
September 29, 2006
WP ref: http://now.unbox.org/all/trunk/doc/06/xomo201.tex

Download this paper at http://menzies.us/pdf/06xomo202.pdf.

RST milestone 1.1.5.9:
Applying trade space analysis to recommend CEV/CLV options for
SW capabilities and development of processes and tools
Tim Menzies

Lane Department of Computer Science and Electrical Engineering, West Virginia University, USA
tim@menzies.us
http://menzies.us

Abstract We seek an AI agent that can negotiate the trade
space within the design of modern complex systems such as
NASA’s new CEV/CLV rockets. The conclusions of the agent
must be comprehensible to busy humans engaged in elaborate
discussions regarding project options. Hence, those conclu-
sions should be clear to read and clearly useful. As an on-
going task in this project, we are assessing the merits of the
TAR3 treatment learning for such an agent.

This paper presents several case studies where TAR3 suc-
cessfully found succinct recommendations that clearly effected
the development effort, number of defects, and threats to the
project plan.

The technology described here integrates into the RST
test bed via an interface called slot trees (described in this
document).

Acknowledgments This research was conducted at West
Virginia University under NASA sub-contract project 100005549,
task 5g, award 1002193r. All software discussed here is avail-
able from http://unbox.org/wisp/xomo under the
GNU Public License (version 2: see www.gnu.org/copyleft/
gpl.html).

Disclaimer Reference herein to any specific commercial
product, process, or service by trade name, trademark, man-
ufacturer, or otherwise, does not constitute or imply its en-
dorsement by the United States Government.

Contents

1 Introduction . 3
2 Background . 4

2.1 Related Work . 4
2.2 Are our Models “Correct”? 5

3 Model Inputs: Slot Trees 5
4 Models . 6

4.1 The COCOMO Effort Model 6
4.2 THREATS: a Heuristic Risk Model 7
4.3 COQUALMO: defect introduction and removal . . . 8

5 Handling the Output: Learning 8
5.1 Multi-Dimensional Optimization using “BORE” . . 8
5.2 Treatment Learning with TAR3 11
5.3 Iterative TAR3 . 11

6 Running the System . 12
7 Case Studies . 13

7.1 Case Study 1 . 13
7.1.1 Discussion: Case Study 1 15

7.2 Case Study 2 . 15
7.2.1 Discussion: Case Study 2 16

8 Conclusion . 16

List of Figures

1 Cyclic learning 3
2 Prior applications of Figure 1. 3
3 Types of software measures. From [8]. 4
4 The COCOMO ontology 4
5 The ranges in “system”. 6
6 The ranges in “ares”. 6
8 COCOMO: computing effort. 6
7 COCOMO: parameters 7
9 COCOMO: co-efficients 8
10 THREAT: an example threat table 8
11 THREAT: the calculations. 8
12 THREAT: the details. 9
13 COQUALMO: effort multipliers and defect

introduction 9
14 COQUALMO: scale factors and defect intro-

duction . 10
15 COQUALMO: defects introduced. 10
16 COQUALMO: defect removal 10
17 COQUALMO: defects added and removed . . 10
18 COQUALMO: ratio of defects removed . . . 10
19 Some sample XOMO output. 10
20 BORE: classification of Figure 19. 11
21 TAR3: Playing golf. 11
22 TAR3: Class distributions 12
23 XOMO output. 13
24 BORE output 13
25 xomo.names. 14
26 xomo.cfg 14
27 Results: case study 1 14
28 Effects of increasing automated analysis. . . . 15
29 Figure 28, plotted. 15
30 The ranges of study 2. 15
31 Results of case study 2. 16

2

1 Introduction

The manager of any NASA project must answer three ques-
tions:

1. What level of risk is acceptable for this project?
2. How much risk does a project have?
3. How to reduce #2 to #1?

This paper is about questions two and three. Once the ap-
propriate level of risk has been determined, then a project
manager struggles to determine and reduce the project risk.

Technically, risk reduction is a trade-space exploration
exercise. Given a set of options generated by a set of models,
managers must “walk” (metaphorically) around that space
looking for decisions that most improve the current situation.
Our trade-spaces are defined by three models:

– The COCOMO effort estimation model [3, p29-57];
– The COQUALMO defect model [3, p254-268];
– The THREAT schedule threat model [3, 284-291]1.

The models use dozens of variables, not all of which are
known with certainty. For example, until software is com-
pleted, the exact size of a program may be unknown. Hence,
exploring our effort, defect, and threat models requires ex-
ploring a large trade-space of possible model inputs.

To achieve this, our recommended approach uses Monte
Carlo simulation and data mining in the cyclic manner of Fig-
ure 1:

– A Monte Carlo simulator repeatedly call some models,
drawing model inputs from some pre-defined ranges.

– The output from the runs are then studied by data miners
to find some “fitter” ranges to use in subsequent calls to
the model.

– This cycle continues, defining narrower and narrower ranges;
i.e. rangesi+1 ⊆ rangesi.

The cycle ends when new ranges are not “fitter” than old
ones. Here, “fitter” is determined by some fitness function
that scores model output: the fitter the input ranges, the higher
the scores of the model output. For example:

– When processing COCOMO, COQUALMO, and THREAT,
the fitness function would select for lower effort, lower
defects, and fewer threats.

– For other models the tools et of Figure 1 remains mostly
the same, but the fitness function changes (see Figure 2).

The tool set that implements Figure 1 using the COCOMO,
COQUALMO, THREAT models and the TAR3 treatment learner
[17] is called XOMO (pronounced “x-o-mow”) [20]. XOMO
uses TAR3 since this learner assumes that busy managers
of software projects don’t need (or can’t use) complex mod-
els. Rather, busy people need to know the least they need to
do to achieve the most benefits. For example, when dealing
with complex situations with many unknowns (e.g. develop-
ing software), it can be a wise tactic to focus your efforts on

1 Historical note: previously, we called “THREAT” the “Madachy
schedule risk model” [20].

Fig. 1 Cyclic learning

a small number of key factors rather than expending great ef-
fort trying to control all possibilities.

This paper applies XOMO to a variety of models taken
from the Reliable Software Test bench under development at
the AMES Research Center. For example, one item in RST
is ARES, a model of the guidance and navigation control
(GNC) system of ARES1 (formerly known as the CEV). Our
methods supported a fine-grained analysis of the merits of
various process options: e.g. automated analysis vs execution-
based testing. When such execution-based testing is imprac-
tical, we could identify what could be gained using just (e.g.)
automatic analysis.

Within NASA, Figure 1 has been applied to:

– Spacecraft design, where fitter means “covers more require-
ments and reduces most risk, costs the least” [6, 7].

– Software process control using:
– A Chung-Mypolopous soft-goal graph where fitter

means “cover more non-functional requirements” [5].
– The COCOMO and THREAT models where fitter means

“lower effort and fewer threats” [23];
– The COCOMO and THREAT and COQUALMO mod-

els where fitter means “lower effort and fewer threats
and lower defects” [20];

– Qualitative inference diagrams where fitter means
“higher quality” [21].

– The IV&V “Silap” model that selects work break
down structures for V&V where fitter means “lower
risks” [10];

Outside of NASA, Figure 1 has been previously applied to:

– Circuit design, with fitter being “more bulbs shine” [16].
– Finite state machines, where fitter means “better chances of

covering transitions” [24, 27].
– Economic policy where fitter means “longer human

life” [11];
– Whiskey production, where fitter means “more alcohol” [4];
– Software process control using:

– a CMM level 2 model, where fitter mean “chance of
reaching a lost cost project” [18];

– Discrete event simulation where fitter was defined by a
utility function combining quality, expense, and devel-
opment time [19].

Fig. 2 Prior applications of Figure 1.

3

Fig. 3 Types of software measures. From [8].

2 Background

2.1 Related Work

Fenton and Pfleeger [9] advise that measurements from soft-
ware projects divide into the three groups of Figure 3:

– Process measures: describing how the software is built;
– Product measures: describing what is being built;
– Resource measures: describing who is doing the building

and which tools are being used in the process.

Each of these measures have their own kind of risks:

– Process risks can arise when (say) the methods are ap-
plied to a a project;

– Product risks can arise when (say) a faulty piece of soft-
ware is delivered;

– Resource risks can arise when (say) developers are given
too little time to build a complex device.

