

Learning IV&V Strategies

Marcus S. Fisher
NASA / GSFC / IV&V Facility
Marcus.S.Fisher@nasa.gov

Tim Menzies
Computer Science / Portland State University

tim@timmenzies.net

Abstract
Modern business practices are complex. Consider, for
example, NASA's software IV&V (independent
verification and validation) team that monitors a
diverse range of complex software written by a wide
range of contractors from around the world. In an
effort to better understand the core business of IV&V,
the authors recently conducted DELPHI sessions with
experienced IV&V analysts to build a model reflecting
their understanding of what level of IV&V is
appropriate for different projects. The resulting
model, while short, contains subtle interactions that
are not immediately apparent.

To understand those interactions, we conducted
Monte Carlo studies to grow data sets from the
model. These data sets where summarized using TAR3
(a minimal contrast set learner) to discover (a) the
core business decisions that decide what level of
IV&V is appropriate; and (b) whether or not
specializations of the problem domain can lead to
more simple and robust models.

1. Introduction

Here’s how to start a debate: in some public forum
claim that software process X or software tool Y
increases or decreases overall system quality. If you
want the debate to last a long time, you might also
care to claim that some combination of processes and
tools are better/worse for software quality than some
current practice in a current project.

We are engaged in such a lengthy debate and want to
optimize that dialogue. By “optimize” we mean that
the debate terminates earlier and terminates on better
decisions. Our domain is software IV&V policy.
NASA’s Independent Verification and Validation
(IV&V) Facility in Fairmont, West Virginia is
responsible for verifying that software developed or
acquired to support NASA missions complies with
the stated requirements. Additionally, the Facility
validates that the software is suitable for its intended
use. In short, the Facility ensures that the software is

being developed properly, and that the right software
is being developed or acquired.

A recent change in NASA’s funding policy for IV&V
has led to much debate about appropriate software
processes and tools. Previously, IV&V had to market
itself to individual projects. In that model, IV&V only
occurred on projects where funds could be reallocated
from other development activities. That funding
model has now changed. NASA headquarters now
maintains a funding pool for IV&V that is separate to
project funds. The existence of this funding pool
means that managers of NASA’s software projects no
longer have to make hard decisions about cutting
funds from one part of a project in order to fund
IV&V. Instead, projects that need IV&V can draw on
additional funding from the funding pool at
headquarters. However, the new model has its
administrative challenges. Before, IV&V
requirements and methods could be debated project-
by-project amongst individual managers. Now,
IV&V’s methods are audited at a national level.

These additional auditing requirements have resulted
in demands for greater precision and detail in defining
IV&V processes and tools. In response to this
increased domain for process details, IV&V analysts
at Fairmont have conducted extensive DELPHI
sessions to model that group’s consensus on what
comprises good and bad IV&V practices. The result is
the IV&V Facility Software Integrity Level
Assessment Process (SILAP) [3] model.

This paper uses data mining methods to analyze
SILAP. Using data mining methods, we find we can
convert intricate domain models into succinct policy
statements. Our analysis method is in two parts:

1. Stochastic simulations of the model. Input values

are picked from a profile representing common
types of NASA projects. Unlike standard Monte
Carlo simulations, we do not require detailed
profile knowledge. In fact, for one of the runs

HICSS (Hawaiian International Conference on Systems Science, Jan, 2006, Hawaii
http://menzies.us/pdf/06hicss.pdf

shown here, all the variables were picked totally
at random (i.e. from a completely flat profile).

2. Data mining of the output. Stochastic simulation

can generate voluminous output. Data miners can
summarize that output.

2. Digressions

Before beginning, we pause for the following
digression. An opponent of our approach might argue
that we will learn very little from a summary log of
randomly selected behaviors of a model. One analyst
put this most succinctly when she said “won’t you just
learn the original model?”

In reply we note that, in all our experience with our
approach, that the summary is very different to the
original models. First, the learned model is often
much smaller that the original model. Real-world
models often contain irrelevant, redundant attributes,
or attributes that have been tuned from noisy data (i.e.
data containing spurious signals not associated with
variations in the domain). Our data miners quickly
strip away such noisy irrelevant redundancies.

