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Abstract Previously, we have defined an iterative data min-
ing method for learning better software product and process.
That method was prototyped on part of the space shuttle abort
software. Here, the same method is applied to artifacts in
the Reliable Software Test bench under development at the
AMES Research Center.

As before, our methods found ways to significantly re-
duce risks associated with a project. In particular, the mean
estimated defects

KLOC were reduced from 4 to 0.5. Further, the
certainty in this estimate was vastly improved since the stan-
dard deviation on the estimated defects

KLOC was reduced by two
orders of magnitude from 3.4 to 0.05.

Better yet, our methods supported a fine-grained analysis
of the merits of automated analysis vs execution-based test-
ing. When such execution-based testing is impractical, we
could identify what could be gained using (e.g.) just auto-
matic analysis.
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1 Introduction

The manager of any NASA project must answer three ques-
tions:

1. What level of risk is acceptable for this project?
2. How much risk does a project have?
3. How to reduce #2 to #1?

This paper is about questions two and three. Once the ap-
propriate level of risk has been determined, then a project
manager struggles to determine and reduce the project risk.
Previously we have learned risk reduction strategies for space
shuttle sub-system using three models:

– The COCOMO effort estimation model [2, p29-57];
– The COQUALMO defect model [2, p254-268];
– The THREAT schedule threat model [2, 284-291]1.

The models use dozens of variables, not all of which are
known with certainty. For example, until software is com-
pleted, the exact size of a program may be unknown. Hence,
exploring our effort, defect, and threat models requires ex-
ploring a space of possible model inputs.

To achieve this, our recommended approach uses Monte
Carlo simulation and data mining in the cyclic manner of Fig-
ure 1:

– A Monte Carlo simulator repeatedly call some models,
drawing model inputs from some pre-defined ranges.

– The output from the runs are then studied by data miners
to find some “fitter” ranges to use in subsequent calls to
the model.

– This cycle continues, defining narrower and narrower ranges;
i.e. rangesi+1 ⊆ rangesi. i

The cycle ends when new ranges are not “fitter” than old
ones. Here, “fitter” is determined by some fitness function
that scores model output: the fitter the input ranges, the higher
the scores of the model output. For example:

– When processing COCOMO, COQUALMO, and THREAT,
the fitness function would select for lower effort, lower
defects, and fewer threats.

– For other models the tools et of Figure 1 remains mostly
the same, but the fitness function changes (see Figure 2).

The tool set that implements Figure 1 using the COCOMO,
COQUALMO, THREAT models and the TAR3 data miner [11]
is called XOMO (pronounced “x-o-mow”) [14]. XOMO uses
TAR3 since this data miner assumes that busy managers of
software projects don’t need (or can’t use) complex mod-
els. Rather, busy people need to know the least they need to
do to achieve the most benefits. For example, when dealing
with complex situations with many unknowns (e.g. develop-
ing software), it can be a wise tactic to focus your efforts on
a small number of key factors rather than expending great ef-
fort trying to control all possibilities.

1 Historical note: previously, we called “THREAT” the “Madachy
schedule risk model” [14].

Fig. 1 Cyclic learning

This paper applies XOMO to a new model taken from
the Reliable Software Test bench under development at the
AMES Research Center. One item in RST is ARES, a model
of the guidance and navigation control (GNC) system of ARES1
(formerly known as the CEV). Figure 1 found ways to signif-
icantly reduce issues within ARES. In particular, the mean
estimated defects

KLOC were reduced from 4 to 0.5.

Better yet, our methods supported a fine-grained analysis
of the merits of automated analysis vs execution-based test-
ing. When such execution-based testing is impractical, we
could identify what could be gained using just (e.g.) auto-
matic analysis.

Within NASA, Figure 1 has been applied to:

– Spacecraft design, where fitter means “covers more require-
ments and reduces most risk, costs the least” [5, 6].

– Software process control using:
– A Chung-Mypolopous soft-goal graph where fitter

means “cover more non-functional requirements” [4].
– The COCOMO and THREAT models where fitter means

“lower effort and fewer threats” [16];
– The COCOMO and THREAT and COQUALMO mod-

els where fitter means “lower effort and fewer threats
and lower defects” [14];

– Qualitative inference diagrams where fitter means
“higher quality” [15].