Risk reduction methods for all possible process, product, and
resource risks are beyond the scope of this paper. Previously [23]
we have followed the lead of Madachy [14], and have focused
on the risks that can be expressed using the COCOMO ontol-
ogy Figure 4. One advantage of COCOMO (and this is why
we use it) is that unlike many other costing models such as
PRICE-S [25], SEER-SEM [13] or SLIM [26], COCOMO is
an open model so complete information is available on its in-
ternal structure [2, 3]. Also, on NASA projects, COCOMO
similar results to other cost models. For example, in compar-
ative studies of SEER and COCOMO-II for CEV, similar cost
estimates were generated.

scale prec: have we done this before?
factors flex: development flexibility

resl: any risk resolution activities?
team: team cohesion
pmat: process maturity

upper acap: analyst capability
pcap: programmer capability
pcon: programmer continuity
aexp: analyst experience
pexp: programmer experience
ltex: language and tool experience
tool: tool use
site: multiple site development

sced: length of schedule
lower rely: required reliability

data: secondary memory storage requirements
cplx: program complexity
ruse: software reuse

docu: documentation requirements
time: runtime pressure
stor: main memory requirements

pvol: platform volatility

Fig. 4 The COCOMO ontology. Development effort is exponen-
tially, linearly, and negatively linearly proportional to the scale fac-
tors, upper terms, and lower terms (respectively).

To some degree, the COCOMO ontology addresses issues
of process,product, and resource metrics. For example, the
COCOMO terms of Figure 4 can be divided as follows:

– Resl, pmat, site and , sced are process measures;
– Prec, tool, rely, data, cplx, ruse, docu, time, stor and pvol

are product measures;
– Flex, team, acap, pcap, pcon, aexp and ltex are resource

measures.

Nevertheless, the standard COCOMO does not address many
other risk issues. The COCOMO team recognizes this and

4

new terms were added for the COQUALMO defect prediction
model2:

– COQUALMO recognizes project phases: requirements,
design and coding;

– COQUALMO also divides defect removal tools into au-
tomated analysis, peer reviews and execution testing and
tools.

2.2 Are our Models “Correct”?

One drawback with our results is that they come from simu-
lation and not from empirical observations of real world de-
velopment teams applying the policy decisions made by the
learners. If our models are wrong (e.g. poorly calibrated) then
our results are suspect.

Our methodology partially addresses this concern. For ex-
ample, the COCOMO effort model contains two calibration
parameters and the above results hold for simulations across
the space of possible calibrations. That is, Monte Carlo plus
data mining can find stable conclusions within the space of
possibilities (this is a conclusion we have made elsewhere,
many times [5, 15–17, 19, 22, 23]).

Nevertheless, simulations across the space of options will
never give the right answers if that model is fundamentally
flawed; e.g. important domain factors are missing from the
model. This is a problem with all model-based reasoning: if
the model is wrong then the reasoning is wrong as well.

However, as George Box says, “all models are wrong but
some are useful”. Certainly this has been the recent experi-
ence in physics. Over the last 100 models, numerous revisions
to the atomic theory of matter have been proposed:

Each new model was wrong since it was superseded by a
newer model. But each new model was useful in the sense
that it explained more effects than the previous model.

The lesson here is that committing to a model of the cur-
rent best understanding of a phenomenon is good practice,
even if that model is not “correct” in some absolute sense.

2 http://csse.usc.edu/research/coqualmo/

And once that new model is generated, it is right and proper
that it be exercised, criticized, and improved. In the next few
months, the XOMO models will be used in panel sessions
were experts will convene to debate cost and risk models for
autonomous NASA software. At those sessions, it is expected
that the XOMO models will be critiqued and extensively re-
vised.

During those panels, it is important that the experts’ time
is put to best use. NASA’s top software and hardware ex-
perts are scarce and it will take a significant administrative
effort to collect them all together at the same place and at
the same time. It is therefore vital that no time be wasted
in discussing irrelevancies. The XOMO toolkit can be used
to quickly prune debates about relatively unimportant issues.
The panel moderator could (gently) guide the discussion onto
other matters if the matters under debate have little effect
on the model behaviors. Similar, the moderator could ask
XOMO for the next most important issue to discuss (that is-
sue would be the one that most changes the current model’s
behavior).

3 Model Inputs: Slot Trees

XOMO inputs a set of ranges, and some constraints on those
ranges. It then executes COCOMO, COQUALMO, and THREAT
by selecting inputs drawn from those constrained ranges. The
resulting data set is then passed to our learner. After learn-
ing, XOMO outputs “better” constraints on those ranges; i.e.
the subset of the constraints that most select for (say) fewer
defects, lower cost, fewer bugs.

XOMO’s inputs are expressed the slot tree format. A slot
tree is a tree of frames. Each frame contains slots. The root
of the tree stores maximal ranges for each variable and sub-
frames stores restrictions on those values. In the current slot
tree language, ranges can be defined using one of four forms:

– X is int Min Max
– X is real Min Max
– X is normal Mean Sd
– X is of item1 item2 item3

For example:
age is int 0 120
angle is real 0 6.28
weight is normal 20 4
city is of oxford london paris

This root frame defines:

– age to be an integer ranging from zero to 120;
– angle to be a real number ranging from 0 to 6.28;
– weight to be a Gaussian with a mean of 20 and standard

deviation of 4;
– and city to be one of oxford, london, or paris.

The root frame for XOMO is shown in Figure 5 (note
that it offers default ranges from the COCOMO terms of Fig-
ure 4).

In a slot tree, frames can have sub-frames and, recur-
sively, sub-frames can have sub-sub-frames. This tree of sub-
frames can have two applications. Firstly, it can be used to

5

1 # constants
2 A is real 2.25 3.25
3 B is real 0.9 1.1
4 ksloc is int 2 10000
5
6 automated_analysis is int 1 6
7 peer_reviews is int 1 6
8 execution_testing_and_tools is int 1 6
9

10 # scale factors
11 prec is int 1 5
12 flex is int 1 5
13 resl is int 1 5
14 team is int 1 5
15 pmat is int 1 5
16
17 # effort multipliers
18 time is int 3 6
19 stor is int 3 6
20 data is int 2 5
21 pvol is int 2 5
22 ruse is int 1 5
23 rely is int 1 5
24 docu is int 1 5
25 acap is int 1 5
26 pcap is int 1 5
27 pcon is int 1 5
28 aexp is int 1 5
29 plex is int 1 5
30 ltex is int 1 5
31 tool is int 1 5
32 sced is int 1 5
33 cplx is int 1 6
34 site is int 1 6

Fig. 5 The ranges in “system”.

succinctly define a software project. For example, Figure 6
describes a NASA project as a specialization of the general
COCOMO ranges of Figure 5. Note that Figure 6 does not
need to mention all the COCOMO variables- variables that
skipped in a leaf are inherited from higher in the slot tree.

Leaf frames offer restrictions to root ranges (but can’t de-
fine new ranges). Leaf frames are connected to parent frames
with the keyword with. Restrictions can be defined using one
of two forms:

– X just A B
– X = Value

For example, Figure 6 shows some restrictions to Figure 5.
Unless some sub-tree restrains a range, the Monte Carlo

simulator will select randomly from some pre-defined range.
For example, lines 2&3 of Figure 5 show ranges for the two
COCOMO effort model calibration parameters. Standard prac-
tice is to tune COCOMO by tuning these values using local
data. When such local data is missing (e.g. in this study), we
use Monte Carlo simulation to explore a wide range of possi-
ble calibration parameters.

Note also that “ares” restrains some, but not all, of the
ranges in “system”. For example, “ares”’s KSLOC guessti-
mates (75 to 125) are much less than for arbitrary “system”’s
(2 to 10,000). However, there are 29 ranges in Figure 5 and
only 23 in Figure 6; that is, all we know about ARES is not
enough to generate deterministic predictions about the effort,
defects, and threats to ARES software.

The other role of slot trees is iterative learning. XOMO’s
data miners run in cycles. In each cycle, a few hundred Monte
Carlo simulations are followed by some learning which, in

1 system with ares
2 ksloc just 75 125
3 prec just 3 5
4 flex = 3
5 resl = 4
6 team = 3
7 pmat just 4 5
8 rely = 5
9 data = 4

10 cplx = 4
11 ruse = 4
12 docu just 3 4
13 time = 3
14 stor = 3
15 pvol = 3
16 acap = 4
17 pcap = 3
18 pcon = 3
19 aexp = 4
20 plex = 4
21 ltex just 2 5
22 tool = 5
23 site = 6
24 sced just 2 4

Fig. 6 The ranges in “ares”. ranges.

function Effort() {
return A() * Ksloc() ˆ E() * Rely()* Data()* Cplx()*

Ruse()* Docu()* Time()* Stor()* Pvol()* Acap()*
Pcap()* Pcon()* Aexp()* Plex()* Ltex()* Tool()*
Site()* Sced()

}

function E() {
return B() + 0.01*(Prec() + Flex()

+ Resl() + Team() + Pmat())
}

Fig. 8 COCOMO: computing effort.

turn, outputs some new restraints. The outputs of each cycle
can be a new slot tree leaf.