Second, our data miners make explicit relationships
that are implicit or hard to find in the original models.
Knowledge within models can be hard to assess. It
may be expressed verbosely or hidden within
redundant or useless parts of the model.

Third, using some domain model may be hard when
that model is very large and slow to execute. In
contrast, our learned models may be a far simpler and
succinct record of the important knowledge. Since
they are smaller, our learned models can execute
very quickly.

3. Minimizing a Model

The central thesis of this paper is that data mining
can learn succinct theories of complex business
models. To put that claim another way, we are
saying that the essential details of a model are quite
succinct.

We have argued for this claim for some years. In
many models, influences are linked in “chains”
(strings of preconditions leading to effects that are
preconditions for other effects). For such “chained
models”, a negation of any part of the chain can
negate the whole the chain.

Models with these chains may still appear complex
because human short-term memory is too small to
process all the current chains in software and
automatic tool support is required. Since the early
1990s, we have been exploring abductive inference
to fully exercise the space of options within a
program to find the key issues.

Abduction is the logic of argument: pre-conditions
are inferred for all goals and those pre-conditions
become the assumptions that the whole argument
space must share [7]. Often, mutually incompatible
assumptions can be inferred and the space of
arguments must be resolved into alternate worlds of
belief- each world comprises a maximal consistent
set of beliefs. In the literature, these worlds are
called many things including extensions [13],
scenarios [12], or the environments of the a multiple
worlds reeasoner like an assumption-based truth
maintenance system (ATMS) [4].

Worlds contain assumptions, and assumptions form
chains of argument. The assumptions the start of a
chain are the core assumptions since they set the rest
of the assumptions (in the language of the ATMS,
these are called the minimal environments).
Refuting any assumption in the chain refutes the
whole chain.

Previously [9], we have shown mathematically that
on average, the core assumptions in any model are
few in number. We call this the funnel assumption;
i.e. most models channel their inference through a
small funnel comprising the core assumptions. In
models where the funnel assumption holds, then the
complexity of large models reduces to just the
complexity of the variables in the funnel. When the
funnel is small, this means that large complex
models can be controlled via the appropriate settings
to the funnel variables.

There is much evidence for these theoretical results.
A surprising and repeated result is that, in the usual
case, a very small number of variables control the
rest of the models [9]. Other evidence comes from
the theories of Herbert Simon. Simon rebelled
against traditional models of human decision where
decisions reflect optimizations to some goal
function. His preferred model [14] for human
rationality was satisficing, not optimizing1. The

1 Satisficing is a behavior which attempts to achieve
at least some minimum level of a particular variable,
but which does not strive to achieve its maximum
possible value.

distinguishing feature of a satisficing decision is that
is sub-optimum. Somehow, humans following such a
sub-optimum strategy still manage to make effective
decisions about something as complex as the world.
Our explanation for the surprising success of such a
non-optimal strategy is the funnel assumptions. That
is, making a few decisions about just the most
important variables (i.e. those in the core) suffice for
producing effective control strategies.

Lest we oversell our case, we hasten to add that a
premise to the above optimism is that the core
assumptions can be found. Traditionally, this has not
been the case since complete abductive inference can
be impractically slow. For example, the ATMS’s
runtimes were exponential on problem size [2].

However, recent results suggest that an alternative
approach may be useful. If a model contains narrow
funnels then, by definition, the funnel variables will
be used very frequently. Consider the case of a
model with narrow funnels and some oracle scored
model output as (say) good and bad. In this model,
certain ranges of the funnel variables will occur at
very different frequencies in good than bad. The
TAR3 treatment learners tested if using those ranges
with very different frequencies was enough for
building minimal models.

TAR3’s rule generator favors the smallest rules that
most change the output of a simulation [10] (in the
language of machine learning, treatment learning
combines minimal contrast set learning [1] with a
feature subset selection mechanism) [6]. TAR3
orders variable ranges based on their frequency in
good divided by their frequency in bad2. It then
builds rules by randomly combining attribute range
(here, “random” means that it favors attribute ranges
with a high good/bad rating).