– The IV&V “Silap” model that selects work break down
structures for V&V where fitter means “lower risks” [7];

Outside of NASA, Figure 1 has been previously applied to:

– Circuit design, with fitter being “more bulbs shine” [10].
– Finite state machines, where fitter means “better chances of

covering transitions” [17, 18].
– Economic policy where fitter means “longer human life” [8];
– Whiskey production, where fitter means “more alcohol” [3];
– Software process control using:

– a CMM level 2 model, where fitter mean “chance of
reaching a lost cost project” [12];

– Discrete event simulation where fitter was defined by a
utility function combining quality, expense, and devel-
opment time [13].

Fig. 2 Prior applications of Figure 1.
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Definition Low-end Medium High-end

Scale factors:
flex development flexibility development process rigor-

ously defined
some guidelines, which
can be relaxed

only general goals defined

pmat process maturity CMM level 1 CMM level 3 CMM level 5
prec precedentedness we have never built this kind

of software before
somewhat new thoroughly familiar

resl architecture or risk resolution few interfaces defined or few
risk eliminated

most interfaces defined
or most risks eliminated

all interfaces defined or all
risks eliminated

team team cohesion very difficult interactions basically co-operative seamless interactions

Effort multipliers
acap analyst capability worst 15% 55% best 10%
aexp applications experience 2 months 1 year 6 years
cplx product complexity e.g. simple read/write state-

ments
e.g. use of simple inter-
face widgets

e.g. performance-critical
embedded systems

data database size (DB bytes/SLOC) 10 100 1000
docu documentation many life-cycle phases not

documented
extensive reporting for each
life-cycle phase

ltex language and tool-set experience 2 months 1 year 6 years
pcap programmer capability worst 15% 55% best 10%
pcon personnel continuity

(% turnover per year)
48% 12% 3%

plex platform experience 2 months 1 year 6 years
pvol platform volatility

( frequency of major changes
frequency of minor changes

)

12 months
1 month

6 months
2 weeks

2 weeks
2 days

rely required reliability errors mean slight inconve-
nience

errors are easily recov-
erable

errors can risk human life

ruse required reuse none multiple program multiple product lines
sced dictated development

schedule
deadlines moved closer to
75% of the original estimate

no change deadlines moved back to
160% of original estimate

site multi-site development some contact: phone, mail some email interactive multi-media
stor main storage constraints

(% of available RAM)
N/A 50% 95%

time execution time constraints
(% of available CPU)

N/A 50% 95%

tool use of software tools edit,code,debug integrated with life cycle

Fig. 3 Parameters of the COCOMO-II effort risk model; adapted from http://sunset.usc.edu/COCOMOII/expert_cocomo/
drivers.html. “Stor” and “time” score “N/A”” for low-end values since they have no low-end defined in COCOMO-II.

2 The Models

XOMO includes three models: COCOMO, COQUALMO,
and THREAT. While the details of these models vary, they
all share the variables of Figure 3. These models are summa-
rized below (for full details, see [14]).

2.1 The COCOMO Effort model

In the COCOMO effort model, the scale factors of Figure 3
effect effort exponentially while effort multipliers effect ef-
fort linearly. COCOMO measures effort in calendar months
where one month is 152 hours (and includes development
and management hours). COCOMO assumes that as systems
grow in size, the effort required to create them grows expo-
nentially, i.e. effort ∝ KSLOCx. More precisely, COCOMO-
II uses the variables of Figure 3 as follows:

months = a∗
“
KSLOC(b+0.01∗

P5
i=1 SFi)

”
∗

 
17Y

j=1

EMj

!
(1)

where a and b are domain-specific parameter, and KSLOC
is estimated directly or computed from a function point anal-
ysis. SFi are the scale factors (e.g. factors such as “have we
built this kind of system before?”) and EMj are the cost
drivers (e.g. required level of reliability). XOMO uses the nu-
meric ranges 1,2,3,4,5,6 to denote the COCOMO values {vl,
l, n, h, vh, xh} (respectively).