4 Models

At runtime, XOMO pulls values from slot trees and passes
them to three models.

4.1 The COCOMO Effort Model

COCOMO measures effort in calendar months where one
month is 152 hours (and includes development and manage-
ment hours). COCOMO assumes that as systems grow in
size, the effort required to create them grows exponentially,
i.e. effort ∝ KSLOCx. More precisely, COCOMO-II uses
the variable of Figure 7 as follows:

months = a∗
“
KSLOC(b+0.01∗

P5
i=1 SFi)

”
∗

17Y

j=1

EMj

!
(1)

where a and b are domain-specific parameter, and KSLOC is
estimated directly or computed from a function point analy-
sis. SFi are the scale factors (e.g. factors such as “have we
built this kind of system before?”) and EMj are the cost
drivers (e.g. required level of reliability). Scale factors have

6

Definition Low-end Medium High-end

Scale factors:
flex development flexibility development process rigor-

ously defined
some guidelines, which
can be relaxed

only general goals defined

pmat process maturity CMM level 1 CMM level 3 CMM level 5
prec precedentedness we have never built this kind

of software before
somewhat new thoroughly familiar

resl architecture or risk resolution few interfaces defined or few
risk eliminated

most interfaces defined
or most risks eliminated

all interfaces defined or all
risks eliminated

team team cohesion very difficult interactions basically co-operative seamless interactions

Effort multipliers
acap analyst capability worst 15% 55% best 10%
aexp applications experience 2 months 1 year 6 years
cplx product complexity e.g. simple read/write state-

ments
e.g. use of simple inter-
face widgets

e.g. performance-critical
embedded systems

data database size (DB bytes/SLOC) 10 100 1000
docu documentation many life-cycle phases not

documented
extensive reporting for each
life-cycle phase

ltex language and tool-set experience 2 months 1 year 6 years
pcap programmer capability worst 15% 55% best 10%
pcon personnel continuity

(% turnover per year)
48% 12% 3%

plex platform experience 2 months 1 year 6 years
pvol platform volatility

(frequency of major changes
frequency of minor changes

)

12 months
1 month

6 months
2 weeks

2 weeks
2 days

rely required reliability errors mean slight inconve-
nience

errors are easily recov-
erable

errors can risk human life

ruse required reuse none multiple program multiple product lines
sced dictated development

schedule
deadlines moved closer to
75% of the original estimate

no change deadlines moved back to
160% of original estimate

site multi-site development some contact: phone, mail some email interactive multi-media
stor main storage constraints

(% of available RAM)
N/A 50% 95%

time execution time constraints
(% of available CPU)

N/A 50% 95%

tool use of software tools edit,code,debug integrated with life cycle

Fig. 7 Parameters of the COCOMO-II effort risk model; adapted from http://sunset.usc.edu/COCOMOII/expert_cocomo/
drivers.html. “Stor” and “time” score “N/A”” for low-end values since they have no low-end defined in COCOMO-II.

an exponential impact on software cost while effort multipli-
ers have a linear impact.

Figure 8 shows XOMO implementation of the COCOMO
effort equation. Values such as (e.g.) flex=1 get converted
to numerics as follows. First, the integers {1, 2, 3, 4, 5, 6} are
converted to the symbols {vl, l, n, h, vh, xh} (respectively)
representing very low, low, nominal, high, very high, and ex-
tremely high. Next, these are mapped into the look-up table
of Figure 9.

4.2 THREATS: a Heuristic Risk Model

The Madachy Heuristic schedule THREAT model was an ex-
periment in explicating the heuristic nature of effort estima-
tion. It returns a heuristic estimate of the chances of a sched-
ule over run in the project. Values of 0-5 are considered to

be “low threat”; 5-15 “medium threat”; 15-50 “high threat”;
and 50-100 “very high threat”. Studies with the COCOMO-I
project database have shown that the Madachy THREAT in-
dex correlates well with months

KDSI (where KDSI is thousands of
delivered source lines of code) [14].

Internally, the model contains dozens of tables of the form
of Figure 10. Each such table adds some “threatiness” value
to the overall project threat. These tables are read as follows.
Consider the exceptional case of building high reliability sys-
tems with very tight schedule pressure (i.e. sced=vl or and
rely=vh or vh). Recalling Figure 9, the COCOMO co-
efficients for these ranges are 1.43 (for sced=vl) and 1.26
(for rely=vh). These co-efficients also have a threat factor
of 2 (see Figure 10). Hence, a project with these two attribute
ranges would contribute 1.43*1.26*2=3.6036 to the schedule
threat.

7

vl l n h vh xh
Scale factors:
flex 5.07 4.05 3.04 2.03 1.01

pmat 7.80 6.24 4.68 3.12 1.56
prec 6.20 4.96 3.72 2.48 1.24
resl 7.07 5.65 4.24 2.83 1.41
team 5.48 4.38 3.29 2.19 1.01
Effort multipliers:
acap 1.42 1.19 1.00 0.85 0.71
aexp 1.22 1.10 1.00 0.88 0.81
cplx 0.73 0.87 1.00 1.17 1.34 1.74
data 0.90 1.00 1.14 1.28
docu 0.81 0.91 1.00 1.11 1.23
ltex 1.20 1.09 1.00 0.91 0.84
pcap 1.34 1.15 1.00 0.88 0.76
pcon 1.29 1.12 1.00 0.90 0.81
plex 1.19 1.09 1.00 0.91 0.85
pvol 0.87 1.00 1.15 1.30
rely 0.82 0.92 1.00 1.10 1.26
ruse 0.95 1.00 1.07 1.15 1.24
sced 1.43 1.14 1.00 1.00 1.00
site 1.22 1.09 1.00 0.93 0.86 0.80
stor 1.00 1.05 1.17 1.46
time 1.00 1.11 1.29 1.63
tool 1.17 1.09 1.00 0.90 0.78

Fig. 9 COCOMO: co-efficients

rely= rely= rely= rely= rely=
very low nominal high very
low high

sced= very low 0 0 0 1 2
sced= low 0 0 0 0 1
sced= nominal 0 0 0 0 0
sced= high 0 0 0 0 0
sced= very high 0 0 0 0 0

Fig. 10 THREAT: an example threat table

The details of the THREAT calculations are shown in Fig-
ure 11. The threat tables of the current model are shown in
Figure 12.

4.3 COQUALMO: defect introduction and removal

COQUALMO models how process options add and remove
defects to software during requirements, design, and coding.
For example, poor documentation leads to more errors since
developers lack the guidance required to code the right sys-
tem. So, Figure 13 offers its large defect introduction values
when the effort multiplier docu=vl is very low. See also
Figure 14 for the defects introduced by various settings to the
scale factors.

As shown in Figure 15 the COQUALMO defect intro-
duction factors are effects-per-1000 lines of code. A small
weighting factor (10,20,30) is added to show an increasing
number of defects as the life cycle progresses.

The defects remaining in software is the product of the
defects introduced times the percentage removed (see Fig-
ure 16 and Figure 17). The removal percentage is calculated
in Figure 18 which shows how various actions (automated
analysis, peer reviews, and execution testing
and tools) remove defects during requirements, design
and coding. These values are ratios per 1000 lines of code so
their complement represents the remaining defects (see Fig-
ure 18).