This approach can be shown to simplify the task of
understanding complex models. When benchmarked
against standard learners, we find that TAR3 often
produces smaller theories. Those smaller theories can
perform just as well as those found by a more
complete search. For example, in comparisons of our
data miners vs. more complete search algorithms
such as simulated annealing [11] and genetic
algorithms [5], Feather and Menzies found that their
data miners heuristically generated alert points

2 TAR3 is not restricted to binary classes. In the N-ary
class case, TAR3 computes the weighted sum of a
range frequency in class X times the utility of X.

yielding solutions very close to the solutions
generated by more complete methods.

Figure 1 shows an example of TAR3 simplifying the
analysis of a complete model. In that example,
experts on satellite design at NASA’s Jet Propulsion
Laboratory use this method to control their
discussions. Given a requirements model, a
simulator samples the space of design options to find
the least number of critical decisions that most
influence the design. The impact on the design
debates can be quite dramatic. For example, from a
design model with 299 options, 30 key decisions
could be found that dominated and rendered
irrelevant the other 69 decisions. Applying those 30
key decisions, the benefits and additional costs

associated with a particular satellite design changed
dramatically. Figure 1 illustrates the results. Note
that the average cost has greatly reduced while the
average benefit has increased [5]. Note further, that
our JPL experts can now argue faster since our tools
have removed at least 69/99 of the disputes.

The rest of this paper applies the TAR3 technology
to the IV&V modeling problem.

4. The SILAP Model

The SILAP model has two major attributes,
Consequence and Error Potential. The combination
of these attributes, whose numerical ranges are
between 1 and 5, is used to characterize the software
development project under assessment and define the
tasks that IV&V shall perform and the software
modules that shall be within IV&V’s scope. Each

Fig 1: Each dot is one project plan for JPL satellite
design; i.e. one possible setting to nearly 100 design
possibilities. The x axis = cost shows the sum of the
cost of selected design decisions (lower is better).
The y-axis shows coverage of requirement, based on
different design decisions (more is better)

before

after

attribute has a set of criteria that are used to further
define the Consequence and Error Potential.

Consequence is composed of the following criteria;
• Human Safety,
• Asset Safety, and
• Performance.

Each criterion has an associated weight and can take
on values from 1 to 5. Once the weights are applied
to these criteria, their scores are summed and
represent the Consequence score.

Error Potential has more criteria than Consequence
and is further broken down into 3 sub-categories:
• Software Development,
• Software Process, and
• Software Characteristics.

The Software Development sub-category is comprised
of the following criteria:
• Developer’s Experience, and
• Development Organization’s Communication

Structure.

The Software Process sub-category is comprised of
the following criteria:
• Developer’s use of standards,
• Developer’s use of configuration management,
• Developer’s CMM level,
• Developer’s use of formal reviews,
• Developer’s use of a defect tracking system,
• Developer’s use of a risk management system,
• Developer’s reuse approach, and
• Maturity of the development artifacts.

The Software Characteristics sub-category is
comprised of the following criteria;
• Complexity of the software,
• Degree of innovation,
• Size of the system.

Each criterion is assessed and given a score between 1
and 5. The associated weight is applied to the score
and then summed for each sub-category. The sub-
categories have their weights applied to them and they
too are summed for the resultant Error Potential score.

The SILAP model was first written in C so that
stochastic simulations could be ran. The model
contains 13 input variables and 3 internal variables
(the sub-categories of “Consequences” which, in turn,
get broken down to the other 13 variables). Each
variable has a two parts: a “weight” and a setting from

the user. The model calculates Error Potential (EP) as
follows:
//Weighted sub-categories and their criteria
 //pre-defined as a result of the Delphi sessions
// 13 weights for the 13 input variables:

1. real CMM_weight=0.0764;
2. real Complexity_weight=0.547;
3. real ConfigManagement_weight=0.0962;
4. real DefectTracking_weight=0.0873;
5. real Experience_weight= 0.828;
6. real FormalReviews_weight=0.1119;
7. real Innovation_weight=0.351;
8. real Maturity_weight=0.242;
9. real Organization_weight= 0.172;
10. real Reuse_weight=0.226;
11. real RiskManagement_weight=0.0647;
12. real SoftwareSize_weight=0.102;
13. real Standards_weight=0.0955;

// 3 weights for the 3 input variables
14. real SoftwareCharacteristics_weight=0.172;
15. real SoftwareDevelopment_weight = 0.579;
16. real SoftwareProcess_weight=0.249;