2.2 The Madachy THREAT model

The Madachy THREAT model was an experiment in expli-
cating the heuristic nature of effort estimation. It returns a
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rely= rely= rely= rely= rely=
very low nominal high very
low high

sced= very low 0 0 0 1 2
sced= low 0 0 0 0 1
sced= nominal 0 0 0 0 0
sced= high 0 0 0 0 0
sced= very high 0 0 0 0 0

Fig. 4 SCED-RISK: an example risk table

heuristic estimate of the threat of a schedule over run in the
project. Values of 0-5 are considered to be “low threat”; 5-15
“medium threat”; 15-50 “high threat”; and 50-100 “very high
threat”.

Internally, the model contains dozens of tables of the form
of Figure 4. Each such table adds some “threat” value to the
overall project risk. These tables are read as follows. Consider
the exceptional case of building high reliability systems with
very tight schedule pressure (i.e. sced=vl or and rely=vh
or vh). The COCOMO co-efficients for these ranges are 1.43
(for sced=vl) and 1.26 (for rely=vh). These co-efficients
also have a threat factor of 2 (see Figure 4). Hence, a project
with these two attribute ranges would contribute

1.43 ∗ 1.26 ∗ 2 = 3.6036

to the schedule threat.

2.3 The COQUALMO defect model

COQUALMO is in two parts:

– The defect introduction model looks similar to Equation 1;
i.e. settings to the variables in Figure 3 map to numeric
values inside COQUALMO and these are combined to re-
port estimated number of defects per one thousand lines
of delivered source code instructions.

– The defect removal model that represents how various
tasks (peer review, execution-based testing, and automatic
analysis) decrease the defect introduction estimates.

3 Data Mining

Standard numeric optimization methods may not work for
XOMO. Note that our models have competing goals; e.g.
lowering effort may or may not lower threats or defects. For
such non-linear optimization problems, it can be useful to ex-
plore symbolic learners rather than numerical methods. XOMO
uses the TAR3 data miner to find input settings that select for
the better outputs.

3.1 Pre-processing the Data with “BORE”

Prior to learning, a small pre-processor was applied to the
numeric outputs of COCOMO, COQUALMO, and THREAT.
The BORE pre-processor converted these three outputs into
the discrete class symbols (“best”; “rest”) needed by TAR3.

BORE runs as follows. For each run i of the simulator,
these three outputs where normalized to the range 0..1 as fol-
lows:

Xi = cocomoi−min(cocomo)
max(cocomo)−min(cocomo)

Yi = coqualmoi−min(coqualmo)
max(coqualmo)−min(coqualmo)

Zi = threati−min(threat)
max(treat)−min(threat)

The Euclidean distance of {Xi, Yi, Zi} to the ideal position
of zero effort (Xi = 0), zero defects (Yi = 0) and zero threats
(Zi = 0) was then computed and normalized to the range 0..1
as follows:

Wi = 1−
√

X2
i + Y 2

i + Z2
i√

3

Wi has the following properties:

– 0 ≤ Wi ≤ 1.
– The higher Wi, the better the run.
– Wi is reduced by increasing any of the COCOMO effort,

COQUALMO defect, or THREAT index scores. That is,
improving Wi can only be achieved by decreasing all the
effort, defects and treat scores from all the models.

To determine the “best” and “rest” values, all the Wi scores
were sorted. The top 33% were then classified as “best” and
the remainder as “rest”. The TAR3 treatment learner was then
applied to find what combination of attribute ranges selected
for “best” and rejects the “rest”.

3.2 Treatment Learning with “TAR3”

Treatment learning inputs a set of training examples E. Each
example maps a set of attribute ranges to some class sym-
bol; i.e. {Ri, Rj , ... → C} The class symbols C1, C2.. are
stamped with some utility score that ranks the classes; i.e.
{U1 < U2 < .. < UC}. Within E, these classes occur
at frequencies F1%, F2%, ..., FC%. After applying the pre-
processor of the last section:

C1 = rest C2 = best
U1 = 2 U2 = 4
F1 = 66% F2 = 33%

A treatment T of size X is a conjunction of attribute
ranges {R1 ∧ R2... ∧ RX}. Some subset of e ⊆ E are con-
sistent with the treatment. In that subset, the classes occur
at frequencies f1%, f2%, ...fC%. A treatment learner seeks
the seek smallest T which most changes the weighted sum of
the utilities times frequencies of the classes. Formally, this is
called the lift of a treatment:

lift =
∑

C UCfC∑
C UCFC

For example, consider the log of golf playing behavior
seen in Figure 6. In that log, we only play lots of golf in
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input:

SELECT class
FROM golf

SELECT class
FROM golf
WHERE
outlook = ’overcast’

SELECT class
FROM golf
WHERE
humidity >= 90

output:
none none none none none
some some some lots lots
lots lots lots lots

lots lots lots lots none none none some lots

distributions:

0
2
4
6

5 3 6
0
2
4
6

0 0 4
0
2
4
6

3 1 1

legend: none some lots

Fig. 5 TAR3: Class distributions selected by different conditions in Figure 6.

outlook temp(oF) humidity windy? class
sunny 85 86 false none
sunny 80 90 true none
sunny 72 95 false none

rain 65 70 true none
rain 71 96 true none
rain 70 96 false some
rain 68 80 false some
rain 75 80 false some

sunny 69 70 false lots
sunny 75 70 true lots

overcast 83 88 false lots
overcast 64 65 true lots
overcast 72 90 true lots
overcast 81 75 false lots

Fig. 6 TAR3: Playing golf.

6
5+3+6 = 43% of cases. To improve our game, we might
search for conditions that increases our golfing frequency.
Two such conditions are shown in the WHERE test of the se-
lect statements in Figure 5. In the case of outlook= overcast,
we play lots of golf all the time. In the case of humidity ≤
90, we only play lots of golf in 20% of cases. So one way to
play lots of golf would be to select a vacation location where
it was always overcast. While on holidays, one thing to watch
for is the humidity: if it rises over 90%, then our frequent golf
games are threatened.

The tests in the WHERE clause of the select statements in
Figure 5 is a treatment. Classes in treatment learning get a
score UC and the learner uses this to assess the class frequen-
cies resulting from applying a treatment (i.e. using them in a
WHERE clause). In normal operation, a treatment learner does
controller learning that finds a treatment which selects for
better classes and reject worse classes By reversing the scor-

ing function, treatment learning can also select for the worse
classes and reject the better classes. This mode is called moni-
tor learning since it finds the thing we should most watch for.
In the golf example, outlook = ’overcast’ was the controller
and humidity ≥ 90 was the monitor.

Formally, treatment learning is a weighted-class minimal
contrast-set association rule learner. The treatments are asso-
ciations that occur with preferred classes. These treatments
serve to contrast undesirable situations with desirable situ-
ation where more of the outcomes are favorable. Treatment
learning is different to other contrast set learners like STUCCO [1]
since those other learners don’t focus on minimal theories.

Conceptually, a treatment learner explores all possible sub-
sets of the attribute ranges looking for good treatments. Such
a search is impractical in practice so the art of treatment learn-
ing is quickly pruning unpromising attribute ranges. This study
uses the TAR3 treatment learner [9] that uses stochastic search
to find its treatments.

4 Iterative Treatment Learning

Figure 1 describes an iterative process of applying a data
miner over and over again to progressively refine input ranges
into a model. These refinements can be viewed as a tree of at-
tribute ranges:

– The root of the tree describes some initial ranges;
– Sub-trees store narrower and narrower ranges.

For example, the analysis in this paper resulted in the tree of
Figure 7. In such a tree, nodes inherit the ranges of their par-
ents unless they elect to restrain those ranges. For example:

– “system” stores default ranges for COCOMO, COQUALMO,
and THREAT.
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system #⇐ see Figure 8
| ares #⇐ see Figure 9
| | 1
| | | 2
| | | | 3
| | | | | 4
| | | | | | 5
| | | | | | | 6
| | | | | | | 6a
| | | | | | | 6b
| | | | | | | 6c
| | | | | | | 6d
| | | | | | | 6e
| | | | | | | 6f

Fig. 7 A range tree.

