
“Hello... That’s Odd”, or Why we Should Teach AI in First Year

Tim Menzies
CSEE, WVU

tim@menzies.us ∗†

February 22, 2006

In the view of this paper, students should learn that humans
should not be passive observers of computer output. Rather,
computers should are be viewed as active assistants to every-
day human activities that help us; i.e. watch what we watch and
point out what we might have missed. So instead of teaching

hello world

the canonical example first presented to students should be

hello.... that′s odd

Hello... that’s oddwas inspired by Lucy Stein’s interaction per-
spective [11, 12]. She claims thathello world reflects a von
Neumann view of serial computing where “computation is the
process of executing those steps – the algorithm – to deduce the
answer to a particular question”.

Stein argues convincingly that this von Neumann view is an
incomplete model of modern computing where “computation as
a living, breathing thing that exists and coexists in a dynamic
continuous parallel world”. For example, even building a simple
spreadsheet with standard business software is an exploratory
task where users explore alternate scenarios and different lay-
outs to discover the best way to analyze and present business
knowledge. Her preferred canonical introductory example is

while true {echo()}

i.e. an ongoing process which samples its environment and re-
sponds to it.

The intent ofHello... that’s oddis to extend Stein’s perspec-
tive with data mining concepts and Boehm’s concepts of values-
based engineering [1, 2]. In order for a computer program to

∗Submitted to 19th Conference on Software Engineering Education
and Training Turtle Bay, North Shore Oahu, Hawaii April 19-21, 2006
http://db-itm.cba.hawaii.edu/cseet2006 .

†Earlier drafts of this paper are available fromhttp://menzies.
us/pdf/06odd101.pdf .

understandodd, it needs to understand what isusual; what is
expected; what ispreferredand what isundesired. Notions of
preferredandundesiredcan only be defined with respect to the
values of some human observer. That is, central tohello...that’s
odd, is a user model of preferences and goals.

1 Details
Consider what would be required to realizehello, that’s odd:

1. A world model must be built summarizing what has been
seen so far;

2. A user model must be built summarizing user beliefs and
desires;

3. An anomaly alert must trigger if new inputs fall outside
what has been seen so far;

There are complex ways and simple ways to satisfy these three
requirements. Manual construction of world models is complex
and should be deferred to upper-year data modeling subjects. On
other other hand, for a first year subject, a simpler method would
be to take a data set containing instances that some oracle has al-
ready classified into classes (a.k.a. modes). Each mode should
be scored with an integer indicating the utility of that class: pos-
itive numbers for preferred outcomes and negative numbers for
undesired outcomes.

This paper takes the simpler approach. Given a Bayesian
classifier, and integer class utilities, the above three require-
ments can be meet very easily using a Bayes classifier. Bayes
classifiers are based on Bayes’ Theorem. Informally, the theo-
rem saysnext = old ∗ new i.e. what we’ll believenextcomes
from hownewevidence effectsold beliefs. More formally:

P (H |E) =
P (H)

P (E)

∏
i

P (Ei |H)

That is, given fragments of evidenceEi and a prior probabil-
ity for a classP (H), the theorem lets us calculate a posteriori

1

GLOBALS:
‘‘F’’: frequeny tables; ‘‘I’’ : number of instances;
‘‘C’’: how many classes?; ‘‘N’’: instances per class

function update(class,train)
OUTPUT: changes to the globals.
INPUT: a ‘‘train’’ing example of attr/values

plus that case’s ‘‘class’’
I++;
if (++N[class]==1) then C++ fi
for <attr,value> in train

if (value != "?") then
F[class,attr,value]++ fi

function classify(test)
OUTPUT: ‘‘what’’ is the most likely hypothesis for the test case.
INPUT: a ‘‘test’’ case containing attribute/value pairs.
k=1; m=2 # Control for Laplace and M-estimates.
like = -100000 # Initial, impossibly small likelihood.
for H in N # Check all hypotheses.
{ prior = (N[H]+k)/(I+(k*C))

temp = log(prior)
for <attr,value> in attributes
{ if (value != "?") then

inc= F[H,attr,value]+(m*prior))/(N[H]+m)
temp += log(inc) fi

}
if (temp >= like) then

like = temp; what=class fi
}
return what

Figure 1: A Bayes Classifier. “?” denotes “missing val-
ues”. Probabilities are multiplied together using loga-
rithms to stop numeric errors when handling very small
numbers. Them and k variables handle low frequen-
cies counts in the manner recommended by Yang and
Webb [14,§3.1].

