
Nighthawk: A Two-Level Genetic-Random
Unit Test Data Generator

James H. Andrews and Felix C. H. Li
Department of Computer Science

University of Western Ontario
London, Ontario, CANADA N6A 5B7

andrews,cli9@csd.uwo.ca

Tim Menzies
Lane Department of Computer Science

West Virginia University
PO Box 6109, Morgantown, WV, USA 26506

tim@menzies.us

ABSTRACT
Randomized testing has been shown to be an effective
method for testing software units. However, the thorough-
ness of randomized unit testing varies widely according to
the settings of certain parameters, such as the relative fre-
quencies with which methods are called. In this paper, we
describe a system which uses a genetic algorithm to find pa-
rameters for randomized unit testing that optimize test cov-
erage. We compare our coverage results to previous work,
and report on case studies and experiments on system op-
tions.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging—
Testing tools; I.2.8 [Artificial Intelligence]: Problem Solv-
ing, Control Methods, and Search

General Terms
Algorithms, Experimentation, Measurement

Keywords
Randomized testing, genetic algorithms, test coverage

1. INTRODUCTION
Software testing involves running a piece of software (the

software under test, or SUT) on selected input data, and
checking the outputs for correctness. The goals of software
testing are to force failures of the SUT, and to be thorough.
The more thoroughly we have tested an SUT without forcing
failures, the more sure we are of the reliability of the SUT.

Randomized testing is the practice of using randomiza-
tion for some aspects of test input data selection. Several
independent studies [27, 1, 29, 18] have found that random-
ized testing of software units is effective at forcing failures in
even well-tested units. However, there remains a question of

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ASE’07, November 4–9, 2007, Atlanta, Georgia, USA.
Copyright 2007 ACM 978-1-59593-882-4/07/0011 ...$5.00.

whether randomized testing can be thorough enough. Using
various code coverage measures to measure thoroughness, re-
searchers have come to varying conclusions about the ability
of randomized testing to be thorough [26, 34, 1].

The thoroughness of randomized unit testing is highly de-
pendent on parameters that control when and how random-
ization is applied. These parameters include the number
of method calls to make, the relative frequency with which
different methods are called, the ranges from which integer
arguments are chosen, and the manner in which previously-
used arguments or previously-returned values are used in
new method calls. It is often difficult to work out the opti-
mal values of these parameters by hand.

In this paper, we describe Nighthawk, a system for gener-
ating unit test data. The system can be viewed as consisting
of two levels. The lower level is a randomized unit testing
engine which tests a set of methods according to parame-
ter values specified in a chromosome. The upper level is a
genetic algorithm (GA) which uses fitness evaluation, selec-
tion, mutation and recombination to find good values for
the randomized unit testing parameters, including parame-
ters that encode a value reuse policy. Goodness is evaluated
on the basis of test coverage and number of method calls
performed.

Users can use Nighthawk to find good parameters, and
then perform randomized unit testing based on those param-
eters. The randomized testing can quickly generate many
new test cases that achieve high coverage, and can continue
to do so for as long as users wish to run it.

1.1 Randomized Testing
“Random” or “randomized” testing has a long history, be-

ing mentioned as far back as [22]. For randomized testing,
an automated oracle is needed. However, studies have found
that even with simple, high-pass oracles, randomized testing
is effective at forcing failures [27, 11, 29].

Randomized testing has not, however, always been found
to be sufficiently thorough. For instance, Michael et al. [26]
performed randomized testing on the well-known Triangle
program; this program accepts three integers as arguments,
interprets them as sides of a triangle, and reports whether
the triangle is equilateral, isosceles, scalene, or not a triangle
at all. They concluded that randomized testing could not
achieve 50% condition/decision coverage of the code, even
after 1000 runs. Visser et al. [34] compared randomized
testing with various model-checking approaches and found
that while randomized testing was good at achieving block
coverage, it failed to achieve optimal coverage for stronger

coverage measures, such as a measure derived from Ball’s
predicate coverage [3].

In contrast, Doong and Frankl [14] tested several units
using randomized sequences of method calls, and found that
by varying some parameters of the randomized testing, they
could greatly increase or decrease the likelihood of finding
injected faults. The parameters included number of opera-
tions performed, ranges of integer arguments, and the rela-
tive frequencies of some of the methods in the call sequence.