Total_threat =
(Schedule_threat + Product_threat +
Personnel_threat + Process_threat +
Platform_threat + Reuse_threat)/3.73

Schedule_threat=
Sced_Rely_threat + Sced_Time_threat +
Sced_Pvol_threat + Sced_Tool_threat +
Sced_Acap_threat + Sced_Aexp_threat +
Sced_Pcap_threat + Sced_Plex_threat +
Sced_Ltex_threat +
Sced_Pmat_threat

Product_threat =
Rely_Acap_threat + Rely_Pcap_threat +
Cplx_Acap_threat + Cplx_Pcap_threat +
Cplx_Tool_threat + Rely_Pmat_threat +
Sced_Cplx_threat + Sced_Rely_threat +
Sced_Time_threat + Ruse_Aexp_threat +
Ruse_Ltex_threat

Personnel_threat =
Pmat_Acap_threat + Stor_Acap_threat +
Time_Acap_threat + Tool_Acap_threat +
Tool_Pcap_threat + Ruse_Aexp_threat +
Ruse_Ltex_threat + Pmat_Pcap_threat +
Stor_Pcap_threat + Time_Pcap_threat +
Ltex_Pcap_threat + Pvol_Plex_threat +
Sced_Acap_threat + Sced_Aexp_threat +
Sced_Pcap_threat + Sced_Plex_threat +
Sced_Ltex_threat + Rely_Acap_threat +
Rely_Pcap_threat + Cplx_Acap_threat +
Cplx_Pcap_threat + Team_Aexp_threat

Process_threat =
Tool_Pmat_threat + Time_Tool_threat +
Tool_Pmat_threat + Team_Aexp_threat +
Team_Sced_threat + Team_Site_threat +
Sced_Tool_threat + Sced_Pmat_threat +
Cplx_Tool_threat + Pmat_Acap_threat +
Tool_Acap_threat + Tool_Pcap_threat +
Pmat_Pcap_threat

Platform_threat =
Sced_Time_threat + Sced_Pvol_threat +
Stor_Acap_threat + Time_Acap_threat +
Stor_Pcap_threat + Pvol_Plex_threat +
Time_Tool_threat

Reuse_threat =
Ruse_Aexp_threat + Ruse_Ltex_threat

Fig. 11 THREAT: the calculations.

5 Handling the Output: Learning

The output from the above learners are passe to the BORE
pre-processor, then to the TAR3 treatment learner.

5.1 Multi-Dimensional Optimization using “BORE”

Our goal is reducing development effort and the risk of sched-
ule risk and the defect density in our code. Optimizing for all
these three goals can be difficult. The last 3 columns of Fig-
ure 19 show some scores from COCOMO, the risk model,
and COQUALMO. The rows are sorted by the COQUALMO
scores; i.e. by the estimated number of defects per 1000 lines

8

vl l n h vh xh
rely

sced vl 1 2
l 1

cplx
sced vl 1 2 4

l 1 2
n 1

time
sced vl 1 2 4

l 1 2
n 1

pvol
sced vl 1 2

l 1
tool

sced vl 2 1
l 1

pexp
sced vl 4 2 1

l 2 1
n 1

pcap
sced vl 4 2 1

l 2 1
n 1

aexp
sced vl 4 2 1

l 2 1
n 1

acap
sced vl 4 2 1

l 2 1
n 1

ltex
sced vl 2 1

l 1
pmat

sced vl 2 1
l 1

vl l n
acap

rely n 1
h 2 1

vh 4 2 1
pcap

rely n 1
h 2 1

vh 4 2 1
acap

cplx h 1
vh 2 1
xh 4 2 1

pcap
cplx h 1

vh 2 1
xh 4 2 1

tool
cplx h 1

vh 2 1
xh 4 2 1

pmat
rely n 1

h 2 1
vh 4 2 1

acap
pmat vl 2 1

l 1
acap

stor h 1
vh 2 1
xh 4 2 1

acap
time h 1

vh 2 1
xh 4 2 1

acap
tool vl 2 1

l 1
pcap

tool vl 2 1
l 1

vl l n
aexp

ruse h 1
vh 2 1
xh 4 2 1

ltex
ruse h 1

vh 2 1
xh 4 2 1

pcap
pmat vl 2 1

l 1
pcap

stor h 1
vh 2 1
xh 4 2 1

pcap
time h 1

vh 2 1
xh 4 2 1

pcap
ltex vl 4 2 1

l 2 1
n 1

pexp
pvol h 1

vh 2 1
pmat

tool vl 2 1
l 1

tool
time vh 1

xh 2 1
aexp

team vl 2 1
l 1

sced
team vl 2 1

l 1
site

team vl 2 1
l 1

Fig. 12 THREAT: the details. For example, looking at the top-left matrix, the Sced Rely risk is highest when the reliability is very high
but the schedule pressure is very tight.

rely data ruse docu cplx time stor pvol acap pcap pcon aexp plex ltex tool site sced
requirements:
xh 1.05 1.32 1.08 1.08 1.16 0.83
vh 0.7 1.07 1.03 0.86 1.21 1.05 1.05 1.1 0.75 1 0.82 0.81 0.9 0.93 0.92 0.89 0.85
h 0.85 1.04 1.02 0.93 1.1 1.03 1.03 1.05 0.87 1 0.91 0.91 0.95 0.97 0.96 0.95 0.92
n 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
l 1.22 0.93 0.95 1.08 0.88 0.86 1.17 1 1.11 1.12 1.05 1.04 1.05 1.1 1.09

vl 1.43 1.16 0.76 1.33 1 1.22 1.24 1.11 1.07 1.09 1.2 1.18
design:
xh 1.02 1.41 1.2 1.18 1.2 0.83
vh 0.69 1.1 1.01 0.85 1.27 1.13 1.12 1.13 0.83 0.85 0.8 0.82 0.86 0.88 0.91 0.89 0.84
h 0.85 1.05 1 0.93 1.13 1.06 1.06 1.06 0.91 0.93 0.9 0.91 0.93 0.91 0.96 0.95 0.92
n 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
l 1.23 0.91 0.98 1.09 0.86 0.83 1.1 1.09 1.13 1.11 1.09 1.07 1.05 1.1 1.1

vl 1.45 1.18 0.71 1.2 1.17 1.25 1.22 1.17 1.13 1.1 1.2 1.19
coding:
xh 1.02 1.41 1.2 1.15 1.22 0.85
vh 0.69 1.1 1.01 0.85 1.27 1.13 1.1 1.15 0.9 0.76 0.77 0.88 0.86 0.82 0.8 0.9 0.84
h 0.85 1.05 1 0.92 1.13 1.06 1.05 1.08 0.95 0.88 0.88 0.94 0.94 0.91 0.9 0.95 0.92
n 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
l 1.23 0.91 0.98 1.09 0.86 0.82 1.05 1.16 1.15 1.07 1.08 1.11 1.13 1.09 1.1

vl 1.45 1.18 0.71 1.11 1.32 1.3 1.13 1.16 1.22 1.25 1.18 1.19

Fig. 13 COQUALMO: effort multipliers and defect introduction

9

prec flex resl team pmat
requirements:
xh 0.7 1 0.76 0.75 0.73
vh 0.84 1 0.87 0.87 0.85
h 0.92 1 0.94 0.94 0.93
n 1 1 1 1 1
l 1.22 1 1.16 1.17 1.19
vl 1.43 1 1.32 1.34 1.38
design:
xh 0.75 1 0.7 0.8 0.61
vh 0.87 1 0.84 0.9 0.78
h 0.94 1 0.92 0.95 0.89
n 1 1 1 1 1
l 1.17 1 1.22 1.13 1.33
vl 1.34 1 1.43 1.26 1.65
coding:
xh 0.81 1 0.71 0.86 0.63
vh 0.9 1 0.84 0.92 0.79
h 0.95 1 0.92 0.96 0.9
n 1 1 1 1 1
l 1.12 1 1.21 1.09 1.3
vl 1.24 1 1.41 1.18 1.58

Fig. 14 COQUALMO: scale factors and defect introduction

function defectsIntroduced() {
return 10*Ksloc()*defectsIntroduced1("requirements") +

20*Ksloc()*defectsIntroduced1("design") +
30*Ksloc()*defectsIntroduced1("coding") }

function defectsIntroduced1(table) {
return the product of the Figure 13 and
and the Figure 14 figures }

Fig. 15 COQUALMO: defects introduced.

automated peer execution testing
analysis reviews and tools

requirements:
xh 0.4 0.7 0.6
vh 0.34 0.58 0.57
h 0.27 0.5 0.5
n 0.1 0.4 0.4
l 0 0.25 0.23
vl 0 0 0
design:
xh 0.5 0.78 0.7
vh 0.44 0.7 0.65
h 0.28 0.54 0.54
n 0.13 0.4 0.43
l 0 0.28 0.23
vl 0 0 0
coding:
xh 0.55 0.83 0.88
vh 0.48 0.73 0.78
h 0.3 0.6 0.69
n 0.2 0.48 0.58
l 0.1 0.3 0.38
vl 0 0 0

