
October 2006 93

S O F T W A R E T E C H N O L O G I E S

Early requirements models can be

built quickly using simulation to

tease out key decisions.

M aking decisions during
early requirements for-
mulations is like racing
through a dark forest
without a roadmap or

compass. Often unclear are the avail-
able options or goals. Different par-
ticipants in the formulation process
have different points of view and fre-
quently end up making decisions based
on political rather than technical
grounds. Yet high-quality decisions are
still demanded in a timely manner.
Worse, the cost of patching poor deci-
sions is high—fixing bugs during the
requirements phase is a thousand times
cheaper than later in the lifecycle.

Using AI-based simulation tools can
cut back the forest to reveal clear paths
to possibilities and useful require-
ments. Researchers have long used
modeling and simulation to analyze
complex processes. In this approach,
we describe the system’s properties and
behavior symbolically and numeri-
cally, then let the computer unleash
its brute force to grind through the
combinations.

Recently, developers have also
applied modeling and simulation to

analysis of complex decision spaces
such as the EpiSims simulation. Built
at Los Alamos National Laboratories,
it analyzes the effects of public health
decisions on the spread of diseases.

We have been developing our own
model-based technique for making
early requirements decisions. The
technique uses two curious properties
seen in many models, clumps and col-
lars, that make it easier to search
quickly through a seemingly vast
range of options.

MODELING REQUIREMENTS
OPTIONS

Clarifying the permissible require-
ments for the problem at hand is the
first step toward seeing the paths in the
requirements engineering forest. We
call a permissible set of requirements
a requirements candidate. We use sym-
bolic processing languages such as
LISP and Prolog to define a succinct
domain-specific language for repre-
senting requirements candidates, their
component parts, and their interrela-
tionships. Developers can use a simple
rule language to specify the terms that
are valid requirements. The chosen

form for the term and rule languages
is not important as long as it can be
readily simulated or interpreted.

For example, candidate requirements
for an online store might state that the
store can have U simultaneous users
(denoted users(U)), that some set of
functions F is implemented in the
online store (denoted implemented
(F)), and that the runtime memory
requirement for such a system with U
users, implementing functions F, is
mem(M). A few rules specify con-
straints that define the permitted val-
ues of the term parameters U, F, and M:

store(U,F,M) if
users(U) and implemented(F)
and mem(U,F,M).

users(U) if 0<U<10

implemented(F) if
F=shop&pay or F=shop&drop

mem(U,F,M) if M=U*100000.

This description language can spec-
ify whether the candidate require-
ments are permissible. To enable our
analysis, we must go further and spec-
ify how to construct a permissible
requirements candidate. We can do
this by extending the rule language to
allow specification of an associated
distribution for model parameters, for
example:

users(U) if uniform(1,9,U)

U is equally likely to hold any of the
integer values between 1 and 9 inclu-
sive. We can mechanically generate
permissible requirements candidates
by randomly choosing one of the dis-
juncts when the model contains an or,
and sampling from the specified dis-
tribution when the model contains a
random variable.

We can generate a candidate system
requirement store(U,F,M) by gen-
erating a maximum number of users,
the functions implemented, and the
runtime memory requirement. The
first of these, users(U), is drawn
from a uniform(1,9) distribution

Making Sense
of Requirements,
Sooner
Tim Menzies, West Virginia University
Julian Richardson, Research Institute for Advanced Computer Science

94 Computer

model encoding 20 binary choices has
220 or approximately 1,000,000 states,
but a model with 30 choices contains
more than 1,000,000,000 possibilities.
Fortunately, in practice we can exploit
clumps or collars to make exploring
search spaces feasible.

Clumps
A search space clumps when it

remains in a few states at runtime. For
example, Marek Druzdzel checked the
number of states reached inside a diag-
nosis application for monitoring
patients in intensive care. Although
the software had 525,312 possible
internal states, the application reached
few of them at runtime: One of the
states occurred 52 percent of the time,
and 49 states appeared 91 percent of
the time.

