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The goal of this workshop is to outline teaching methods
for IV&V engineers. Initially, this paper will be very neg-
ative about that goal, arguing that there is are major differ-
ences between NASA software development practices and soft-
ware development practices elsewhere. In that (very pessimistic)
view, if NASA wants to train IV&V analysts on the specifics of
NASA IV&V then they require a NASA-run university focusing
on NASA applications to teach NASA SE principles to NASA
IV&V analysts.

That pessimism will be reversed by the second half of this
paper. Using some cognitive theory, a new definition of IV&V
will be proposed which could be used as the basis of a general
IV&V education program.

1 Uniqueness of NASA

In the past, NASA has been a rich source of SE research. One of
the outstanding examples of that work was the NASA Software
Engineering Laboratory (SEL) experiments [1]. In the period
1976 to 1994, Basili and his colleagues reported impressive im-
provements in a particular product line of satellites at NASA
Goddard. Many of the quality improvement method developed
there are often cited and widely applied including:

• the Goal-Question-Metric paradigm [2]
• clean room testing [14]
• perspective-based inspection [15]

While the contribution of these methods is indisputable, it
would be misleading to represent the SEL experience as follows:
“it worked at NASA, so it should work across the industry”.
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What is not generally appreciated is that the NASA SEL experi-
ments were conducted in an environment somewhat distant to a
standard software development shop. In the SEL environment:

• For several decades, stable and co-operative relationships
existed between contractors and clients;

• The work focused on a single product line;
• The gap between development and test can be very large

Many of the features of the SEL environment still hold at
NASA. However, few of these features exist in general software
engineering industry where:

• Projects last (much) less time than one decade.
• Contractor/client relationships can be quite volatile. Over

the space of several decades, a single client can switch con-
tractors multiple times.

• Contractors and clients rarely focus on a single goal such
as a single product line. The modern software environ-
ment is quite varied and prone to rapid change. During
a successful contractor/client relationship, market forces
can make clients direct their contractors towards multiple
goals.

• Modern interactive development tools allow developers to
dramatically reduce the time between development and
testing and deployment.

The last point is the most critical since it shows the great
difference between software development practices within and
without of NASA. When developing according the spiral [3] or
agile [4] development model, the time between finishing and us-
ing software in its target environment may be quite short. Hence,
even within the time allocated to building the first version of a
project, feedback from the field may result in changes to project
goals. For example, the ECLIPSE open-source integrated devel-
opment platform is undergoing continual revision and changes
due to feedback and new plug-ins developed by the ECLIPSE
community. This is a very different situation to NASA where it
may take years before a finished piece of software is used in its
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target environment (e.g. Pluto).
Hence, much of what has been learned about the general SE

industry may not apply to NASA IV&V. For example,

• The top level of the SEI capability maturity model includes
a feedback phase where lessons learned can be feed back
into process change. Such continual process improvement
is common method for storing and improving corporate
memory.

• Nevertheless, an IV&V team cannot propose process im-
provement for NASA projects Or, to be more precise,
IV&V can propose process improvements to projects but
projects will rarely act on such recommendations. IV&V
works best when the developers feel that the IV&V team is
there to augment, not replace, their current process. Hence,
it can be counter-productive to take a dictatorial stance
while performing IV&V. Instead, it is best to adapt the
IV&V task to the development processes, and not the other
way around.

For another example, consider the differences between V&V
and IV&V. In V&V, the development and test teams work to-
gether, often at the same physical location. Hence, there is afat
pipe of information flowing between developers and test engi-
neers. On the other hand, IV&V is linked to projects viavery
thin pipes. In the case of NASA, several layers of management
can exist between:

• The IV&V analysts working for an IV&V contractor com-
pany ...

• ... who reports to a NASA civil servant at NASA’s IV&V
facility ...

• ... who co-ordinates with a NASA civil servant at the de-
velopment site ...

• ... who supervises a contractor group ...
• ... that hires a developer ...
• ... that actually does the development.

Each link in this chain takes time and effort to traverse. Since
this chain crosses organization boundaries, the information flow
is also constrained and restricted by contractual issues. For ex-
ample, the developer may decline to maintain a log of defects
seen during development since that log was not included in the
deliverables negotiated as part of the original contract.

In summary, there are significant differences between NASA
and the general software engineering industry and techniques
that work in general may not work in the particular case of
NASA IV&V.

2 Cognitive IV&V
A general theory of IV&V has at least four requirements:
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Figure 1: Diagnosis

R1: It must take into account the restrictive nature of the infor-
mation flow between the IV&V team and the projects.