1 # constants
2 A is real 2.25 3.25
3 B is real 0.9 1.1
4 ksloc is int 2 10000
5
6 automated_analysis is int 1 6
7 peer_reviews is int 1 6
8 execution_testing_and_tools is int 1 6
9

10 # scale factors
11 prec is int 1 5
12 flex is int 1 5
13 resl is int 1 5
14 team is int 1 5
15 pmat is int 1 5
16
17 # effort multipliers
18 time is int 3 6
19 stor is int 3 6
20 data is int 2 5
21 pvol is int 2 5
22 ruse is int 1 5
23 rely is int 1 5
24 docu is int 1 5
25 acap is int 1 5
26 pcap is int 1 5
27 pcon is int 1 5
28 aexp is int 1 5
29 plex is int 1 5
30 ltex is int 1 5
31 tool is int 1 5
32 sced is int 1 5
33 cplx is int 1 6
34 site is int 1 6

Fig. 8 The ranges in “system”.

– “ares” restrains those ranges to just those relevant to the
ARES GNC model for ARES1.

– Nodes “1,2,3,4,5,6” store restraints learned via TAR3 ap-
plying Figure 1, six times.

– Nodes “6a,6b,6c,6d,6e,6f” store some what-queries that
explore some manually selected variants to node “6”. These
variants explore the merits of using increasing levels of
automated analysis without performing execution testing.

Figure 8 and Figure 9 shows the contents of the “system”
and “ares” nodes in the tree of ranges. Note that the default
“system” ranges are not point estimates. Unless some sub-
tree restrains a range, the Monte Carlo simulator will select
randomly from some pre-defined range. For example, lines
2&3 of Figure 8 show ranges for the two COCOMO effort
model calibration parameters. Standard practice is to tune
COCOMO by tuning these values using local data. When
such local data is missing (e.g. in this study), we use Monte

1 system with ares
2 ksloc just 75 125
3 prec just 3 5
4 flex = 3
5 resl = 4
6 team = 3 # typo. was 2
7 pmat just 4 5 # typo. was 5 6
8 rely = 5
9 data = 4

10 cplx = 4
11 ruse = 4
12 docu just 3 4
13 time = 3
14 stor = 3 # typo. was 2
15 pvol = 3
16 acap = 4
17 pcap = 3
18 pcon = 3
19 aexp = 4
20 plex = 4
21 ltex just 2 5
22 tool = 5
23 site = 6
24 sced just 2 4

Fig. 9 The ranges in “ares”. The lines marked as “typo” are those
reflecting minor range typos in the ARES document describing its
COCOMO ranges.

Carlo simulation to explore a wide range of possible calibra-
tion parameters.

Note also that “ares” restrains some, but not all, of the
ranges in “system”. For example, “ares”’s KSLOC guessti-
mates (75 to 125) are much less than for arbitrary “system”’s
(2 to 10,000). However, there are 29 ranges in Figure 8 and
only 23 in Figure 9; that is, all we know about ARES is not
enough to generate deterministic predictions about the effort,
defects, and threats to ARES software.

5 Running the System

To generate our results, XOMO was run as follows:

xomo \
-S $RANDOM \
-l \
-R 1000 \
-d system.dat \
-p ares.dat \
-P are \
-s ’<$defects,<$effort,<$threats,?$A,?$B,$ksloc’ > xomo.out

The command can be read as follows:
-S $RANDOM: use a random seed for the simulations.
-R 1000: perform 1000 Monte Carlo Simulations
-l: minor detail- print a header on the output;
-d $system.dat: load default ranges from Figure 8;
-p $ares.dat: load the ARES ranges Figure 9;
-P ares: focus the simulation on ARES;
-s ’<$defects....’: a string specifying the goal

statement; i.e. minimize defect, effort, and treats.
Prior to calling TAR3, the results on the above command

(stored in the tmp file) must be divided into “best” and “rest”

bore N=0.33 Pass=1 xomo.out \
Pass=2 xomo.out \
Pass=3 xomo.out > xomo.data
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Fig. 10 XOMO output.
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Fig. 11 BORE output. In the last column, 0 denotes “rest” and 1 denotes “best”.

For example, Figure 10 shows a typical xomo.out file and
Figure 11 shows the result of BORE replacing the last three
columns with “best” or “rest”.

Once the data has been BOREd, it is passed to TAR3 as
follows:

tar3 xomo

With the above call, TAR3 expects to find three files:

1. xomo.data : generated by BORE and shown in Figure 11;
2. xomo.names : a data dictionary for the data file, shown

in Figure 12;
3. xomo.cfg : some control settings, shown in Figure 13.

