developer’s Experience a 5 and 
Software Complexity a 1, which means the 
developer has hardly any experience in building 
the system but the software does not have any 
logical conditions or intense numerical solutions, 
or 

5. Score the Developer’s Experience a 5 and the 
Developer’s Organization a 1, which means the 
developer has hardly any experience in building 
the system but they are not subcontracting any of 
the work and the entire software development 
team resides in the same location. 

 
These 5 treatments show that the greatest affect we 
can have on a Project’s Error Potential score is when 
the Project has very little experience in building 
similar systems.  This simply means, if you execute 
the SILAP model for Project A, and you execute the 
SILAP model for Project B, and then you execute the 
model for Project C, the criterion that has the biggest 
affect on their Error Potential scores is whether or not 
they have experience in building similar systems. 
 
7. Specialization Studies 
 
An assertion that we make is that similar NASA 
software projects would yield different treatments.  
This is a specialization effect; i.e. that the treatments 
found for one special set of inputs are different to the 
treatments found from another. For example, Project 
A and Project B are both Human Space Flight 
missions.  The criterion or criteria that would have the 



 

 

biggest affect on their Error Potential score would be 
different than a robotic mission to Mars.   
 
To test our assertion, we conducted a specialization 
study. In this study, we stopped picking inputs purely 
at random. Rather, we constrained those variables to 
typical values seen in Human Space Flight missions 
(see Figure 5).  For those specialized inputs, we ran 
5,000 simulations and conducted a stability study on 
the output.  For the stability study, it revealed that 
changing the software complexity, for all the samples, 
would have the biggest affect on the error potential. 
 
Baseline: [No Treatment]  
       1: ~~~                 [ 698 = 14%] 
       2: ~~~~~~~~~~~~~~~~~~  [4302 = 86%] 
 
Treatment:[Complexity = 3] 
       1:                    [   0 =   0%] 
       2: ~~~~~~~~~~~~~~~~~  [1071 = 100%] 
 
Treatment:[Complexity = 5] 
       1:                   [   0 =   0%] 
       2: ~~~~~~~~~~~~~~~~  [ 971 = 100%] 

 
The results of our treatment learner on the set of 5,000 
runs are significantly different that when we 
previously executed the model using randomly 
selected inputs.  Specifically, the criterion that has the 
biggest affect on the Error Potential score for Human 
Space Flight missions was Software Complexity.  For 
all the samples, changing the software complexity 
score for the Project has the biggest influence on the 

Error Potential, as opposed to the Developer’s 
Experience. 
 
8. Related Work 
 
A standard method for understanding models is some 
sort of sensitivity analysis. Sensitivity analysis is a 
huge field that includes many techniques (some of 
which have overlapping definitions). One survey [8] 
argues that what is called “sensitivity analysis” 
divides up into the tasks shown in Figure 6; (i.e. 
validation,   screening, true sensitivity analysis, 
uncertainty analysis and, finally, finding and 
generating some optimization policy). Validation and 
screening usually precede the other tasks but it seems 
to be a matter of personal style whether or not a 
sensitivity analysis follows uncertainty analysis. 
 
Traditional sensitivity analysis is a labor-intensive, 
time-consuming task. Researchers in this area can 
spend their whole career working in just one of the 
areas shown in Figure 6. Often, extensive knowledge 
is required about the internal features of the model 
being simulated. Unless managers have access to 
specialists in sensitivity analysis, then they may not 
be able to understand all the implications of their 
models that they execute. 
 
A unique feature of this work is the use of data 
mining to reduce the effort and skill-level required 
for sensitivity analysis. In our approach, managers 
just need to tag some of the model output variables 
with “utilities”; i.e. their evaluation of how important 
certain variables are to them. Our data miners would 
then perform many random simulations, cache the 
results, and then automatically learn what input 
parameters lead to preferred outputs. 
 
 

 
 

Criterion Value Explanation

Experience 1

The developer's have built these systems 

before and have several years of domain 

experience.

Development 

Organization
4

Usually more than one NASA Center is 

involved with Human Space Flight 

missions.

Degree of Innovation 1

Normally, the software is not doing 

anything that has not been tested during a 

previous flight.

Use of Standards 1
Developers incorporate NASA standards 

as well as accepted industry standards.