probabilityP (H |E).
Figure 1 shows the pseudo-code for such a learner. The func-

tion update illustrates the simplicity of re-learning for a Bayes
classifier: just increment a frequency tableF holding counts of
the attribute values seen in the new training examples. The func-
tion classify returns the most likely class; i.e. the one with
the largest product of the individual frequencies times the prior
probability of that class.

Since Figure 1 is a classifier, it supports several more inter-
esting functions:

4. It can classify new inputs using the world model;
5. It can raise a problem alert if new inputs fall into some

undesired class of the world model.

Also, based on some my own recent research [9], I assert that
with minor modifications, the code can support:

6. Anomaly alerts when new input falls outside of the enve-
lope of experience since too date.

2 Details
The rest of this paper makes the case that such Bayes learners
are suitable for first-year teaching.

2.1 Simplicity
As witnessed by the proceedings of theUncertainty in AIconfer-
ence, the general field of Bayesian learning is on the most active
research frontier of AI. Such an actives, dynamic field should not
be taught to first years. Instead, this proposal is based around the
more mature and more simpler concept of a Bayes classifier [5].

Bayes classifiers like Figure 1 are callednäive since they
assume that the frequencies of different attributes are indepen-
dent. However, many studies [4, 6] have reported that, in many
domains, this simple Bayes classification scheme exhibits ex-
cellent performance A recent theoretical analysis reveals why:
Bayes classifiers gets confused by attribute dependencies in a
vanishingly small percent of cases [3].

The code of Figure 1 is so simple that it could be taught to
first-years:

• The core data structure is a single arrayF storing the fre-
quency counts.

• Unlike other learners (e.g. decision tree learners), there is
no need to explore more complex issues such a recursion
in order to build a running version.

2.2 Using Bayes Methods
The six requirements of§ 1 could then be fulfilled using Figure 1
or small extensions to that code:

1. A world model must be built summarizing what has been
seen so far:Bayes classifiers can store prior experience as dis-
tributions of the frequency counts.

2. A user model must be built summarizing user beliefs and
desires: In the general case, this is complex issue. However,
much can be done with a simple goal model where each class
gets assigned an integer (positive for preferred goals, and nega-
tive for undesired goals). Further, using the anomaly detection
method described below, it is possible to determine when a new
class has entered the data set. That is, this approach can general-
ize to not only prior data that has been classified, but also novel
data sets with unknown classes.

3. An anomaly alert must trigger if new inputs fall outside
what has been seen so far:Anomalies mean “we have not seen
this before”. The frequency counts of a Bayes classifier can be

2

used to implement such an anomaly detector. Internal to the
classifiers is the calculation of the likelihood; i.e. the product
of the frequencies of the new example in distribution counts.
A new example would be declared anomalous if this likelihood
calculation dips significantly lower than prior likelihood calcu-
lations. Experiments with this approach suggest that the dip can
be quite dramatic (an order or two of magnitude).

4. A classifier that can classify new inputs the world model:
Such a classifier comes built-in to Bayes learners like Figure 1.

5. Raise a problem alert if new input fall into some unde-
sired class of the world model:Given classes with positive and
negative utilities (where positive/negative utilities indicate pre-
ferred/undesired classes respectively) then such a trigger could
be generated if the Bayes learner classifies a new example as an
undesired class.

6. Some action that responds to the alerts (be they be prob-
lem alerts or anomaly alerts:Such actions can be easily com-
puted using the frequency counts of a Bayes classifier: just look
for some value for some controllable attribute that is far more
common in preferred than undesired classes. This kind learn-
ing of control actions is a simple way of instantiating Boehm’s
value-based SE proposal [1]. Rather than treat all goals as value-
neutral and of equal value, this methods focus selectively on
issues that most select for classes that users have scored with
highest utility.