1.2 Randomized Unit Testing
Unit testing is variously defined as the testing of a single

method, a group of methods, a module or a class. We will use
it in this paper to mean the testing of a group M of methods,
called the target methods. A unit test is a sequence of calls
to the target methods, with each call possibly preceded by
code that sets up the arguments, and with each call possibly
followed by code that checks results.

Randomized unit testing is unit testing where there is some
randomization in the selection of the target method call se-
quence and/or arguments to the method calls. Many re-
searchers [14, 2, 6, 31, 34] have performed randomized unit
testing, sometimes combined with other tools such as model
checkers.

A key concept in randomized unit testing is that of value
reuse. We use this term to refer to how the testing en-
gine reuses the receiver, arguments or return values of past
method calls when making new method calls. In previous
research, value reuse has mostly taken the form of making a
sequence of method calls all on the same receiver object.

In our previous research, we developed a GUI-based ran-
domized unit testing engine called RUTE-J [1]. To use
RUTE-J, users write their own customized test wrapper
classes, hand-coding such parameters as relative frequencies
of method calls. Users also hand-code a value reuse policy
by drawing receiver and argument values from value pools,
and placing return values back in value pools. Finding good
parameters quickly, however, requires experience with the
tool.

The system Nighthawk described in this paper signifi-
cantly builds on this work by automatically determining
good parameters. The lower, randomized-testing, level of
Nighthawk initializes and maintains one or more value pools
for all relevant types, and draws and replaces values in the
pools according to a policy specified in a chromosome. The
chromosome also specifies relative frequencies of methods,
method parameter ranges, and other testing parameters.
The upper, genetic-algorithm, level performs a search for
the parameter setting that causes the lower level to achieve
a high value of a coverage-related measure. Nighthawk uses
only the Java reflection facility to gather information about
the SUT, making its general approach robust and adaptable
to other languages.

1.3 Contributions and Paper Organization
The main contributions of this paper are as follows.

1. We describe the implementation of a novel two-level
genetic-random testing system, Nighthawk. In partic-
ular, we describe how we encode a value reuse policy
in a manner amenable to meta-heuristic search.

2. We compare Nighthawk to other systems described in
previous research, showing that it can achieve the same
coverage levels.

3. We describe the results of a case study carried out on
real-world units (the Java 1.5.0 Collection and Map
classes) to determine the effects of different option set-
tings on the basic algorithm.

We discuss related work in section 2. In section 3, we de-
scribe the results of an exploratory study that suggested that
a genetic-random approach was feasible and could find use-
ful parameter settings. In section 4, we describe the design
and use of Nighthawk. Section 5 contains our comparison to
previous work, and section 6 our case study; section 7 con-
tains a discussion of the threats to validity of the empirical
work in the paper.

2. RELATED WORK

2.1 Genetic Algorithms for Testing
Meta-heuristic search methods such as GAs have often

been applied to the problem of test suite generation. In
Rela’s review of 122 applications of meta-heuristic search in
software engineering [30], 44% of the applications related to
testing. Notable examples are Michael et al.’s evolutionary
approach for generating code-level test data [26], Tonella’s
approach to class testing [32] and Guo et al.’s GA approach
for generating UIO sequences for protocol testing [19].

GAs use a modified hill-climbing strategy; such strategies
do not perform well when the search space is mostly flat,
with steep jumps in score. Consider the problem of generat-
ing two input values x and y that will cover the true direction
of the decision “x==y”. If we cast the problem as a search
for the two values themselves, and the score as whether we
have found two equal values, the search space is shaped as
in the left-hand side of Figure 1: a flat plain of zero score
with a narrow ridge along the diagonal. Most approaches to
GA white-box test data generation address this problem by
proposing other measures that detect how close the target
decision is to being true.

Our approach is essentially to instead recast the problem
as a search for the best values of two variables lo and hi

that will be used as the lower and upper bound for random
generation of x and y, and the score as the probability of
generating two equal values. Seen in this way, the search
space landscape still contains a steep “cliff”, as seen in the
right-hand side of Figure 1, but the cliff is approached on
one side by a gentle slope. We further consider not only
numeric data, but data of any type.