Fig. 16 COQUALMO: defect removal

function Total_defects() {
return defects("requirements",Coqualr) +

defects("design", Coquald) +
defects("coding", Coqualc)

}

function defects(what,table) {
introduced = defectsIntroduced1(what,table);
percentRemoved = defectsRemovedRatio(what);
return percentRemoved*introduced

}

Fig. 17 COQUALMO: defects added and removed

function defectsRemovedRatio(table, auto,review,tool) {
return (1 - drf(table,"automated_analysis")) *

(1 - drf(table,"peer_reviews")) *
(1 - drf(table,"execution_testing_and_tools"))

}

function drf(table,x) {
return x’s value in table from Figure 16

}

Fig. 18 COQUALMO: ratio of defects removed

26 inputs 3 outputs
schedule

rely plex ksloc . . . pcap time aa effort threats defects
5 1 118.80 . . . 5 3 5 2083 69 0.50
5 1 105.51 . . . 1 3 5 4441 326 0.86
5 4 89.26 . . . 3 5 3 1242 63 0.96
5 2 89.66 . . . 1 4 5 2118 133 2.30
5 1 105.45 . . . 2 4 5 6362 170 2.66
5 3 118.43 . . . 2 6 2 7813 112 4.85
5 4 110.84 . . . 4 4 4 4449 112 6.81

. . .

Fig. 19 Some sample XOMO output.

of code. Interestingly, high number of remaining defects are
not correlated with high schedule risk or development effort:

– The second and last rows have similar efforts but very
different defect densities.

– Row two has the highest schedule threat but one of the
lowest defect densities.

The reason for these non-correlations is simple: even though
the three models within XOMO using the same variables,
they predict for different goals. This complicates optimization
since any gain achieved in one dimension may have detrimen-
tal effects on other dimensions.

To model this multi-dimensional optimization problem,
XOMO uses a multi-dimensional classification scheme called
BORE (short for “best or rest”). BORE maps simulator out-
puts into a hypercube which has one dimension for each util-
ity; in our case, one dimension for effort, remaining defects,
and schedule risk, These utilities are normalized to “zero” for
“worst”, and “one” for “best”. The corner of the hypercube at
1,1,... is the apex of the cube and represents the desired goal
for the system. All the examples are scored by their normal-
ized Euclidean distance to the apex.

For each run i of the simulator, these three outputs where
normalized to the range 0..1 as follows:

Xi = cocomoi−min(cocomo)
max(cocomo)−min(cocomo)

Yi = coqualmoi−min(coqualmo)
max(coqualmo)−min(coqualmo)

Zi = threati−min(threat)
max(treat)−min(threat)

The Euclidean distance of {Xi, Yi, Zi} to the ideal position
of zero effort (Xi = 0), zero defects (Yi = 0) and zero threats

10

rely plex ksloc . . . pcap time aa effort secdRisk defects
best:

5 4 89.26 . . . 3 5 3 1242 63 0.96
5 1 118.80 . . . 5 3 5 2083 69 0.50
5 2 89.66 . . . 1 4 5 2118 133 2.30

rest:
5 1 105.51 . . . 1 3 5 4441 326 0.86
5 4 110.84 . . . 4 4 4 4449 112 6.81
5 3 118.43 . . . 2 6 2 7813 112 4.85

Fig. 20 BORE: classification of Figure 19.

outlook temp(oF) humidity windy? class
sunny 85 86 false none
sunny 80 90 true none
sunny 72 95 false none

rain 65 70 true none
rain 71 96 true none
rain 70 96 false some
rain 68 80 false some
rain 75 80 false some

sunny 69 70 false lots
sunny 75 70 true lots

overcast 83 88 false lots
overcast 64 65 true lots
overcast 72 90 true lots
overcast 81 75 false lots

Fig. 21 TAR3: Playing golf.

(Zi = 0) was then computed and normalized to the range 0..1
as follows:

Wi = 1−
√

X2
i + Y 2

i + Z2
i√

3

Wi has the following properties:

– 0 ≤ Wi ≤ 1.
– The higher Wi, the better the run.
– Wi is reduced by increasing any of the COCOMO effort,

COQUALMO defect, or THREAT index scores. That is,
improving Wi can only be achieved by decreasing all the
effort, defects and treat scores from all the models.

To determine the “best” and “rest” values, all the Wi scores
were sorted. The top 33% were then classified as “best” and
the remainder as “rest”. For example, BORE might divide
Figure 19 into Figure 20.

5.2 Treatment Learning with TAR3

Once the above models run, and BORE classifies the output
into best and rest, a data miner is used to find input settings
that select for the better outputs. This study uses the TAR3
data miner since this learning method return the smallest the-
ories that most effect the output. In terms of software process
changes, such minimal theories are useful since they require
the fewest management actions to improve a project.

TAR3 inputs a set of training examples E. Each exam-
ple maps a set of attribute ranges to some class symbol; i.e.
{Ri, Rj , ... → C} The class symbols C1, C2.. are stamped
with some utility score that ranks the classes; i.e. {U1 <
U2 < .. < UC}. With E, these classes occur at frequencies
F1%, F2%, ..., FC%. A “treatment” T of size X is a conjunc-
tion of attribute ranges {R1 ∧ R2... ∧ RX}. Some subset of
e ⊆ E are consistent with the treatment. In that subset, the
classes occur at frequencies f1%, f2%, ...fC%. TAR3 seeks
the seek smallest T which most changes the weighted sum of
the utilities times frequencies of the classes. Formally, this is
called the lift of a treatment:

lift =
∑

C UCfC∑
C UCFC

For example, consider the log of golf playing behavior
seen in Figure 21. In that log, we only play lots of golf in

6
5+3+6 = 43% of cases. To improve our game, we might
search for conditions that increases our golfing frequency.
Two such conditions are shown in the WHERE test of the
select statements in Figure 22. In the case of outlook=
overcast, we play lots of golf all the time. In the case
of humidity ≤ 90, we only play lots of golf in 20% of
cases. So one way to play lots of golf would be to select a va-
cation location where it was always overcast. While on hol-
idays, one thing to watch for is the humidity: if it rises over
90%, then our frequent golf games are threatened.

The tests in the WHERE clause of the select statements in
Figure 22 is a treatment. Classes in treatment learning get a
score UC and the learner uses this to assess the class frequen-
cies resulting from applying a treatment (i.e. using them in a
WHERE clause). In normal operation, a treatment learner does
controller learning that finds a treatment which selects for
better classes and reject worse classes By reversing the scor-
ing function, treatment learning can also select for the worse
classes and reject the better classes. This mode is called moni-
tor learning since it finds the thing we should most watch for.
In the golf example, outlook = ’overcast’ was the controller
and humidity ≥ 90 was the monitor.

Formally, treatment learning is a weighted-class minimal
contrast-set association rule learner. The treatments are asso-
ciations that occur with preferred classes. These treatments
serve to contrast undesirable situations with desirable situ-
ation where more of the outcomes are favorable. Treatment
learning is different to other contrast set learners like STUCCO [1]
since those other learners don’t focus on minimal theories.

Conceptually, a treatment learner explores all possible sub-
sets of the attribute ranges looking for good treatments. Such
a search is impractical in practice so the art of treatment learn-
ing is quickly pruning unpromising attribute ranges. This study
uses the TAR3 treatment learner [12] that uses stochastic search
to find its treatments.

5.3 Iterative TAR3

Sometimes, one round of TAR3 is not enough. Iterative TAR3
runs by conducting multiple Monte Carlo simulations over

11

input:

SELECT class
FROM golf

SELECT class
FROM golf
WHERE
outlook = ’overcast’

SELECT class
FROM golf
WHERE
humidity >= 90

output:
none none none none none
some some some lots lots
lots lots lots lots

lots lots lots lots none none none some lots

distributions:

0
2
4
6

5 3 6
0
2
4
6

0 0 4
0
2
4
6

3 1 1

legend: none some lots

Fig. 22 TAR3: Class distributions selected by different conditions in Figure 21.

the ranges of any uncertain variables. For example, there are
28 variables in the XOMO models:

– Ksloc;
– 5 scale factors;
– 17 effort multipliers;
– 2 calibration parameters (“a,b”);
– 3 defect removal activities (automated analysis, peer re-

views, execution testing and tools).