//Compute sub-category scores
real DV = (Experience_weight * devpExperience) +
(Organization_weight * devpOrganization)

real SW = (Complexity_weight * swComplexity) +
(Innovation_weight * swInnovation) +
(SoftwareSize_weight * swSize)

real PR = (Standards_weight * prUseOfStandards) +
(ConfigManagement_weight * prUseOfConfigMgt) +
(CMM_weight * prCMMLevel) +
(FormalReviews_weight * prUseOfFormalReviews) +
(DefectTracking_weight * prUseOfDfctTracking) +
(RiskManagement_weight * prUseOfRiskMgt) +
(Reuse_weight * prReuseApproach) +
(Maturity_weight * prArtifactMaturity)

//Compute final Error Potential Score
real EP = (SoftwareDevelopment_weight * DV) +
(SoftwareProcess_weight * PR) +
(SoftwareCharacteristics_weight * SW)

The model seems simple enough, but in practice is
surprisingly difficult to reason about. After numerous
fruitless sessions arguing the merits of different
combinations of inputs, we turned to a three part
automatic method to simplify those discussions:
1. Sampling studies;
2. Stability studies;
3. Specialization studies;

This three-part procedure is discussed below.

5. Sampling Studies

Before we can learn from the model, we need to know
whether we have exercised the model sufficiently to
uncover all of its nuances. Hence, the first step in our
kind of studies is a sampling study to check that we
are executing the model enough.

In a sampling study, we compare the results from N
runs and 10*N runs. If the distributions in the model
output change, then we run again at 100*N. This
repeats till the model’s output stabilizes.

We chose to compare the results of 500, 5,000, and
50,000 runs of the model. We compared the results
using simple visualization capabilities provided by the
WEKA tool [15]. Figures 2 through 4 show the
affects that each criterion, within Error Potential, has
on the final Error Potential score as a result of 500,
5,000, and 50,000 simulations.

Fig 2. Distribution affects for 500 simulations.

Fig 3. Distribution affects for 5,000 simulations

Fig 4. Distribution affects for 50,000 simulations

As an example, for all three figures, the second bar
chart in the first row represents the criterion
“Developer’s Organization”. The last bar chart in the
last row represents the distribution of Error Potential
scores, red represents an error potential score of 2,
turquoise represents an error potential of 3, et cetera.
In Figure 2 we see that roughly 25% of all the scores
for “Developer’s Organization” (values range from 1-
5) belongs to an Error Potential score of 2. Although
it does fluctuate somewhat, a score of 1 contributes
more to an Error Potential score of 1 than a score of 3
does. What we are looking for is stability across the
simulation runs. Also, we see that roughly 50% of all
the scores belong to an Error Potential score of 3 and
then the remaining 25% belong to an error potential
score of 4.

A visual comparison of these figures shows that there
were differences between 500 and 5,000 simulations.
For example, the second bar chart in the second row
in all the figures represents the criterion “Developer’s
Use of Standards”. Comparing all the figures, you
can see how the distribution of red scores (error
potential of 2) for the criterion “Developer’s Use of
Standards” goes from being very erratic to more
stable, actually there is a large difference between
Figure 2 and Figure 3 but not much between Figure 3
and Figure 4. Performing the same comparisons for
all the criterion allow us to conclude that 5000 runs
are adequate for sampling our models and that there is
not any difference between 5,000 simulations and
50,000 simulations.

6. Stability Studies

TAR3 learned dozens of small rules describing the
key factors that most changed the performance of the
model. A very small example of that output is shown
here:

Baseline: [as is]
 bad: ~~~ [2 = 11%]
 good: ~~~~~~~~~~~~~~~~~~ [16 = 89%]

Treatment:[Performance=2]
 bad: [0 = 0%]
 good: ~~~~~~~~~~~~~~~~~ [6 = 100%]

Treatment:[HumanSafety=2]
 bad: [0 = 0%]
 good: ~~~~~~~~~~~~~~~~ [9 = 100%]

This example has been simplified for the purposes of
exposition. The key features of this output are:

• The first rule describes the baseline as is

situation. In this tiny example, 18 examples were
run through the model and 11% of them were
scored bad by some oracle.