2.2 Other Test Data Generation Approaches
Approaches to test data generation via symbolic execution

have existed as far back as [7]. Other source code analysis-
based approaches have used such methods as iterative re-
laxation of a set of constraints on input data [20] and gen-
eration of call sequences using goal-directed reasoning [24].
Some recent approaches use model checkers [33], sometimes
augmented with randomized search [34, 16, 31, 28]. Groce
et al. [18] have concluded that randomized testing is a good
first step, before model checking, in achieving high quality
software.

Our approach does not require source code or bytecode
analysis, instead depending only on the robust Java reflec-

x|y 1 2 3 4 5 lo|hi 1 2 3 4 5
1 1.0 .00 .00 .00 .00 1 1.0 .50 .33 .25 .20
2 .00 1.0 .00 .00 .00 2 .00 1.0 .50 .33 .25
3 .00 .00 1.0 .00 .00 3 .00 .00 1.0 .50 .33
4 .00 .00 .00 1.0 .00 4 .00 .00 .00 1.0 .50
5 .00 .00 .00 .00 1.0 5 .00 .00 .00 .00 1.0

Figure 1: Chance of selecting two identical integers x and y. (left) Search space as space of (x, y) pairs. (right)
Search space as space of lower and upper bounds for random generation of x and y.

tion mechanism. For instance, our code was initially written
with Java 1.4 in mind, but worked seamlessly on the Java
1.5 versions of the java.util classes, despite the fact that
the source code of many of the units had been heavily mod-
ified to introduce templates. However, model-checking ap-
proaches have other strengths, such as the ability to analyze
multithreaded code [21], further supporting the conclusion
that the two approaches are complementary.

2.3 Randomized Testing
As noted above, randomized testing has a long history,

but faces two main problems: the oracle problem and the
question of thoroughness.

There are two main approaches to the oracle problem.
The first is to use general-purpose, “high-pass” oracles that
pass many executions but check properties that should be
true of most software. For instance, Miller et al. [27] fail only
executions that crash or hang; Csallner and Smaragdakis
[11] judge a randomly-generated unit test case as failing if it
throws an exception; and Pacheco et al. [29] check general-
purpose contracts for units.

The second approach is to write unit-specific oracles in
order to check unit-specific properties [1]. These oracles, like
all formal unit specifications, are non-trivial to write; tools
such as Daikon for automatically deriving likely invariants
[15] could help here.

Previous studies also show that randomized testing is ef-
fective in forcing failures of the SUT. Here, our research
focus is not on measuring effectiveness, but rather on opti-
mizing commonly-used objective measures (i.e. code cover-
age) that can measure thoroughness even in the absence of
failures; for instance, when all bugs found have been elim-
inated. We also generalize the problem domain from the
heuristic to the meta-heuristic by adding the GA level.

3. EXPLORATORY STUDY
To find out whether there was any merit in the idea of a

genetic-random system, we conducted an exploratory exper-
iment. In this section, we describe the prototype software
we developed, the design of the experiment and its results.

3.1 Software Developed
Using code from RUTE-J (see above) and the open-source

genetic algorithm package JDEAL [10], we constructed a
prototype two-level genetic-random unit testing system that
took Java classes as its testing units. For each unit un-
der test (UUT) with n methods to call, the GA level con-
structed a chromosome with n + 2 integer genes: the num-
ber of method calls to make in each test case, the number
of test cases to generate, and the relative weights (calling

frequencies) of the n methods. All other randomized testing
parameters were hard-coded in the test wrappers.

The evaluation of the fitness of each chromosome c pro-
ceeded as follows. We got the random testing level to gener-
ate the number of test cases of the length specified in c,
using the method weights specified in c. We then mea-
sured the number of coverage points covered using Cober-
tura [8], which measures line coverage. If we had based the
fitness function only on coverage, however, then any chro-
mosome would have benefitted from having a larger number
of method calls and test cases, since every new method call
has the potential of covering more code. We therefore built
in a brake to prevent these values from getting unfeasibly
high. We calculated the fitness function as:

(number of coverage points covered) ∗ (coverage factor)
− (number of method calls performed)

We set the coverage factor to 1000, meaning that we were
willing to make 1000 more method calls (but not more) if
that meant covering one more coverage point.

3.2 Experiment Design
We chose as our subject programs three units taken from

the Java 1.4.2 edition of java.util: BitSet, HashMap and
TreeMap. These units were clearly in wide use, and TreeMap

had been used as the basis of earlier experiments [33]. For
each UUT, we wrote a test wrapper class containing methods
that called selected target methods of the UUT (16 meth-
ods for BitSet, 8 for HashMap and 9 for TreeMap). Each
wrapper contained a simple oracle for checking correctness.
We instrumented each UUT using Cobertura.