In the case studies below, only a partial description of some of
these variables are available. Hence, learning is a process of
sampling from the known constraints, finding the best treat-
ment, then revising the constraints. After, say, 1000 Monte
Carlo runs, BORE classifies the outputs as (say) either the
333 best or 667 rest. The treatment learner studies the re-
sults and notes which input ranges select for best. The ranges
found by the learner then become restraints for future simu-
lations. The whole cycle looks like this:

restraintsi → simulationi → learn →
→ restraintsi+i → simulationi+1

6 Running the System

To generate our results, XOMO was run as follows:

xomo \
-S $RANDOM \
-l \
-R 1000 \
-d system.dat \
-p ares.dat \
-P are \
-s ’<$defects,<$effort,<$threats,?$A,?$B,$ksloc’ > xomo.out

The command can be read as follows:
-S $RANDOM: use a random seed for the simulations.

-R 1000: perform 1000 Monte Carlo Simulations
-l: minor detail- print a header on the output;
-d $system.dat: load default ranges from Figure 5;
-p $ares.dat: load the ARES ranges Figure 6;
-P ares: focus the simulation on ARES;
-s ’<$defects....’: a string specifying the goal

statement; i.e. minimize defect, effort, and treats.
Prior to calling TAR3, the results on the above command

(stored in the tmp file) must be divided into “best” and “rest”

bore N=0.33 Pass=1 xomo.out \
Pass=2 xomo.out \
Pass=3 xomo.out > xomo.data

For example, Figure 23 shows a typical xomo.out file and
Figure 24 shows the result of BORE replacing the last three
columns with “best” or “rest”.

Once the data has been BOREd, it is passed to TAR3 as
follows:

tar3 xomo

With the above call, TAR3 expects to find three files:

1. xomo.data : generated by BORE and shown in Figure 24;
2. xomo.names : a data dictionary for the data file, shown

in Figure 25;
3. xomo.cfg : some control settings, shown in Figure 26.

Xomo.names is almost self-explanatory. One non-obvious
feature is on line one where the order of the classes tells
TAR3 what to seek and what to avoid. In a TAR3 names
file, the classes are weighted left to right 2,4,8,16,etc. Hence,
in Figure 25, 1 (i.e. “best”) is the preferred class.

Xomo.cfg requires some explanation:

– Granularity controls how the continuous ranges are di-
vided into bins. For reporting purposes, an odd number
for Granularity is best since (e.g.) a Granularity of 5

12

=e
xe

cu
tio

n
te

st
in

g
an

d
to

ol
s

fle
x

st
or

ae
xp

do
cu

si
te

pl
ex

cp
lx

lte
x

pe
er

re
vi

ew
s

$k
sl

oc
re

ly
da

ta
ru

se
ac

ap

?$
A

sc
ed

au
to

m
at

ed
an

al
ys

is
pc

on

?$
B

pc
ap

to
ol

tim
e

pr
ec

pv
ol

re
sl

te
am

pm
at

<
$r

is
k

<
$e

ff
or

t

<
$d

ef
ec

ts

1 3 3 4 4 6 4 4 5 6 116 5 4 4 4 3.10408 3 6 3 0.915776 3 5 3 4 3 4 3 5 0.68 345.87 1.67
1 3 3 4 4 6 4 4 5 6 78 5 4 4 4 2.80696 3 6 3 0.92094 3 5 3 3 3 4 3 4 0.68 238.43 2.00
1 3 3 4 4 6 4 4 5 6 118 5 4 4 4 2.51974 3 6 3 1.09107 3 5 3 5 3 4 3 5 0.68 621.76 1.55
1 3 3 4 4 6 4 4 5 6 118 5 4 4 4 2.808 3 6 3 1.09649 3 5 3 3 3 4 3 4 0.68 862.15 2.00
1 3 3 4 3 6 4 4 5 6 118 5 4 4 4 3.23396 3 6 3 1.04294 3 5 3 5 3 4 3 4 0.68 615.55 1.88
1 3 3 4 3 6 4 4 5 6 90 5 4 4 4 2.59488 3 6 3 1.01176 3 5 3 3 3 4 3 4 0.68 348.81 2.16
1 3 3 4 3 6 4 4 5 6 94 5 4 4 4 2.54054 3 6 3 0.9104 3 5 3 3 3 4 3 4 0.68 226.74 2.16
1 3 3 4 4 6 4 4 5 6 97 5 4 4 4 2.38838 3 6 3 1.02511 3 5 3 5 3 4 3 5 0.68 343.77 1.55
1 3 3 4 4 6 4 4 5 6 125 5 4 4 4 2.33558 3 6 3 1.02301 3 5 3 3 3 4 3 4 0.68 540.69 2.00
...

Fig. 23 XOMO output.

=e
xe

cu
tio

n
te

st
in

g
an

d
to

ol
s

fle
x

st
or

ae
xp

do
cu

si
te

pl
ex

cp
lx

lte
x

pe
er

re
vi

ew
s

$k
sl

oc
re

ly
da

ta
ru

se
ac

ap

?$
A

sc
ed

au
to

m
at

ed
an

al
ys

is
pc

on

?$
B

pc
ap

to
ol

tim
e

pr
ec

pv
ol

re
sl

te
am

pm
at

be
st

or
re

st
?

1 3 3 4 4 6 4 4 5 6 77 5 4 4 4 3.16394 3 6 3 0.900243 3 5 3 5 3 4 3 5 1
1 3 3 4 3 6 4 4 5 6 75 5 4 4 4 2.98155 3 6 3 1.09603 3 5 3 3 3 4 3 4 0
1 3 3 4 3 6 4 4 5 6 84 5 4 4 4 2.4412 3 6 3 1.01243 3 5 3 3 3 4 3 4 0
1 3 3 4 3 6 4 4 5 6 102 5 4 4 4 3.1926 3 6 3 0.971668 3 5 3 3 3 4 3 4 0
1 3 3 4 3 6 4 4 5 6 117 5 4 4 4 2.33322 3 6 3 0.934947 3 5 3 4 3 4 3 4 0
1 3 3 4 4 6 4 4 5 6 115 5 4 4 4 2.95164 3 6 3 0.990819 3 5 3 5 3 4 3 5 1
1 3 3 4 3 6 4 4 5 6 122 5 4 4 4 2.51071 3 6 3 0.957017 3 5 3 5 3 4 3 5 1
1 3 3 4 4 6 4 4 5 6 117 5 4 4 4 3.01523 3 6 3 0.961085 3 5 3 4 3 4 3 4 0
1 3 3 4 3 6 4 4 5 6 112 5 4 4 4 2.48963 3 6 3 1.07945 3 5 3 4 3 4 3 4 0
1 3 3 4 3 6 4 4 5 6 117 5 4 4 4 2.77276 3 6 3 1.00916 3 5 3 4 3 4 3 5 0
...

Fig. 24 BORE output. In the last column, 0 denotes “rest” and 1 denotes “best”.

can be reported as “3 means no change, 4 and 2 means
some changes up and down, and 5 and 1 mean larger
changes up and down”. Granularities over 7 are rarely
useful and for problematic data sets (like the XOMO data),
this number can go as low as 2.

– TAR3 only reports the top MaxNumber of treatments
(in this case, 10).

– When composing a treatment, TAR3 will build constraints
of up to MaxSize items. The upper bound on this num-
ber is the number of attributes but, in practice, a MaxSize
of 5-10 often suffices.

– RandomTrils sets the number of trial we perform before
we pause to look for new best treatments.

– FutileTrails is the number of allowed pauses (so the
total number of trials is 100*5).

– TAR3 rejects any treatment that contains less than BestClass
percentage of the best class.

The settings in Figure 26 could be improved but, as we shall
see, they suffice for the XOMO data.

7 Case Studies

7.1 Case Study 1

Figure 27 shows the effects of applying Figure 1 to the GNC
model of ARES1 modeling in Figure 6. After each round,
TAR3 learns treatments and the best treatment is selected to
restrain the Monte Carlo simulation of the next round. At

13

0, 1

execution_testing_and_tools : 1,2,3,4,5,6.
flex : 1,2,3,4,5,6.
stor : 1,2,3,4,5,6.
aexp : 1,2,3,4,5,6.
docu : 1,2,3,4,5,6.
site : 1,2,3,4,5,6.
plex : 1,2,3,4,5,6.
cplx : 1,2,3,4,5,6.
ltex : 1,2,3,4,5,6.
peer_reviews : 1,2,3,4,5,6.
ksloc : continuous.
rely : 1,2,3,4,5,6.
data : 1,2,3,4,5,6.
ruse : 1,2,3,4,5,6.
acap : 1,2,3,4,5,6.
A : continuous.
sced : 1,2,3,4,5,6.
automated_analysis : 1,2,3,4,5,6.
pcon : 1,2,3,4,5,6.
B : continuous .
pcap : 1,2,3,4,5,6.
tool : 1,2,3,4,5,6.
time : 1,2,3,4,5,6.
prec : 1,2,3,4,5,6.
pvol : 1,2,3,4,5,6.
resl : 1,2,3,4,5,6.
team : 1,2,3,4,5,6.
pmat : 1,2,3,4,5,6.