R2: It should summarize past IV&V experience in a format
suitable for the education of new IV&V engineers.

R3: It should offer a direction into the future; i.e. it should
offer new and useful insights into IV&V.

R4: In order for NASA to lever the experience of other orga-
nizations, it should be based on more than just the NASA
IV&V experience.

To meet the requirements{R1,R2,R3,R4}, we turn to Gard-
ner et.al.’scognitive patterns[8]. Gardner’s central thesis is
that understanding human-based processes requires understand-
ing how humans think. Cognitive patterns research aims at mod-
eling the patterns repeatedly employed by practitioners. Once
isolated, such patterns may be used in many ways:

• As rules of thumb for tool designers and maintainers
• As terminology to document practices, problems, and so-

lutions
• They can explicate structures not recorded any other way.

Cognitive patters can be recorded using the notation of Fig-
ure 1 in which rectangles are data structures and ovals are
functions. Given acomplaint , a cognitive pattern fordi-
agnosiscan be represented as follows. Asystem model
is decomposed into hypothetical candidate faulty com-
ponents. A norm value is collected from thesystem
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Figure 2: Monitoring. The shaded nodes show the inter-
section of diagnosis to monitoring.

model . An observation for that candidate is requested from
theobservable s (stored internally as afinding ). The can-
didate hypothesis is declared to be the diagnosis based on the
difference between thenorm value and thefinding .

As another example, Figure 2 shows a cognitive patterns
for monitoring1. A parameter is selected from asystem
model . The model’s expectednormal value is generated from
the model and collected from theobservable-s (stored
as afinding ). The current state of the monitoring system
us reported as adiscrepancy class after comparing the
finding with the expectednormal value.

Note that Figures 1 & 2 do not imply a particular execu-
tion order of their functions. Conceptually each function can
be driven forwards or backwards to connect inputs to outputs or
visa versa. For example:

• The heuristic classification pattern of Figure 3 could be
driven from data to solutions to perform diagnosis; i.e.
given thedata , execute forwardsdata-abstraction
thenheuristic match , thenrefinement .

• Alternatively, it could be driven from solutions to
data to perform intelligent data collection; i.e. given
solutions , execute backwardsrefinement , then
heuristic match , then data abstraction . In
this backwards reasoning, the generateddata items be-

1Note that I say “a” cognitive pattern and not “the” cognitive pat-
tern. Elsewhere, I argue that cognitive patterns can vary from domain to
domain [11].

Data abstractions Solution abstractions

HEURISTIC MATCH

ABSTRACTION
DATA

Data Solutions

REFINEMENT

Figure 3: Heuristic classification

come requests back to the environment in order to rule out
certain possibilities.

3 Discussion

This section how well cognitive patterns satisfy
{R1,R2,R3,R4}.

3.1 R1: restrictive information flow

IV&V was characterized above as a process of watching over
projects across a thin pipe of information. Note that this process
is very similar to a medical practitioner treating a human patient:

• The human body is a very complex device comprising mul-
tiple systems interacting over complex feedback loops.

• Doctors diagnosis human illness despite a lack of data; e.g.
just a garbled description of symptoms from a sick and
confused patient; or a confusing set of measurements from
blood tests; or from cloudy shadows on an X-ray.

• Further, they successful modify the behavior of the com-
plex bodies under their control using treatments selected,
for the most part, via budgetary concerns.

That is, the diagnosis and monitoring patterns described
above show how professional M.D.sor IV&V engineers under-
stand and control complex systems about which they have min-
imal information.

3.2 R2: Summarize past experience

The high-level notation of cognitive patterns has been used many
times to offer a high-level documentation of complex systems;
e.g. [5, 6, 8, 10, 16, 18] Hence, these patterns can be the basis
for educating IV&V practitioners. Students can introduce them-
selves to IV&V by browsing the libraries of patterns. Existing
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Figure 4: Overlap between diagnosis and monitoring

patterns could be explored (looking for commonalities or im-
provements). In the literature, there are many examples of such
an analysis:

• Scheduling, planning and configuration are actually the
same problem, divided on two dimensions (“goal states
known or not” and “temporal factors considered or not”
(Figure 12.3 of [17]).

• There exists a common sub-graph between Figures 1 & 2
(see Figure 4).

3.3 R3: Directs the Future
Much work is required to fully characterizing IV&V in terms of
the diagnosis and monitoring cognitive patterns. For example:

• All the terms of Figures 1 & 2 would need to be mapped
into observable and controllable at the IV&V center.