We ran the two-level algorithm 30 times on each of the
three test wrappers, and recorded the amount of time taken
and the parameters in the final chromosome. To test
whether the weights in the chromosomes were useful given
the length and number of method calls, for each final chro-
mosome c we created a variant chromosome c′ with the same
length and number of method calls but with all weights
equal. We then compared the coverage achieved by c and
c′ on 30 paired trials. Full results from the experiment are
available in [25].

3.3 Results
We performed two statistical tests to evaluate whether the

system was converging on a reasonable solution. First, we
ordered the average weights discovered for each method in
each class, and performed a t test with Bonferroni correction
between each pair of adjacent columns. We found that for
the HashMap and TreeMap units, the clear method (which
removes all data from the map) had a statistically signifi-
cantly lower weight than the other methods, indicating that
the algorithm was consistently converging on a solution in

which it had a lower weight. This is because much of the
code in these units can be executed only when there is a
large amount of data in the container objects. Since the
clear method clears out all the data, executing it infre-
quently ensured that the objects would get large enough.

We also found that for the TreeMap unit, the remove and
put methods had a statistically significantly higher weight
than the other methods. This is explainable by the large
amount of complex code in these methods and the private
methods that they call; it takes more calls to cover this
code than it does for the simpler code of the other methods.
Another reason is that sequences of put and remove were
needed to create data structures via which code in some of
the other methods was accessible.

The second statistical test we performed tested whether
the weights found by the GA were efficient. For this, we
used the 30 trials comparing the discovered chromosome c

and the equal-weight variant c′. We found that for all three
units, the equal-weight chromosome covered less code than
the original, to a statistically significant level (as measured
by a t test with α = 0.05). This can be interpreted as mean-
ing that the GA was correctly choosing a good combination
of parameters.

In the course of the experiment, we found a bug in the Java
1.4.2 version of BitSet: when a call to set() is performed on
a range of bits of length 0, the unit could return an incorrect
length. We found that a bug report for this bug had already
been submitted to Sun’s bug database. It has been corrected
in the Java 1.5.0 version of the library.

In summary, the experiment indicated that the two-level
algorithm was potentially useful, and was consistently con-
verging on similar solutions that were more optimal than
calling all methods equally often.

4. NIGHTHAWK: SYSTEM DESCRIP-
TION

The results of our exploratory study encouraged us to
expand the scope of the GA to include method parame-
ter ranges, value reuse policy and other randomized testing
parameters. The result was the Nighthawk system.

In this section, we first outline the lower, randomized-
testing, level of Nighthawk, and then describe the chro-
mosome that controls its operation. We then describe the
genetic-algorithm level and the end user interface. Finally,
we describe the use of automatically-generated test wrappers
for precondition checking, result evaluation and coverage en-
hancement.

4.1 Randomized Testing Level
Here we present a simplified description of the algorithm

that the lower, randomized-testing, level of Nighthawk uses
to construct and run a test case. The algorithm takes two
parameters: a set M of Java methods, and a GA chromo-
some c appropriate to M . The chromosome controls aspects
of the algorithm’s behaviour, such as the number of method
calls to be made, and will be described in more detail in the
next subsection.

We refer to M as the set of “target methods”. We define
the set IM of types of interest corresponding to M as the
union of the following sets of types1:

1In this paper, the word “type” refers to any primitive type,
interface, or abstract or concrete class.

Input: a set M of target methods; a chromosome c.
Output: a test case.
Steps:

1. For each element of each value pool of each primitive
type in IM , choose an initial value that is within the
bounds for that value pool.

2. For each element of each value pool of each other type
t in IM :

(a) If t has no initializers, then set the element to
null.

(b) Otherwise, choose an initializer method i of t,
call tryRunMethod(i, c), and place the result in
the destination element.

3. Initialize test case k to the empty test case.

4. Repeat n times, where n is the number of method calls
to perform:

(a) Choose a target method m ∈ CM .

(b) Run algorithm tryRunMethod(m, c), and add the
call description returned to k.

(c) If tryRunMethod returns a method call failure in-
dication, return k with a failure indication.

5. Return k with a success indication.

Figure 2: Algorithm constructRunTestCase.