Fig. 25 xomo.names.

granularity: 2
maxNumber: 10
maxSize : 10
randomTrials: 100
futileTrials: 5
bestClass: 20\%

Fig. 26 xomo.cfg

each round, the “best/rest” discretization described above was
repeated so “best” was the top 33% seen in each round:

The first round decision was sced = 3; i.e. set the sched-
ule pressure to the mid-point of its ranges {2,3,4} (as shown
on the last line of Figure 6. The second round decision was to
apply maximum effort to execution-based testing. As shown
right-hand-side plots of Figure 1, these failed to reduce mean
defects or effort. Round 1 and 2 did achieve a small reduction
in the threat index. However, recall that the THREAT model
classifies threat indexes less than 6 as “low threat”. Hence,
the round 1&2 reduction of THREAT from 2 to 0.5 is not
particularly interesting.

At round 3, TAR3 proposed maximizing the effort on peer
reviews and this had dramatic impact on the defects: the mean
value halved and the maximum value dropped 75%.

At round 4, TAR4 proposed maximizing the effort on
automated analysis. This round halved again the mean esti-
mated number of defects (from two to one) and reduced the
maximum value by a further 80%.

At round 5, the best treatment TAR3 found was to in-
crease the language and tools experience; i.e. ltex = 5. Since
the improvements seen from round 4 to round 5 are negligi-
ble, cyclic learning was terminated.

One prior XOMO-based analysis of the trade space within
the space shuttle sub-system offered far more dramatic results
than Figure 27 [20]. That prior study found ways to:

– Reduce the residual defects per KSLOC by 85%;
– Halve the threat of schedule over-run;
– Decrease the development effort to nearly half of its orig-

inal value.

round1:
sced = 3

round2:
execution testing and tools = 6

round3:
peer reviews = 6

round4:
automated analysis = 6

round5:
ltex = 5

 0

 1

 2

 3

 4

 5

 6

 7

 8

 1 2 3 4 5 6

defects per KSLOC

mean

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1 2 3 4 5 6

effort (months)

mean

 0

 0.5

 1

 1.5

 2

 2.5

 1 2 3 4 5 6

threats

mean

 0

 5

 10

 15

 20

 25

 1 2 3 4 5 6

repeats of 1000 runs

min
max

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1 2 3 4 5 6

repeats of 1000 runs

min
max

 0

 0.5

 1

 1.5

 2

 2.5

 1 2 3 4 5 6

repeats of 1000 runs

min
max

Fig. 27 Results. In the top row, the green error bars denote ± one standard deviation about the mean.

14

defects

round sc
ed

pe
er

re
vi

ew
s

lte
x

ex
ec

ut
io

n
te

st
in

g
an

d
to

ol
s

au
to

m
at

ed
an

al
ys

is

min mean max sd
6a 3 6 5 1 1 3.0 3.6 4.25 3.6
6b 3 6 5 1 2 2.9 3.5 4.09 3.5
6c 3 6 5 1 3 2.6 3.1 3.6 3.1
6d 3 6 5 1 4 2.2 2.6 3.0 2.6
6e 3 6 5 1 5 1.7 2.1 2.42 2
6f 3 6 5 1 6 1.6 1.8 2.2 1.8
6 3 6 5 6 6 0.42 0.5 0.59 0.5

Fig. 28 Effects of increasing automated analysis.

Why did that study produce more impressive results than
this one? Our view is that the issue is in the problem domain
and not in the analysis method. In this study, 24 attributes
were set and only a handful could be varied. In the former
study, our data miner was given far more opportunity to im-
prove the project.

7.1.1 Discussion: Case Study 1 The results of Figure 27
shows interesting subtleties:

– Despite certain uncertainties in the domain (e.g. the exact
value of the calibration parameters A, B), note that the
effort and threat mins/max/mean variables are quite sta-
ble. That is, the ARES system displays much stability in
its process properties.

– The merits of execution-based testing, by itself, seem very
small for this software. Note that the addition of execution-
based testing (in round 2) barely changed the defect rate.

– On the other hand, peer reviews seem most powerful for
this software. Note that the greatest defect rate reduction
occurred when peer reviews were added in round 3.

The ability to make fine-grained trade-offs between alter-
nate technologies is one of the main advantages of the XOMO
technology. For example, Figure 28 and Figure 29 shows an
XOMO study with ARES where:

– peer review usage was maximized;
– execution-based testing was minimized;
– and automatic analysis was increased from very low to

very high levels.

This represents a very common situation at NASA- given lim-
ited access to hardware test beds, IV&V analysts perform
very limited execution-based testing. In such a situation, peer
reviews are widely used (since they are relatively cheap to
perform). In this context, it might be necessary to make a
business case to buy some automatic analysis tool. Figure 28
and Figure 29 show the effects of only changing the level of

 0

 1

 2

 3

 4

 5

 6

all 6 5 4 3 2 1

automated analysis

defects per KSLOC

mean
min

max

Fig. 29 Figure 28, plotted. Green error bars denote ± one standard
deviation about the mean.

automatic analysis while holding other defect removal meth-
ods steady. Automatic analysis can be cheap to perform (e.g.
static code parsers) and sometimes can be conducted very
early in the life cycle (e.g. lightweight formal models of re-
quirements).

Figure 29 focuses on how the level of automatic analysis
effects defect estimates. Note that automatic analysis by it-
self does not get rid of all the defects. But, in the absence of
execution-based testing tools, it can half the mean predicted
number of defects.

7.2 Case Study 2

This second study explores a less constrained problem than
the first study. Figure 30 shows the input ranges for software
from “KC1”- an experimental NASA space plane. KC1 was
the seed of the design for the Orbital Space Plane which, in
turn, was used for the initial design work for ARES. Note that
the slots can vary over a wider range of values.

Figure 31 shows the effects of iterative treatment learning
with TAR3 on KC1. In the first round of learning, chang-

1 system with kc1
2 A = 2.94
3 B = 0.91
4 acap just 2 3
5 aexp just 2 3
6 cplx just 5 6
7 data = 3
8 docu just 2 4
9 ksloc just 75 125

10 ltex just 2 4
11 pcap = 3
12 pcon just 2 3
13 plex = 3
14 pmat just 1 4
15 prec just 1 2
16 pvol = 2
17 rely = 5
18 resl just 1 3
19 ruse just 2 4
20 sced just 1 3
21 site = 3
22 stor just 3 5
23 team just 2 3
24 tool just 2 3
25 flex just 2 5

Fig. 30 The ranges of study 2.

15

round1:
time just 3 4 and pmat just 3 4

round2:
acap=3 and sced=3

round3:
flex just 4 5 and ltex = 4

round4:
ksloc just 75 91 and pmat = 4 and
tool = 3 and time just 3 4
acap =3

round5:
stor just 3 4 and prec = 2 and
aexp = 3

 0
 50

 100
 150
 200
 250
 300

 5 4 3 2 1

defects/KLOC

mean
max
min

 0
 1000
 2000
 3000
 4000
 5000
 6000

 5 4 3 2 1

effort (months)

mean
max
min

 0
 10
 20
 30
 40
 50
 60

 5 4 3 2 1

threats

mean
max
min

 0
 5

 10
 15
 20
 25
 30

 5 4 3 2 1

round

mean
sd 2000

 1500

 1000

 500

 0
 5 4 3 2 1

round

mean
sd

 20

 15

 10

 5

 0
 5 4 3 2 1

round

mean
sd

Fig. 31 Results of case study 2.

ing the runtime pressure (time) and process maturity (pmat)
results in moderate reductions in effort/defects/ and threats.
Much larger reductions were achieved by round 3 after con-
straining analyst capability, (acap) schedule pressure (sced),
development flexibility (flex) and language and tool experi-
ence (ltex).