Note that once #3 is implemented, students would have a de-
vice that can sayhello... that’s odd. Also, once #6 is imple-
mented, students would have an advisor that can suggest reme-
dies to undesirable or anomalous situations.

2.3 Other Topics

Prior to teaching Figure 1 , I would introduce students to the idea
of interacting with data with some lectures from Tufte’s work
on information design [13]. Tufte, like Stein, seeks to empower
users to take and watch and improve their interaction with the
Tufte explains how to visually show cause and effect, how to in-
sure that the proper comparisons are made, and how to achieve
the (valid) goals that are desired. His text reviews how informa-
tion has been presented graphically through-out history and his
examples range from how to present baseball scores1 to project
management graphics2 to how Power Point slides caused a fatal
crash of the Space Shuttle3.

1http://www.edwardtufte.com/bboard/
q-and-a-fetch-msg?msg_id=0001OR&topic_id=1

2http://www.edwardtufte.com/bboard/
q-and-a-fetch-msg?msg_id=000076&topic_id=1

3http://www.edwardtufte.com/bboard/
q-and-a-fetch-msg?msg_id=0001yB&topic_id=1

Figure 1 could be used to introduce the topics shown below;
i.e. databases, statistics, ethics, and systems-level programming
in general and software testing in particular:

Databases:Data miners learn from data and data is stored in
databases. A natural parallel subject would be an introduction
to relational databases and a natural overlapping project would
be to extract data from a database (via a join over a few tables),
some data mining, then writing back the learned classifications
to the database.

Statistics: A Bayes classifier needs Gaussians for handling
numerics4. Comparing the performance of different data miners
needs t-tests. Introducing students to Gaussians and their opera-
tions could happen in a first-year statistics subject.

Ethics: The conclusions reached by a learner are biased in
numerous ways (by the data selected for learning, by the search
strategy of the learner, by the choice of target language for the
learned theory, etc). That is, the results are not some universal
truth but some context-dependent summary. Hence, responsible
data miners present their conclusions along with their biases.
Case studies could easily be developed where data miners mis-
lead or confused users. Students could be challenged to prepare
presentations that responsibly present their conclusions to users.

Systems-level Programming:Leveson remarks that in mod-
ern complex systems, unsafe operations often result from an un-
studied interactionbetweencomponents [7]5. Hence, it is vital
that we teach students asystems-levelperspective; i.e. under-
standing a component means not only understanding the inter-
nals of their program but also the way that program interacts
with the environment.

Learning AI algorithms is one way to teach that systems-level
perspective. One subtlety in AI algorithms like Figure 1, or the
interpreter for a rule-based system, is that they aredata-driven.
When software bugs manifest, debugging means understanding
both the codeand the data feed into the code. For example, if
Figure 1 fails to make accurate classifications, the reason is often
in the data and not in the algorithm (e.g. noise in the data, some
classes are very under-sampled in the training data seen to date,
etc). Hence, debugging Figure 1 is not just a matter of staring
at the code. Rather, students would need to understand how the
code interacts with its surrounding environment.

Software Testing: In one specialized area, this notion of
systems-level testing can be very useful indeed. Modern soft-
ware is so complex that exhaustive testing of all inputs is im-

4Technically, this is not precisely true. While a standard Bayes clas-
sifier uses Gaussians, a common technique is todiscretizenumerics prior
to learning [4].

5Lutz and Mikulski [8] found one such interaction in NASA deep-
space satellites: mission critical anomalies offlight softwarecan result
from errors inground softwarethat fails to correctly collect data from
the flight systems.

3

practical. Rather, software must be certified with respect to an
operational profile6. Testing via operational profiles is practi-
cal since the profile constrains the space of possible tests to a
manageable number.

Figure 1 has much to offer testing via operational profiles.
The following operations are simple enough to teach to first
year:

Building a profile: The manual construction of an operational
profile can be time-consuming and error-prone task. On
the other hand, the frequency counts maintained by Fig-
ure 1 are automatically created from examples seen to date.

Nominal testing: Operational profile testing can benominal;
i.e. the tests are drawn from the profile. Students could
use theF variable ofclassto generate nominal tests.