• All types of receivers, parameters and return values of
methods in M .

• All primitive types that are the types of parameters to
constructors of other types of interest.

Each type t ∈ IM is associated with an array of value pools,
and each value pool for t contains an array of values of type
t. Each value pool for a range primitive type (a primitive
type other than boolean and void) has bounds on the values
that can appear in it. The number of value pools, number
of values in each value pool, and the range primitive type
bounds are specified by the chromosome c.

The algorithm first chooses initial values for primitive type
pools, and then moves on to non-primitive type pools. We
define a constructor method to be an initializer if it has no
parameters, or if all its parameters are of primitive types.
We define a constructor to be a reinitializer if it has no
parameters, or if all its parameters are of types in IM . We
define the set CM of callable methods to be the methods in
M plus the reinitializers of the types of IM . The callable
methods are the ones that Nighthawk calls directly.

A call description is an object representing one method
call that has been constructed and run. It consists of the
method name, an indication of whether the method call suc-
ceeded, failed or threw an exception, and one object descrip-
tion for each of the receiver, the parameters and the result
(if any). A test case is a sequence of call descriptions, to-
gether with an indication of whether the test case succeeded
or failed.

Nighthawk’s randomized testing algorithm is referred to
as constructRunTestCase, and is described in Figure 2. It

Input: a method m; a chromosome c.
Output: a call description.
Steps:

1. If m is non-static and not a constructor:

(a) Choose a type t ∈ I which is a subtype of the
receiver of m.

(b) Choose a value pool p for t.

(c) Choose one value recv from p to act as a receiver
for the method call.

2. For each argument position to m:

(a) Choose a type t ∈ I which is a subtype of the
argument type.

(b) Choose a value pool p for t.

(c) Choose one value v from p to act as the argument.

3. If the method is a constructor or is static, call it with
the chosen arguments. Otherwise, call it on recv with
the chosen arguments.

4. If the method call threw an AssertionError, return a
call description with a failure indication.

5. Otherwise, if the method call threw some other ex-
ception, return a call description with an exception
indication.

6. Otherwise, if the method return type is not void, and
the return value ret is non-null:

(a) Choose a type t ∈ I which is a supertype of the
type of the return value.

(b) Choose a value pool p for t.

(c) If t is not a primitive type, or if t is a primitive
type and ret does not violate the bounds on p,
then choose an element of p and replace it by ret.

(d) Return a call description with a success indica-
tion.

Figure 3: Algorithm tryRunMethod.

takes a set M of target methods and a chromosome c as
inputs. It begins by initializing value pools, and then con-
structs and runs a test case, and returns the test case. It
uses an auxiliary method called tryRunMethod, described in
Figure 3, which takes a method as input, calls the method
and returns a call description. In the algorithm descriptions,
the word “choose” is always used to mean specifically a ran-
dom choice which may partly depend on the chromosome
c.

tryRunMethod considers a method call to fail if and only if
it throws an AssertionError. It does not consider other ex-
ceptions to be failures, since they might be correct responses
to bad input parameters. A separate mechanism is used for
detecting precondition violations and checking correctness
of return values and exceptions; see Section 4.5.

For conciseness, the algorithm descriptions omit some de-
tails which we now fill in. These concern the treatment of
nulls, the treatment of String, and the treatment of Object.

The receiver of a method call cannot be null, and no pa-
rameter can be null unless tryRunMethod chooses it to be.
If tryRunMethod fails to find a non-null value when it is
looking for one, it reports failure of the attempt to call the
method. constructRunTestCase tolerates a certain number
of these attempt failures before terminating the test case
generation process.
java.lang.String is treated as if it is a primitive type,

the values in the value pools being initialized with “seed
strings”. Some default seed strings are supplied by the sys-
tem, and the user can supply more.

Formal parameters of type java.lang.Object stand for
some arbitrary object, but it is usually sufficient to use
a small number of specific types as actual parameters;
Nighthawk uses only int and String by default. A no-
table exception to this rule is the parameter to the equals()
method, which can be treated specially by test wrapper ob-
jects (see Section 4.5).

4.2 Chromosomes
Aspects of the test case execution algorithms are con-

trolled by the genetic algorithm chromosome given as an
argument. A chromosome is composed of a finite number
of genes. Each gene is a pair consisting of a name and an
integer, floating-point or boolean value.