Further rounds offered some further improvements in de-
fects/effort/ and threats but required much more constraints.
By round 3, management action would be required to make 6
process changes. Rounds 4 and 5 required 8 more. Hence, in
terms of cost/benefit, there might be case to pause after round
3.

7.2.1 Discussion: Case Study 2 The most important feature
of Figure 31 is what is missing3. Note that all the recom-
mendations proposed by the treatment learner were process-
based, not product-based. Missing in the recommendations
are any mention of (e.g.) defect removal tools such as the au-
tomated analysis or the execution/testing tools discussed in
the last case study.

One explanation for these missing features can be found
in the different magnitude of the problems facing KC1 or
ARES. The y-axis of the Figure 31 graphs are much larger
than the Figure 27 plots; for example, the largest predicted
number of defects faced by ARES and KC1 are 8/KSLOC
and 300/KSLOC respectively.

One lesson from these two case studies is that process
issues trump product issues. Debating which formal method
to apply is irrelevant if your analysts are all low quality. When
faced with large defect problems (e.g. KC1’s 300/KSLOC), it
may well be more important to make process changes rather

3 “Is there any point to which you would wish to draw my atten-
tion?”
“To the curious incident of the dog in the night time.”
“The dog did nothing in the night time.”
“That was the curious incident,” remarked Sherlock Holmes.
–Sir Arthur Conan Doyle. Silver Blaze

than hope that applying some tool will solve your project’s
problems.

8 Conclusion

The trade space for NASA systems can be very large. Soft-
ware models like COCOMO, COQUALMO, and THREAT
contain many assumptions about their domain. The conclu-
sions gained from this models should be scrutinized by do-
main experts. Early in the life cycle of a software project,
such scrutiny is complicated by all the unknowns associated
with a project. Exploring all those unknowns can lead to mas-
sive data overload as domain experts are buried beneath a
mountain of data coming from their simulators.

Here, we have discussed tools that automate exploring
that space. These tools integrate to other NASA-funded tools
via slot trees. XOMO, BORE, and treatment learners like
TAR3 can assist in trade space exploration. These tools can
find automatically find software process decisions that reduce
defects and effort and risk of schedule over run. These tools
sample the space of options and report sample conclusions
within the space of possibilities.

To demonstrate that technique, this paper conducted case
studies with software development for NASA systems. The
case studies proved to be very different: one required product
patches (ARES) while the other required massive changes to
process structure (KC1).

While the particular case studies examined here is quite
specific, the analysis method is quite general. There is noth-
ing stopping an analyst from using XOMO to study other
kinds of software development. The only requirement is that
the essential features of that software can be mapped onto
COCOMO-like models.

– All the models used here contain most of their knowledge
in easy-to-modify tables representing the particulars of
different domains.

16

– All the tools used here are portable and use simple command-
line switches that allow an analyst to quickly run through
a similar study for a different kind of project.

References

1. S. Bay and M. Pazzani. Detecting change in categorical data:
Mining contrast sets. In Proceedings of the Fifth Interna-
tional Conference on Knowledge Discovery and Data Min-
ing, 1999. Available from http://www.ics.uci.edu/
˜pazzani/Publications/stucco.pdf.

2. B. Boehm. Software Engineering Economics. Prentice Hall,
1981.

3. B. Boehm, E. Horowitz, R. Madachy, D. Reifer, B. K. Clark,
B. Steece, A. W. Brown, S. Chulani, and C. Abts. Software
Cost Estimation with Cocomo II. Prentice Hall, 2000.

4. T. Burkleaux, T. Menzies, and D. Owen. Lean = (lurch+tar3)
= reusable modeling tools. In Proceedings of WITSE
2005, 2004. Available from http://menzies.us/pdf/
04lean.pdf.

5. E. Chiang and T. Menzies. Simulations for very early lifecy-
cle quality evaluations. Software Process: Improvement and
Practice, 7(3-4):141–159, 2003. Available from http://
menzies.us/pdf/03spip.pdf.

6. S. L. Cornford, J. D. M. S. Feather, J. Salcedo, and T. Men-
zies. Optimizing spacecraft design optimization engine de-
velopment: Progress and plans. In Proceedings of the IEEE
Aerospace Conference, Big Sky, Montana, 2003. Available from
http://menzies.us/pdf/03aero.pdf.

7. M. Feather and T. Menzies. Converging on the optimal at-
tainment of requirements. In IEEE Joint Conference On Re-
quirements Engineering ICRE’02 and RE’02, 9-13th Septem-
ber, University of Essen, Germany, 2002. Available from
http://menzies.us/pdf/02re02.pdf.

8. N. E. Fenton and M. Neil. Software metrics: A roadmap.
In A. Finkelstein, editor, Software metrics: A roadmap. ACM
Press, New York, 2000. Available from http://citeseer.
nj.nec.com/fenton00software.html.

9. N. E. Fenton and S. Pfleeger. Software Metrics: A Rigorous &
Practical Approach. International Thompson Press, 1997.

10. M. Fisher and T. Menzies. Learning iv&v strategies. In
HICSS’06, 2006. Available from http://menzies.us/
pdf/06hicss.pdf.

11. D. Geletko and T. Menzies. Model-based software testing via
treatment learning. In IEEE NASE SEW 2003, 2003. Available
from http://menzies.us/pdf/03radar.pdf.

12. Y. Hu. Treatment learning, 2002. Masters thesis, Unviersity
of British Columbia, Department of Electrical and Computer
Engineering. In preperation.

13. R. Jensen. An improved macrolevel software development re-
source estimation model. In 5th ISPA Conference, pages 88–92,
April 1983.

14. R. Madachy. Heuristic risk assessment using cost factors. IEEE
Software, 14(3):51–59, May 1997.

15. T. Menzies, E. Chiang, M. Feather, Y. Hu, and J. Kiper. Con-
densing uncertainty via incremental treatment learning. In
T. M. Khoshgoftaar, editor, Software Engineering with Com-
putational Intelligence. Kluwer, 2003. Available from http:
//menzies.us/pdf/02itar2.pdf.

16. T. Menzies and Y. Hu. Constraining discussions in requirements
engineering. In First International Workshop on Model-based

Requirements Engineering, 2001. Available from http://
menzies.us/pdf/01lesstalk.pdf.

17. T. Menzies and Y. Hu. Data mining for very busy people. In
IEEE Computer, November 2003. Available from http://
menzies.us/pdf/03tar2.pdf.

18. T. Menzies and J. Kiper. Better reasoning about software
engineering activities. In ASE-2001, 2001. Available from
http://menzies.us/pdf/01ase.pdf.

19. T. Menzies, D. Raffo, S. on Setamanit, Y. Hu, and S. Tootoo-
nian. Model-based tests of truisms. In Proceedings of IEEE
ASE 2002, 2002. Available from http://menzies.us/
pdf/02truisms.pdf.

20. T. Menzies and J. Richardson. Xomo: Understanding de-
velopment options for autonomy. In COCOMO forum,
2005, 2005. Available from http://menzies.us/pdf/
05xomo_cocomo_forum.pdf. For more details, see also
the longer technical report http://menzies.us/pdf/
05xomo101.pdf.

21. T. Menzies and J. Richardson. Making sense of requirements,
sooner. IEEE Computer, October 2006. Available from http:
//menzies.us/pdf/06qrre.pdf.

22. T. Menzies, S. Setamanit, and D. Raffo. Data mining from
process models. In PROSIM 2004, 2004. Available from
http://menzies.us/pdf/04dmpm.pdf.

23. T. Menzies and E. Sinsel. Practical large scale what-if queries:
Case studies with software risk assessment. In Proceedings ASE
2000, 2000. Available from http://menzies.us/pdf/
00ase.pdf.

24. D. Owen, T. Menzies, and B. Cukic. What makes finite-state
models more (or less) testable? In IEEE Conference on Auto-
mated Software Engineering (ASE ’02), 2002. Available from
http://menzies.us/pdf/02moretest.pdf.

25. R. Park. The central equations of the price software cost model.
In 4th COCOMO Users Group Meeting, November 1988.

26. L. Putnam and W. Myers. Measures for Excellence. Yourdon
Press Computing Series, 1992.

27. B. C. Tim Menzies, David Owen. You seem friendly, but
can i trust you? In Formal Aspects of Agent-Based Sys-
tems, 2002. Available from http://menzies.us/pdf/
02trust.pdf.

17