Off-nominal testing: Off-nominaltesting explores values out-
side the expected range. Students could use theF variable
of classto generate off-nominal tests by first complement-
ing the frequency counts insideF .

Learning the certification envelope:Operational profile test-
ing certifies a device within some profile. If a device leaves
that profile then the certificate is no longer valid.Hello...
that’s oddcould be used to determine when the inputs to
some software are departing from the envelope of inputs
under which a device was certified.

3 Discussion
Consider the changing nature of the information worker in the
21st century. Due to the Internet, an potentially overwhelmingly
amount of data is available on any issue. Much of that data
will be superfluous and confusing. Finding “the diamonds in
the dust” (i.e. extracting succinct descriptions of the relevant
sections of large data sets) will be a routine daily task faced by
anyone with access to a computer. We should therefore teach
“diamond mining” to first year students.

At first glance, this might appear too ambitious. However,
after teaching data mining for five years, I assert that the core
algorithms of certain data miners are very simple indeed and
can easily and quickly be extended to all the above tasks.

References
[1] B. Boehm. Keynote address: Automating Value-Based

Software Engineering, IEEE conference on Auto-
mated Software Engineering, 2004. Available from

6Technically, an operational profile is the probability that certain at-
tribute ranges will appear on input [10].

http://ase.cs.uni-essen.de/ase/past/
ase2004/download/KeynoteBoehm.pdf .

[2] B. Boehm, A. Egyed, D. Port, A. Shah, J. Kwan, and
R. Madachy. A Stakeholder Win-Win Approach to Soft-
ware Engineering Education.Annals of Software Engi-
neering, 6:295–321, 1998.

[3] Pedro Domingos and Michael J. Pazzani. On the Optimal-
ity of the Simple Bayesian Classifier under Zero-One Loss.
Machine Learning, 29(2-3):103–130, 1997.

[4] James Dougherty, Ron Kohavi, and Mehran Sahami.
Supervised and Unsupervised Discretization of Con-
tinuous Features. InInternational Conference on
Machine Learning, pages 194–202, 1995. Avail-
able from http://www.cs.pdx.edu/˜timm/dm/
dougherty95supervised.pdf .

[5] R. Duda, P. Hart, and N. Nilsson. Subjective bayesian
methods for rule-based inference systems. InTechnical
Report 124, Artificial Intelligence Center, SRI Interna-
tional, 1976.

[6] M.A. Hall and G. Holmes. Benchmarking Attribute
Selection Techniques for Discrete Class Data Mining.
IEEE Transactions On Knowledge And Data Engineering,
15(6):1437– 1447, 2003.

[7] N. Leveson. Safeware System Safety And Computers.
Addison-Wesley, 1995.

[8] R. Lutz and Carmen Mikulski. Operational Anoma-
lies as a Cause of Safety-Critical Requirements Evo-
lution. Journal of Systems and Software (to appear),
2003. Available fromhttp://www.cs.iastate.
edu/˜rlutz/publications/JSS02.ps .

[9] Tim Menzies and Andres Orrego. Incremental Discre-
atization and Bayes Classifiers Handles Concept Drift
and Scaled Very Well, 2005. Available fromhttp:
//menzies.us/pdf/05sawtooth.pdf .

[10] John Musa. Software Reliability Engineered Testing.
McGraw-Hill, 1998.

[11] L. Stein. Challenging the computational metaphor: Impli-
cations for how we think, 1999.

[12] L.A. Stein. Rethinking CS101: Or, How Robots Revolu-
tionize Introductory Computer Programming, 1996.

[13] Edward R. Tufte.The Visual Display of Quantitative Infor-
mation. Graphics Press, Cheshire, Connecticut, 2nd edi-
tion, 2001.

[14] Y. Yang and G. Webb. Weighted Proportional k-Interval
Discretization for Naive-Bayes Classifiers. InPro-
ceedings of the 7th Pacific-Asia Conference on Knowl-
edge Discovery and Data Mining (PAKDD 2003), 2003.

4

Available from http://www.csse.monash.edu/
˜webb/Files/YangWebb03.pdf .

5