Xomo.names is almost self-explanatory. One non-obvious
feature is on line one where the order of the classes tells

TAR3 what to seek and what to avoid. In a TAR3 names
file, the classes are weighted left to right 2,4,8,16,etc. Hence,
in Figure 12, 1 (i.e. “best”) is the preferred class.

Xomo.cfg requires some explanation:

– Granularity controls how the continuous ranges are di-
vided into bins. For reporting purposes, an odd number
for Granularity is best since (e.g.) a Granularity of 5
can be reported as “3 means no change, 4 and 2 means
some changes up and down, and 5 and 1 mean larger
changes up and down”. Granularities over 7 are rarely
useful and for problematic data sets (like the XOMO data),
this number can go as low as 2.

– TAR3 only reports the top MaxNumber of treatments
(in this case, 10).
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0, 1

execution_testing_and_tools : 1,2,3,4,5,6.
flex : 1,2,3,4,5,6.
stor : 1,2,3,4,5,6.
aexp : 1,2,3,4,5,6.
docu : 1,2,3,4,5,6.
site : 1,2,3,4,5,6.
plex : 1,2,3,4,5,6.
cplx : 1,2,3,4,5,6.
ltex : 1,2,3,4,5,6.
peer_reviews : 1,2,3,4,5,6.
ksloc : continuous.
rely : 1,2,3,4,5,6.
data : 1,2,3,4,5,6.
ruse : 1,2,3,4,5,6.
acap : 1,2,3,4,5,6.
A : continuous.
sced : 1,2,3,4,5,6.
automated_analysis : 1,2,3,4,5,6.
pcon : 1,2,3,4,5,6.
B : continuous .
pcap : 1,2,3,4,5,6.
tool : 1,2,3,4,5,6.
time : 1,2,3,4,5,6.
prec : 1,2,3,4,5,6.
pvol : 1,2,3,4,5,6.
resl : 1,2,3,4,5,6.
team : 1,2,3,4,5,6.
pmat : 1,2,3,4,5,6.

Fig. 12 xomo.names.

granularity: 2
maxNumber: 10
maxSize : 10
randomTrials: 100
futileTrials: 5
bestClass: 20\%

Fig. 13 xomo.cfg

– When composing a treatment, TAR3 will build constraints
of up to MaxSize items. The upper bound on this num-
ber is the number of attributes but, in practice, a MaxSize
of 5-10 often suffices.

– RandomTrils sets the number of trial we perform before
we pause to look for new best treatments.

– FutileTrails is the number of allowed pauses (so the
total number of trials is 100*5).

– TAR3 rejects any treatment that contains less than BestClass
percentage of the best class.

The settings in Figure 13 could be improved but, as we shall
see, they suffice for the XOMO data.

6 Results

Figure 14 shows the effects of applying Figure 1 to ARES1.
After each round, TAR3 learns treatments and the best treat-
ment is selected to restrain the Monte Carlo simulation of the
next round. At each round, the “best/rest” discretization de-
scribed above was repeated so “best” was the top 33% seen
in each round:

The first round decision was sced = 3; i.e. set the sched-
ule pressure to the mid-point of its ranges {2,3,4} (as shown
on the last line of Figure 9. The second round decision was to
apply maximum effort to execution-based testing. As shown
right-hand-side plots of Figure 1, these failed to reduce mean
defects or effort. Round 1 and 2 did achieve a small reduction
in the threat index. However, recall that the THREAT model
classifies threat indexes less than 6 as “low threat”. Hence,
the round 1&2 reduction of THREAT from 2 to 0.5 is not
particularly interesting.

round1:
sced = 3

round2:
execution testing and tools = 6

round3:
peer reviews = 6

round4:
automated analysis = 6

round5:
ltex = 5

 0

 1

 2

 3

 4

 5

 6

 7

 8

 1  2  3  4  5  6

defects per KSLOC

mean

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1  2  3  4  5  6

effort (months)