Druzdzel explored this curious effect
(“Some Properties of Joint Probability
Distributions,” http://www.pitt.edu/
~druzdzel/psfiles/uai94.pdf) at a 1994
conference on Uncertainty in Artificial
Intelligence. His premise, which is
hardly controversial, was that the
probability distribution of a whole
model’s states is a product of the dis-
tribution of the model’s parts. Using
this premise, he showed that an asym-
metry in the parts of a model can lead
to a highly skewed log-normal distrib-
ution in the model’s states. Thus, a
small fraction of states can be expected
to cover a large portion of the total
probability space, with the remaining
states having practically negligible
probability. To put it another way,
there was nothing unusual about
Druzdzel’s diagnosis system; we
should always expect that software
stays in a tiny part of its possible states.

Collars
In a 1968 paper, “On Representa-

tions of Problems of Reasoning about
Actions” (Readings in AI, Webber &
Nilsson, 1981, pp. 2-22), Saul Amarel
observed that search spaces frequently
contain tiny collars, which must be
traversed in any solution. In such a
search space, the decision you make
when you reach the collars is much
more important than how you travel

such as U=3. The second, imple-
mented(F) nondeterministically, has
either F=shop&pay or F=shop&drop
(we randomly select F=shop&pay).
The third, mem(U,F,M) is determined
by U and F, here M=U*100000=
300000—so store(3,shop&pay,
=300000) is a requirements candidate.

The model’s nondeterminism and
randomness are important. The more
precise our model of candidate require-
ments, the fewer choices we give our-
selves in the requirements-formulation
process. Nondeterminism lets us auto-
matically explore more paths.

MODEL OBJECTIVES
Having described what constitutes

a permissible set of requirements, we
next clarify the objectives, determin-
ing not only objectives such as user
number, functionality, or cost, but also
their relative importance.

Scoring functions provide an effec-
tive way to encode the objectives and
their relative importance. We define a
scoring function as a mapping from
requirements candidates to the inte-
gers. Just as we used the most conve-
nient terms to describe the available
options, we also define our own ter-
minology for scoring candidate
requirements. For example, we might
define:

score(store(U,F,M))
= U*A- cost(store(U,F,M))*B

The model’s parameters A and B
specify the relative importance of the
maximum number of users and cost,
while the scoring function cost eval-
uates system cost.

RUNNING THROUGH
THE FOREST

Now we can generate a large number
of candidate requirements and score
them by sampling from the specified dis-
tributions. Determining good require-
ments candidates becomes a matter of
generating enough samples and choos-
ing the highest scoring. At first glance,
this seems to be an intractable task
because we have an exponential num-
ber of choices in the search space. A

between them. Since the route be-
tween collars is unimportant, Amarel
defined macros that encoded paths
between them in the search space,
effectively permitting a search engine
to jump between the collars.

With Harshinder Singh, we showed
that collars are an expected property of
models (“Many Maybes Mean Mostly
the Same Thing,” Soft Computing in
Software Engineering, Springer-Verlag,
2003, pp. 125-150). If multiple paths
lead to a goal, and those paths pass
through collars (or mutually exclusive
critical decisions), the most probable
path becomes the one with the nar-
rowest collars (that is, the one that uses
the fewest critical decisions). For exam-
ple, in one of the case studies explored
with Singh, to ignore a pathway passing
through a collar containing only three
decisions, the alternate pathway must
be 1,728 times as likely. This means
that any stochastic search that reaches
the goal states will naturally favor sim-
ple, or smaller, solutions.

Exploiting Clumps and Collars
Clumps and collars mean that seem-

ingly complex systems will remain in
a small number of states and a small
number of critical “collar decisions”
will switch the system between those
states. Better yet, we need not search
hard to find the collar decisions. By
definition, if we stochastically sample
a system, our pathways will naturally
pass through the collars. To find the
collar variables, we need to

• use an oracle to score the results of
each simulation and

• keep frequency counts with high
and low scores of how often vari-
able ranges appear in runs.