Every Nighthawk chromosome contains a gene specifying
the number n of method calls that constructRunTestCase is
to run. In addition, a chromosome appropriate to a set M

of target methods contains the following genes:

• For each method in CM , the relative weight of the
method, i.e. the likelihood that it will be chosen at
step 4(a) of constructRunTestCase.

• For each type of interest in IM , the number of value
pools for that type.

• For each value pool, the number of values in the pool.

• For each value pool of a range primitive type, the upper
and lower bounds on values in the pool. Initial values
are drawn from this range with a uniform distribution.

• For each method in CM and every argument position,
the chance that null will be chosen as an argument.

• For each method in CM , the types of interest that will
be chosen from to find a receiver, and, for each of those
types, the value pools that will be chosen from.

• For each method in CM and every argument position,
the types of interest that will be chosen from to find
an argument, and, for each of those types, the value
pools that will be chosen from.

• For each method in CM , the types of interest that will
be chosen from to find an element that will be replaced
by the return value, and, for each of those types, the
value pools that will be chosen from.

The last three kinds of genes are expressed as bit vectors;
each bit stands for one of the types of interest that is a sub-
type of the declared type (resp. one of the value pools).
These bit vectors thus encode the value reuse policy ex-
pressed by the chromosome.

It is clear that different gene values in the chromosome
may cause dramatically different behaviour of the algorithm

on the methods. We illustrate this point with two concrete
examples.

Consider the “triangle” unit from [26]. If the chromosome
specifies that all three parameter values are to be taken from
a value pool of 65536 values in the range -32768 to 32767,
then the chance that the algorithm will ever choose two or
three identical values for the parameters (needed for the
“isosceles” and “equilateral” cases) is very low. If, on the
other hand, the value pool contains only 30 integers each
chosen from the range 2 to 5, then the chance rises dramat-
ically due to reuse of previously-used values. The amount
of additional coverage this would give would vary depending
on the UUT, but is probably nonzero.

Consider further a container class with put and remove

methods, each taking an integer key as its only parameter.
If the parameters to the two methods are taken from two dif-
ferent value pools of 30 values in the range 0 to 1000, there is
little chance that a key that has been put into the container
will be successfully removed. If, however, the parameters are
taken from a single value pool of 30 values in the range 0
to 1000, then the chance is very good that added values are
removed, again due to value reuse. A remove method for a
typical data structure executes different code for a successful
removal than it does for a failing one.

4.3 Genetic Algorithm Level
We take the space of possible chromosomes as a solution

space to search, and apply the GA approach to search it for
a good solution. GAs have been found to be superior to
purely random search in finding solutions to complex prob-
lems. Goldberg [17] argues that their power stems from be-
ing able to engage in “discovery and recombination of build-
ing blocks” for solutions in a solution space.

The parameter to Nighthawk’s GA is the set M of target
methods. The GA first derives an initial template chromo-
some appropriate to M , constructs an initial population of
size p as clones of this chromosome, and mutates the pop-
ulation. It then performs a loop, for the desired number g

of generations, of evaluating each chromosome’s fitness, re-
taining the fittest chromosomes, discarding the rest, cloning
the fit chromosomes, and mutating the genes of the clones
with probability m% using point mutations and crossover
(exchange of genes between chromosomes). The fitness func-
tion for a chromosome is calculated in a manner identical to
the exploratory study (Section 3).

It is recognized that the design of genetic algorithms is a
“black art” [23], and that very little is known about why GAs
work when they do work and why they do not work when
they do not. Nighthawk uses default settings of p = 20, g =
50, m = 20. These settings are different from those taken
as standard in GA literature [12], and are motivated by a
need to do as few chromosome evaluations as possible (the
primary cost driver of the system). The settings of other
variables, such as the retention percentage, are consistent
with the literature.

To enhance availability of the software, Nighthawk uses
the popular open-source coverage tool Cobertura [8] to mea-
sure coverage. Cobertura can measure only line coverage
(each coverage point corresponds to a source code line, and
is covered if any code on the line is executed) 2. However,
Nighthawk’s algorithm is not specific to this measure; in-

2Cobertura (v. 1.8) also reports what it calls “decision cov-
erage”, but this is coverage of lines containing decisions.

deed, our empirical studies (see below) show that Nighthawk
performs well when using other coverage measures.

