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Sound bites

Early, we only have some

But a little can be enough

Finding the key issues is not hard

Decision making = use the keys (and the rest
will follow)
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“design as search”

Herbert Simon:
— “Design = quintessential human activity”

Allen Newell:

— Cognition is a search for operators which we believe
will take us towards our desired goals

Q: what if our beliefs are approximate?

— | don’t believe that you can always get rid of
subjective judgments in these kinds of studies.
-- Rick Kazman, Jan 6, 2006,10:53:47

A: “Design” means doing lots of what-ifs.
— Find consistent set(s) of beliefs a.k.a. “worlds” - __
— What selects for worlds with results we waM
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Surprisingly, don’t need to explore all
settings to all variables

If

sort attributes on “infogain” and learn using first N attributes

then good theories with low N
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So, we can “cheat”

100 Bad great

75 =

50-_21 21 29 29 Housing,

25 Baseline
0 _[D_E_. (% of housing types)

97

100 -
75—

50 = 4
25 = 6.7 <=rm < 9.8 and

0_0 0 3 12.6 <= ptratio < 15.9

100
75=

50 =
25 o 0.6 <= NOX < 1.9 and
1T 1 0 17.16 <= Istat < 39

A few variables
are (often) enough

Method:

1. Stochastic sampling of
lightweight notations

# Explore all the what-ifs

2. Data mining to find the master
variables

* Treatment” = policy
« what to do
« what to watch for
« TAR3
« Seek attribute ranges that
are often seen in “good”
 and rarely seen in “bad”.
« Treatment= constraints that changes
baseline frequencies
e
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Related Work

Pelanek, Druzdzel So a few
— State spaces clump variables
DeKleer, Hall & Holmes, B
Williams, Clark Saereet
— Sate spaces have collars
£y
Selman:
— Stochastic propositional search
Bay& Pazzini:
— Contrast set learning
Kakas:
— Abduction

DeKleer, Poole:
— model-based diagnosis
Reiter:

— default logic
I — —

Easterbrook, Callahan:
— lightweight formal methods

Chung, Mylopoulos et.al.
— “soft goal” graphs

Shaw, Garlan:

— qualitative functional |
dependencies '

Maclean:
— QOC graphs
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DDP @ JPL

SILAP @ V&V
NEAR @ APL
XOMO @ AMES




DDP@JPL |
(with Martin Feather)

- Cornford and Feather [3]
" — Visual tool for “group think”
— RISKS hurt
remove risks, cost money.

— Seek cheap mitigations resolving risks that hurt the
important requirements

« Has been used for:

— Starlight, Deep Space 1&2, X2000 electronics packages; |
Interferometry design; Mars Globa Surveyor extended
missions, Technology Infusion/Maturity assessments, ...

- Being used for:

— SCrover: University of Southern
California’s autonomous rover

— used for

analyze this - Cost and risk models for autonomous systems /
22 9
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DDP@JPL + Surfer
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Currently, under the hood, SURFER calls
treatment learning. This may change
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DDP @ JPL

SILAP @ V&V

NEAR @ APL
XOMO @ AMES
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SILAP@IVV
(with Marcus Fisher)

Q: What most increases project errorPotential?

A: SILAP
—  from DELPHI sessions with experienced NASA IV&V managers
— anetwork of weighted project factors jUSt a
e s o notation
function the(. ) { return one (X) * all(X) } we made
*One: project data
*All: DEPHI knowledge up one
- Eg. night

function development() {
return the(“‘experience”) +
the(“organization”) }
function software() {

return the(“‘complexity”) +
the (“innovation”) +
the(“softwareSize”)

« Passes the “elbow test” 5
— Domain experts elbow us out of the way ... /
{ . : : 12
... in their haste to fix some error.
I P — — ' o



SILAP@IVV '.
Stability Studies

 Run 5000 simulations
 Ten times: divide data into 90% train, 10% test

- Apply TARS:
— Only report treatments found in = 7 samples

- Score treatments by what makes error potential worse
— l.e. explore the worst case scenario

- Worst case scenarios:
— Very poor developer experience and any one of
- High reuse is a goal |
- Similar software has been used on prior missions

(s0 no one thinks to /{ Software very simple; e.g. no intense numerical soluys '—7\
13 |

: . + Software being built by a team at one location
monitor these projects)
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DDP @ JPL
SILAP @ V&V

NEAR @ APL

XOMO @ AMES
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NEAR@APL
(near earth autonomous rendezvous)
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NEAR@APL '
TAR3 = combine “heavy lifters”

Divide scores;

e.g. low, medium, high = 2,4,8 Often, a few \
Baseline: ranges with '
e.g. (2 * # lows) large lifts l
+(4*4# mediums) (8 * # highs) e e requencyll
lift(attribute= ranlg veeee: WV Yl ]
log((all N range )/baseline) -3, [ 1)
— Lift = 0 if useless O 5ok SRS s ST i 59:
— Lift > O if useful ), we- ¢ 203
— Lift <0 if dangerous 2:%" [ 5)
TARS3: forward select search e .
of combinations of high lifters s o

— Treatment: fewest settings
with most effect
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DDP @ JPL
SILAP @ V&V
NEAR @ APL

XOMO @ AMES
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XOMO @ AMES
Optimization of COCOMO-family models

« COCOMO:
— effort estimation
« COQUALMO:

— bugs introduced - bugs removed
- Madachy model:
— how many dumb things are you doing today?

« Incremental optimization over 26 variables
— Monte carlo simulations
— Learn best ranges .
— More simulations, focusing on the better ranges

- Case study: building autonomous systems |

— Prec =low
— Cplx = high e

— etc : /1 8
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B8 XOMO @ AMES

!
learned restraints
baseline 1000 2000 3000 4000
75 < ksloc < 125 scedwd4 piteS 100}=4 teame>
rely =35 peeraeviewss=5 peap=4 executionesting - resk=3
prec = | Jand_tools«3 automated-
acap = 5 analysis=5
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Counter proposals

- Won't the learning just recreate the original model?
— No: summary much smaller
— Finds relationships that are obscure in model.

-  Why not use standard Monte Carlo methods?
— TARS produces much smaller theories

«  Why not model with fuzzy logic, Bayes nets, decision diagrams,..?
— All of these impose restrictions on the modeling language
— Funnel theory: a few master variables that set the remaining “slaves:
— Language details less important than sampling output .
— Our goal: decisions from models written any way at all

«  Why not search with genetic algorithms, neural nets, ...?
— Wasted time.
— If master variables , master variables will be obvious

Why not search for master variables with an ATMS?
— ATMS’ complete search takes exponential time; e
— TARBS3’s stochastic search takes time linear on data set size $ /2 :

oV - - - ' ' T At o 4



Current work

» Massive scale up:
— Real-time monitoring of gigabytes of data

— From “requirements engineering” to
» real time, run-time decision making






Sound bites

- Early, we only have some

— Early lifecycle decision making plagued by uncertainty
- But a little can be enough

J
— Within a large space of “maybes”, there may be some }
“key variables” that set the rest

— So “decision making” can be just “set the keys”
- Finding the key issues is not hard

— If they really are critical, they will reveal themselves

— So sample a little, watch a little, try a few combinations §
— TAR3

- Decision making = use the keys (and the rest will |
follow)

— Applications from JPL, IVV, APL, AMES /ﬂ
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Questions?
Comments?
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