mean

 0

 0.5

 1

 1.5

 2

 2.5

 1  2  3  4  5  6

threats

mean

 0

 5

 10

 15

 20

 25

 1  2  3  4  5  6

repeats of 1000 runs

min
max

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1  2  3  4  5  6

repeats of 1000 runs

min
max

 0

 0.5

 1

 1.5

 2

 2.5

 1  2  3  4  5  6

repeats of 1000 runs

min
max

Fig. 14 Results. In the top row, the green error bars denote ± one standard deviation about the mean.
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min mean max sd
6a 3 6 5 1 1 3.0 3.6 4.25 3.6
6b 3 6 5 1 2 2.9 3.5 4.09 3.5
6c 3 6 5 1 3 2.6 3.1 3.6 3.1
6d 3 6 5 1 4 2.2 2.6 3.0 2.6
6e 3 6 5 1 5 1.7 2.1 2.42 2
6f 3 6 5 1 6 1.6 1.8 2.2 1.8
6 3 6 5 6 6 0.42 0.5 0.59 0.5

Fig. 15 Effects of increasing automated analysis.

At round 3, TAR3 proposed maximizing the effort on peer
reviews and this had dramatic impact on the defects: the mean
value halved and the maximum value dropped 75%.

At round 4, TAR4 proposed maximizing the effort on
automated analysis. This round halved again the mean esti-
mated number of defects (from two to one) and reduced the
maximum value by a further 80%.

At round 5, the best treatment TAR3 found was to in-
crease the language and tools experience; i.e. ltex = 5. Since
the improvements seen from round 4 to round 5 are negligi-
ble, cyclic learning was terminated.

Our prior XOMO-based analysis of a space shuttle sub-
system offered far more dramatic results than Figure 14 [14].
That prior study found ways to:

– Reduce the residual defects per KSLOC by 85%;
– Halve the threat of schedule over-run;
– Decrease the development effort to nearly half of its orig-

inal value.

Why did that study produce more impressive results than
this one? Our view is that the issue is in the problem domain
and not in the analysis method. In this study, 24 attributes
were set and only a handful could be varied. In the former
study, our data miner was given far more opportunity to im-
prove the project.

7 Discussion

The results of Figure 14 shows interesting subtleties:

– Despite certain uncertainties in the domain (e.g. the exact
value of the calibration parameters A, B), note that the
effort and threat mins/max/mean variables are quite sta-
ble. That is, the ARES system displays much stability in
its process properties.

– The merits of execution-based testing, by itself, seem very
small for this software. Note that the addition of execution-
based testing (in round 2) barely changed the defect rate.

 0

 1

 2

 3

 4

 5

 6

all 6 5 4 3 2 1

automated analysis

defects per KSLOC

mean
min

max

Fig. 16 Figure 15, plotted. Green error bars denote ± one standard
deviation about the mean.

– On the other hand, peer reviews seem most powerful for
this software. Note that the greatest defect rate reduction
occurred when peer reviews were added in round 3.

The ability to make fine-grained trade-offs between alter-
nate technologies is one of the main advantages of the XOMO
technology. For example, Figure 15 and Figure 16 shows an
XOMO study with ARES where:

– peer review usage was maximized;
– execution-based testing was minimized;
– and automatic analysis was increased from very low to

very high levels.

This represents a very common situation at NASA- given lim-
ited access to hardware test beds, IV&V analysts perform
very limited execution-based testing. In such a situation, peer
reviews are widely used (since they are relatively cheap to
perform). In this context, it might be necessary to make a
business case to buy some automatic analysis tool. Figure 15
and Figure 16 show the effects of only changing the level of
automatic analysis while holding other defect removal meth-
ods steady. Automatic analysis can be cheap to perform (e.g.
static code parsers) and sometimes can be conducted very
early in the life cycle (e.g. lightweight formal models of re-
quirements).

Figure 16 focuses on how the level of automatic analysis
effects defect estimates. Note that automatic analysis by it-
self does not get rid of all the defects. But, in the absence of
execution-based testing tools, it can half the mean predicted
number of defects.

8 Conclusion

This paper began with three questions:

1. What level of risk is acceptable for this project?
2. How much risk does a project have?
3. How to reduce #2 to #1?

XOMO lets us explore #2 with XOMO & BORE & TAR3
to find methods for #3. As to question #1, this answer is
domain-specific and depends on manner factors such as the
goal & cost of the mission; the degree of innovation; and,
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most importantly, the presence of humans on-board the mis-
sion. But once the appropriate level of risk is determined, our
tools can find ways to explore business knowledge to adjust a
project towards an acceptable level of risk.
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