• The subsequent rules describe strategies for
changing that baseline. In this example, TAR3
has been told to try to avoid bad and seek more
good results. Hence its control rules try to reduce
bad and increase good. Here, TAR3 is proposing
two treatments: setting “performance” to 2 or
setting “human safety” to 2. In either case, all the
bad disappears and 100% of the outputs are good.

A concern with TAR3’s rule generation is that the
generated rules are just some of the rules which might
be generated from the space of possible models.
Hence we conduct a stability study to see if the
treatments are stable; i.e. occur in multiple sub-
samples of the data.

Since our sampling study showed that 5000 runs are
adequate for this domain, we designed our stability
study as follows:

• Ran the simulations 5,000 times,
• Ten times, randomly selected 90% of that data

for learning. The models learned in this way were
assessed using the remaining 10% of the data,

• Only report the treatments found in the majority
of the sub-samples (here, we declared that
“majority” meant 7 or more of the sub-samples),
and

• Sort the majority treatments according to
“worth”.

In this study, we used a negative definition of “worth”
and asked TAR3 for combinations of inputs that
select for highest Error Potential (which, in this
model, was an Error Potential of 5). That is, we were
looking for the management actions with the worst
possible effects.

Initially, inputs were selected completely at random.
This was changed later (see next section).

The sorted results from the stability study are listed
below. Recall that the top-ranked treatment is the
worst thing we can do:

1. Score the Developer’s Experience a 5, which

means the developer has hardly any experience in
building the system, or

2. Score the Developer’s Experience a 5 and the
Developer’s Reuse approach a 1. This means the
developer has hardly any experience in building
the system but they are reusing software, their
approach is well-established, and the software
was originally built with reuse as an objective, or

3. Score the Developer’s Experience a 5 and
Software Innovation a 1, which means the
developer has hardly any experience in building
the system but similar software has been flown
on previous mission, or

4. Score the Developer’s Experience a 5 and
Software Complexity a 1, which means the
developer has hardly any experience in building
the system but the software does not have any
logical conditions or intense numerical solutions,
or

5. Score the Developer’s Experience a 5 and the
Developer’s Organization a 1, which means the
developer has hardly any experience in building
the system but they are not subcontracting any of
the work and the entire software development
team resides in the same location.

These 5 treatments show that the greatest affect we
can have on a Project’s Error Potential score is when
the Project has very little experience in building
similar systems. This simply means, if you execute
the SILAP model for Project A, and you execute the
SILAP model for Project B, and then you execute the
model for Project C, the criterion that has the biggest
affect on their Error Potential scores is whether or not
they have experience in building similar systems.

7. Specialization Studies

An assertion that we make is that similar NASA
software projects would yield different treatments.
This is a specialization effect; i.e. that the treatments
found for one special set of inputs are different to the
treatments found from another. For example, Project
A and Project B are both Human Space Flight
missions. The criterion or criteria that would have the

biggest affect on their Error Potential score would be
different than a robotic mission to Mars.

To test our assertion, we conducted a specialization
study. In this study, we stopped picking inputs purely
at random. Rather, we constrained those variables to
typical values seen in Human Space Flight missions
(see Figure 5). For those specialized inputs, we ran
5,000 simulations and conducted a stability study on
the output. For the stability study, it revealed that
changing the software complexity, for all the samples,
would have the biggest affect on the error potential.

Baseline: [No Treatment]
 1: ~~~ [698 = 14%]
 2: ~~~~~~~~~~~~~~~~~~ [4302 = 86%]

Treatment:[Complexity = 3]
 1: [0 = 0%]
 2: ~~~~~~~~~~~~~~~~~ [1071 = 100%]

Treatment:[Complexity = 5]
 1: [0 = 0%]
 2: ~~~~~~~~~~~~~~~~ [971 = 100%]

The results of our treatment learner on the set of 5,000
runs are significantly different that when we
previously executed the model using randomly
selected inputs. Specifically, the criterion that has the
biggest affect on the Error Potential score for Human
Space Flight missions was Software Complexity. For
all the samples, changing the software complexity
score for the Project has the biggest influence on the

Error Potential, as opposed to the Developer’s
Experience.