Use of Configuration 

Management
1

Tools, as well as established methods, for 

configuration management are integrated 

into the development effort.

CMM Level 3
Methods and processes are characteristic 

of a Level 3 organization.

Use of Formal 

Reviews
1

Formal reviews are essential for the 

Human Space missions and they are 

followed and have predefined criteria.

Use of a Defect 

Tracking System
1

Defect tracking tools are well established 

at the software level and in place for the 

development efforts.

Use of a Risk 

Management 

System

3

Risk management tools are established at 

the Project level but they are not 

consistently used at the software level.

Artifact Maturity 1

The majority of the software artifacts are 

logically in a state that is similar to the 

schedule.  
Fig 5. Criteria that are set to constant values during 
the simulation to reflect Human Space Flight missions 

Validation:   e,g. check that data models generated 
from the model matches known domain values 

Screening: e.g.   dimensionality reduction via, say, 
ignoring input variables that are not highly 
correlated to outputs  

Sensitivity analysis: e.g. execute using the minimum 
and maximum of all input values  

True uncertainty analysis:  e.g. treat each input as a 
random variable with a mean and standard 
deviation, then perform Monte Carlo simulations 

Optimization: e.g. find some combination of inputs 
that improve the output values. 

Fig 6: Sensitivity analysis methods 



 

 

 
9. Discussion 

 
Our goal was optimizing debates; i.e. the earlier 
termination of debates and terminating on better 
decisions.  
 
TAR3 is a method for such an optimization. Our 
results   show us the least number of critical decisions 
that most influence the Error Potential score.  There is 
a wide range of opinion on how to best reduce that 
error score. For example, someone might advocate 
that   software complexity has the greatest affect on 
the Error Potential score, while someone else may 
assert that a combination of software complexity and 
the size of the system have the biggest influence on 
the Error Potential score.  Arguments such as these 
are common when using models to make decisions.  
Our treatment learner is able to minimize the 
argument space and reveal those input variables that 
have the biggest influence on the score.  In our case, 
which input variables (when changed) have the 
biggest affect on the Error Potential score. 
 
TAR3 optimizes debates another way. One curious 
feature of the above results was that   nearly half the 
variables in the model never appeared in any 
treatment. This is an important observation since it 
means efforts to collect or specialize or refine those 
variables is possibly a waste of time and should be 
avoided. 
 
Significantly, we show above that the SILAP model 
supports specialization effects where the learned 
conclusions vary depending on the class of software 
used to constrain the input conditions.  This is another 
important observation since it means that we need to 
search for classes of NASA software development 
projects (i.e. Human Space Flight missions versus 
Robotic missions) that yield different treatments to 
the input space that ultimately affect the assessed 
Error Potential score for the Project.  This in turn 
affects the different levels of IV&V recommended for 
different classes of missions.  That is, SILAP is not a    
one-size fits all model, and care should be taken to 
avoid applying the wrong conclusions from different 
classes of software to the current domain. 
 
While the domain explored here is quite specific 
(process and tool options for IV&V), our claim is that 
the technology used here is quite general. Given an 
executable model generated from a DELPHI session, 
the data mining methods used here can generate 
succinct summaries of even quite complex business 
knowledge.   When applying this approach to other 

domains, we highly recommend sampling, stability, 
and specialization studies to better understand what 
the data miners are revealing. 
 
The reader might doubt that tools like TAR3 are 
required for models as simple as the SILAP model 
shown in Section 4. If so, they are invited to repeat 
our analysis by some other means. To be a fair 
comparison, that alternative method must: 
 

• Produce results that are demonstrable stable 
across a wide range of inputs,  

• Those stable conclusions must be as simple 
to express as TAR3’s minimal rules, and  

• That analysis must be fully automated and as 
simple to run as using TAR3. 

 
For our future work, we are interested in exploring the 
stability of our conclusions across instabilities in 
SILAP’s weighting factors. SILAP’s conclusions are 
critically dependent on those factors (which are 
generated in DELHPI sessions). As shown in Section 
4, some of those figures are specified in great detail 
(up to four significant figures). If we could identify 
which factors were most “brittle” (i.e. small variations 
had largest impacts on the output) then we would hold 
further DELPHI sessions to better define those critical 
brittle factors. 
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