• Historical logs would have to be explored in order to deter-
mine what observable best distinguish different findings.

3.4 R4: Based on more than just NASA
Cognitive patterns are a well-studies domain and much of that
literature could be used to inform the NASA IV&V process. Di-
agnosis is a well-studied problem [9] with many general algo-
rithms [12, 13]. For example,probing is the task of finding the
cheapest observable that could most reduce the hypothesis set.
Much has been written about how to design such probes includ-
ing the use of entropy measures [7].

4 Conclusion
This paper has argued for a radical restructuring of IV&V edu-
cation. Traditional SE methods may not apply to the particulars

of the IV&V experience. However, there are interesting simi-
larities between IV&V and tasks like diagnosis and monitoring.
Education designed at this more abstract level can take advan-
tage of a wealth of research of cognitive patterns.

References
[1] V. Basili, F. McGarry, R. Pajerski, and M. Zelkowitz.

Lessons Learned from 25 Years of Process Im-
provement: The Rise and Fall of the NASA Soft-
ware Engineering Laboratory. InProceedings of the
24th International Conference on Software Engineer-
ing (ICSE) 2002, Orlando, Florida, 2002. Avail-
able from http://www.cs.umd.edu/projects/
SoftEng/ESEG/papers/83.88.pdf .

[2] Victor R. Basili. Software Modeling and Measurement:
The Goal/Question/Metric Paradigm. Technical Report
CS-TR-2956, Department of Computer Science, Univer-
sity of Maryland, College Park, MD 20742, September
1992.

[3] B. Boehm. A Spiral Model of Software Development
and Enhancement.Software Engineering Notes, 11(4):22,
1986.

[4] B. Boehm. Get Ready for Agile Methods.IEEE Computer,
pages 2–7, 2002.

[5] B. Chandrasekaran. Design Problem Solving: A Task
Analysis.AI Magazine, pages 59–71, Winter 1990.

[6] W.J. Clancey. Model Construction Operators.Artificial
Intelligence, 53:1–115, 1992.

[7] J. DeKleer and B.C. Williams. Diagnosing Multiple
Faults.Artificial Intelligence, 32:97–130, 1 1987.

[8] Karen M. Gardner, Alexander R. Rush, Michael Crist,
Rober Konitzer, James J. Odell, Bobbin Teegarden, and
Robert Konitzer. Cognitive Patterns: Problem-Solving
Frameworks for Object Technology. Cambridge Univer-
sity Press, June 1998.

[9] W. Hamscher, L. Console, and J. DeKleer.Readings in
Model-Based Diagnosis. Morgan Kaufmann, 1992.

[10] D. Marques, G. Dallemagne, G. Kliner, J. McDermott,
and D. Tung. Easy Programming: Empowering People to
Build Their Own Applications.IEEE Expert, pages 16–29,
June 1992.

[11] T.J. Menzies. OO Patterns: Lessons from Expert Systems.
Software Practice & Experience, 27(12):1457–1478, De-
cember 1997. Available fromhttp://menzies.us/
pdf/97patern.pdf .

4



[12] P. Pandurang Nayak and Brian C. Williams. Fast
Context Switching in Real-time Propositional Reason-
ing. In Proceedings of AAAI-97, 1997. Avail-
able from http://ack.arc.nasa.gov:80/ic/
projects/mba/papers/aaai97.ps .

[13] R. Reiter. A Theory of Diagnosis from First Principles.
Artificial Intelligence, 32:57–96, 1 1987.

[14] Richard W. Selby, Victor R. Basili, and F. Terry Baker.
Cleanroom Software Development: An Empirical Evalu-
ation. IEEE Transactions on Software Engineering, SE-
13(9):1027–1037, September 1987.

[15] F. Shull, I. Rus, and V.R. Basili. How Perspective-
Based Reading Can Improve Requirements Inspec-
tions. IEEE Computer, 33(7):73–79, 2000. Avail-
able from http://www.cs.umd.edu/projects/
SoftEng/ESEG/papers/82.77.pdf .

[16] L. Steels. Components of Expertise.AI Magazine, 11:29–
49, 2 1990.

[17] D.S.W. Tansley and C.C. Hayball.Knowledge-Based Sys-
tems Analysis and Design. Prentice-Hall, 1993.

[18] B.J. Wielinga, A.T. Schreiber, and J.A. Breuker. KADS:
a Modeling Approach to Knowledge Engineering.Knowl-
edge Acquisition, 4:1–162, 1 1992.

5