8. Related Work

A standard method for understanding models is some
sort of sensitivity analysis. Sensitivity analysis is a
huge field that includes many techniques (some of
which have overlapping definitions). One survey [8]
argues that what is called “sensitivity analysis”
divides up into the tasks shown in Figure 6; (i.e.
validation, screening, true sensitivity analysis,
uncertainty analysis and, finally, finding and
generating some optimization policy). Validation and
screening usually precede the other tasks but it seems
to be a matter of personal style whether or not a
sensitivity analysis follows uncertainty analysis.

Traditional sensitivity analysis is a labor-intensive,
time-consuming task. Researchers in this area can
spend their whole career working in just one of the
areas shown in Figure 6. Often, extensive knowledge
is required about the internal features of the model
being simulated. Unless managers have access to
specialists in sensitivity analysis, then they may not
be able to understand all the implications of their
models that they execute.

A unique feature of this work is the use of data
mining to reduce the effort and skill-level required
for sensitivity analysis. In our approach, managers
just need to tag some of the model output variables
with “utilities”; i.e. their evaluation of how important
certain variables are to them. Our data miners would
then perform many random simulations, cache the
results, and then automatically learn what input
parameters lead to preferred outputs.

Criterion Value Explanation

Experience 1

The developer's have built these systems

before and have several years of domain

experience.

Development

Organization
4

Usually more than one NASA Center is

involved with Human Space Flight

missions.

Degree of Innovation 1

Normally, the software is not doing

anything that has not been tested during a

previous flight.

Use of Standards 1
Developers incorporate NASA standards

as well as accepted industry standards.

Use of Configuration

Management
1

Tools, as well as established methods, for

configuration management are integrated

into the development effort.

CMM Level 3
Methods and processes are characteristic

of a Level 3 organization.

Use of Formal

Reviews
1

Formal reviews are essential for the

Human Space missions and they are

followed and have predefined criteria.

Use of a Defect

Tracking System
1

Defect tracking tools are well established

at the software level and in place for the

development efforts.

Use of a Risk

Management

System

3

Risk management tools are established at

the Project level but they are not

consistently used at the software level.

Artifact Maturity 1

The majority of the software artifacts are

logically in a state that is similar to the

schedule.
Fig 5. Criteria that are set to constant values during
the simulation to reflect Human Space Flight missions

Validation: e,g. check that data models generated
from the model matches known domain values

Screening: e.g. dimensionality reduction via, say,
ignoring input variables that are not highly
correlated to outputs

Sensitivity analysis: e.g. execute using the minimum
and maximum of all input values

True uncertainty analysis: e.g. treat each input as a
random variable with a mean and standard
deviation, then perform Monte Carlo simulations

Optimization: e.g. find some combination of inputs
that improve the output values.

Fig 6: Sensitivity analysis methods

9. Discussion

Our goal was optimizing debates; i.e. the earlier
termination of debates and terminating on better
decisions.

TAR3 is a method for such an optimization. Our
results show us the least number of critical decisions
that most influence the Error Potential score. There is
a wide range of opinion on how to best reduce that
error score. For example, someone might advocate
that software complexity has the greatest affect on
the Error Potential score, while someone else may
assert that a combination of software complexity and
the size of the system have the biggest influence on
the Error Potential score. Arguments such as these
are common when using models to make decisions.
Our treatment learner is able to minimize the
argument space and reveal those input variables that
have the biggest influence on the score. In our case,
which input variables (when changed) have the
biggest affect on the Error Potential score.

TAR3 optimizes debates another way. One curious
feature of the above results was that nearly half the
variables in the model never appeared in any
treatment. This is an important observation since it
means efforts to collect or specialize or refine those
variables is possibly a waste of time and should be
avoided.

Significantly, we show above that the SILAP model
supports specialization effects where the learned
conclusions vary depending on the class of software
used to constrain the input conditions. This is another
important observation since it means that we need to
search for classes of NASA software development
projects (i.e. Human Space Flight missions versus
Robotic missions) that yield different treatments to
the input space that ultimately affect the assessed
Error Potential score for the Project. This in turn
affects the different levels of IV&V recommended for
different classes of missions. That is, SILAP is not a
one-size fits all model, and care should be taken to
avoid applying the wrong conclusions from different
classes of software to the current domain.