A “candidate collar decision” is a
variable range that appears far more
frequently in highly scored runs than
poorly scored runs. Ying Hu and one
of the authors (Menzies) built the
TAR3 learner that exploits this collar
property in a stochastic search (Y. Hu,
master’s thesis, Dept. Electrical Eng.,
Univ. of British Columbia, 2003). The
input to TAR3 is a table of simulation

S O F T W A R E T E C H N O L O G I E S

results in which the values chosen for
the term parameters plus the score
assigned to that result represent each
simulation result. TAR3 searches sto-
chastically through these results for
ranges of the model parameters that
frequently select for highly scored sim-
ulation results. These ranges corre-
spond to collars in the search space.
To limit its search, TAR3 only looks
for and recommends restrictions on
the values of collar variables. TAR3’s
recommendations, therefore, have an
appealing economy.

FINDING THE PATHS
Figure 1 shows the result of itera-

tive simulation and learning applied
to case studies described in a 2005
Cocomo Forum paper. The model
combined the Cocomo effort/defect
and risk models. The forest of require-
ments reflected different development
options such as design for reuse, and
process options such as which analysts
and programmers to hire. We sto-
chastically sampled from this space of
options and asked our learner to find
the fewest decisions that most reduced
risk, effort, and defects. These deci-
sions were then fed back into the
model as constraints on the next
round of simulations.

Initially in round 1, outcomes cov-
ered a large range of possible defects,
risk, and effort. However, by round 5,
that space had been severely con-
strained to a region of very few defects,
low risk, and low to medium effort.

DISCUSSION
Our approach has three compo-

nents:

• executable models of requirements
options and design objectives,

• stochastic simulation of those
models to generate a large number
of candidate requirements, and

• machine learning to condense sim-
ulation logs into the key decisions
that determine a good require-
ments candidate.

The framework outlined in this arti-
cle is adaptable and widely applicable.

Other examples include “Data Mining
for Very Busy People,” (T. Menzies
and Y. Hu, Computer, Nov. 2003, pp.
22-29) and a study on near-earth
autonomous rendezvous systems pre-
sented at the 2006 NASA Software
Engineering Workshop (www. systems
andsoftwareweek.org/sew.html).

E arly, imprecise life-cycle models
generate quickly and let analysts
explore more options, faster. Until

now, it seemed that speed meant reck-
lessness and that models written
quickly were not suitable for under-
stating requirements. However,
exploiting clumps and collars can help
find the paths to key requirements
decisions. ■

Tim Menzies is an associate professor in
the Lane Department of Computer Sci-
ence and Electrical Engineering, West
Virginia University. Contact him at tim@
menzies.us.

Julian Richardson is a principle research
scientist at the Research Institute for
Advanced Computer Science. Contact
him at julianr@riacs.edu.

October 2006 95

Editor: Michael G. Hinchey, NASA
Software Engineering Laboratory at
NASA Goddard Space Flight Center
and Loyola College in Maryland;
michael.g.hinchey@nasa.gov

Round 1

 0
 50 100 150 200(a)

(b)

(c)

Effort 0
 2

 4
 6

 8
 10

Schedule risk

 0
 0.5

 1
 1.5

 2

De
fe

ct
s/

KS
LO

C

Round 2

 0
 50 100 150 200Effort 0

 2
 4

 6
 8

 10

Schedule risk

 0
 0.5

 1
 1.5

 2

De
fe

ct
s/

KS
LO

C

Round 5

 0
 50 100 150 200Effort 0

 2
 4

 6
 8

 10

Schedule risk

 0
 0.5

 1
 1.5

 2

De
fe

ct
s/

KS
LO

C

Figure 1. Iterative use of TAR3 in a complex space. Successive rounds of simulation and

learning incrementally discover model constraints, which simultaneously optimize the

output of three different submodels.