While the domain explored here is quite specific
(process and tool options for IV&V), our claim is that
the technology used here is quite general. Given an
executable model generated from a DELPHI session,
the data mining methods used here can generate
succinct summaries of even quite complex business
knowledge. When applying this approach to other

domains, we highly recommend sampling, stability,
and specialization studies to better understand what
the data miners are revealing.

The reader might doubt that tools like TAR3 are
required for models as simple as the SILAP model
shown in Section 4. If so, they are invited to repeat
our analysis by some other means. To be a fair
comparison, that alternative method must:

• Produce results that are demonstrable stable
across a wide range of inputs,

• Those stable conclusions must be as simple
to express as TAR3’s minimal rules, and

• That analysis must be fully automated and as
simple to run as using TAR3.

For our future work, we are interested in exploring the
stability of our conclusions across instabilities in
SILAP’s weighting factors. SILAP’s conclusions are
critically dependent on those factors (which are
generated in DELHPI sessions). As shown in Section
4, some of those figures are specified in great detail
(up to four significant figures). If we could identify
which factors were most “brittle” (i.e. small variations
had largest impacts on the output) then we would hold
further DELPHI sessions to better define those critical
brittle factors.

10. References

[1] Bay, S.B., M.J. Pazzani, Detecting Change in
Categorical Data:s Mining Contrast Sets, Proceedings of the
Fifth International Conference on Knowledge Discovery
and Data Mining, 1999

[2] Bylander, T., D. Allemang, M. C. Tanner and J. R.
Josephson (1991): The computational complexity of
abduction. In Artificial Intelligence 49

[3] Costello, K., Software Integrity Level Assessment
Process (SILAP), NASA IV&V Facility, 2005

[4] DeKleer, J. An Assumption-Based TMS. Artificial
Intelligence, 28:163--196, 1986

[5] Feather M.S., Menzies T., Converging on the
Optimal Attainment of Requirements (2002), IEEE
Joint Conference On Requirements Engineering
ICRE’02 and RE’02, 9-13th September, University of
Essen, Germany. Available from
http://menzies.us/pdf/02re02.pdf

[6] Hall, M. and Holmes, G. . Benchmarking attribute
selection techniques for discrete class data mining.

IEEE Transactions on Knowledge and Data
Engineering. 15(3), May/June 2003.

[7] Kakas, A. C., Kowalski, R. A., and Toni, F., Abductive
Logic Programming, Journal of Logic and Computation
2(6):719—770, 1992.

[8] Kliijnen, J.P.C., Sensitivity Analysis and Related
Analyses: a Survey of Statistical Techniques, Journal
Statistical Computation and Simulation, pages 111-
142, Number 1--4, Volume 57, 1987.

[9] Madravio, M., Menzies T., Singh, H., Many Maybes
Mean (Mostly) the Same Thing; Soft Computing in
Software Engineering; 2003; Springer-Verlag;
Available from http://menzies.us/pdf/03maybe.pdf

[10] Menzies T., Hu, Y., Data Mining for Very Busy
People; IEEE Computer; October 2003; Available
from http://menzies.us/pdf/03tar2.pdf

[11] Menzies T., Kiper, J., Feather M., Improved
software engineering decision support through
automatic argument reduction tools (2003),
SEDECS’2003: the 2nd International Workshop on
Software Engineering Decision Support (part of
SEKE2003). http://menzies.us/pdf/03star1.pdf

[12] Poole, D.L., Goebel, R., Aleliunas, R., “Theorist:
a logical reasoning system for defaults and
diagnosis”, in N. Cercone and G. McCalla (Eds.) The
Knowledge Frontier: Essays in the Representation of
Knowledge, Springer Varlag, New York, 1987, pp.
331-352.

[13] Reiter, R. 1980. A Logic for Default Reasoning.
Artificial Intelligence 13:81--132

[14] Simon, H, The Science of the Artifical, MIT
Press, 1996 (second edition).

[15] WEKA, University of Waikato,
http://www.cs.waikato.ac.nz/~ml/weka/

Acknowledgements

This research was conducted at Portland State
University and the IV&V Facility under partial
funding from the NASA Office of Safety and
Mission led by the NASA IV\&V Facility.
Reference herein to any specific commercial product,
process, or service by trade name, trademark,
manufacturer, or otherwise, does not constitute or
imply its endorsement by the United States
Government.