4.4 Top-Level Application
The Nighthawk application takes several switches and a

set of class names as command-line parameters. The de-
fault behaviour is to consider the command-line class names
as a set of “target classes”. If, however, the “-deep” switch
is given to Nighthawk, the public declared methods of the
command-line classes are explored, and all non-primitive
types of parameters and return values of those methods are
added to the set of target classes. The set M of target meth-
ods is computed as all public declared methods of the target
classes. Intuitively, therefore, the -deep switch performs a
“deep target analysis” by getting Nighthawk to call methods
in the layer of classes surrounding the command-line classes.

Nighthawk runs the GA, monitoring the chromosomes and
retaining the most fit chromosome ever encountered. This
most fit chromosome is the final output of the program.

After finding the most fit chromosome, a test engineer
can perform the randomized testing that it specifies. To do
this, they run a separate program, RunChromosome, which
takes the chromosome description as input and runs test
cases based on it for a user-specified number of times. Ran-
domized unit testing generates new test cases with new data
every time it is run, so if Nighthawk finds a parameter set-
ting that achieves high coverage, a test engineer can auto-
matically generate a large number of distinct, useful test
cases with RunChromosome.

4.5 Test Wrappers
We provide a utility program that, given a class name,

generates the Java source file of a “test wrapper” class for
the class. Running Nighthawk on an unmodified test wrap-
per is the same as running it on the target class; however,
test wrappers can be customized for precondition checking,
result checking or coverage enhancement.

A test wrapper for class X is a class that contains one
private field of class X (the “wrapped object”), and one
public method with an identical declaration for each public
declared method of class X. Each wrapper method simply
passes the call on to the wrapped object.

To customize a test wrapper for precondition checking,
the user can insert a check in the wrapper method before
the target method call. If the precondition is violated, the
wrapper method can simply return. To customize a test
wrapper for test result checking, the user can insert any
result-checking code after the target method call; examples
include normal Java assertions and JML [5] contracts. We
provide switches to the test wrapper generation program
that cause the wrapper to check commonly-desired proper-
ties, such as that a method throws no NullPointerExcep-

tion unless one of its arguments is null. The switch --pleb

generates a wrapper that checks all the Java Exception and
Object contracts from Pacheco et al. [29].

To customize a test wrapper for coverage enhancement,
the user can insert extra methods that cause extra code to
be executed. We provide two switches for commonly-desired
enhancements. The switch --checkTypedEquals adds a
method to the test wrapper for class X that takes one argu-
ment of type X and passes it to the equals method of the
wrapped object. This is distinct from the normal wrapper
method that calls equals, which has an argument of type

Object and would therefore by default receive arguments
only of type int or String (see Section 4.1). For classes X
that implement their own equals method, the typed-equals
method is likely to execute more code.

Tailored serialization is accomplished in Java via
specially-named private methods that are inaccessible to
Nighthawk. The test wrapper generation program switch
--checkSerialization adds a method to the test wrapper
that writes the object to a byte array and reads it again
from the byte array. This causes Nighthawk to be able to
execute the code in the private serialization methods.

5. COMPARISON WITH PREVIOUS RE-
SULTS

We compared Nighthawk with two well-documented sys-
tems in the literature by running it on the same software
and measuring the results.

5.1 Pure GA Approach
To compare the results of our genetic-random approach

with those of the purely genetic approach of Michael et al.
[26], we adapted their published C code for the Triangle
program to Java, transforming each decision so that each
condition and decision direction corresponded to an exe-
cutable line of code measurable by Cobertura. We then ran
Nighthawk 10 separate times on the resulting class.

We found that Nighthawk reached 100% of feasible con-
dition/decision coverage on average after 8.5 generations, in
an average of 6.2 seconds of clock time 3. Michael et al. had
found that a purely random approach could not achieve even
50% condition/decision coverage. The discrepancy between
the results may be due to Nighthawk being able to find a
setting of the randomized testing parameters that is more
optimal than the one Michael et al. were using. Inspection
revealed that the chromosomes encoded value reuse policies
that guaranteed frequent selection of the same values.

5.2 Model-Checking and Feedback-Directed
Randomization

To compare our results with those of the model-checking
approach of Visser et al. [34] and the feedback-directed ran-
dom testing of Pacheco et al. [29], we downloaded the four
data structure units used in those studies. The units had
been hand-instrumented to record coverage of the deepest
basic blocks in the code.

We first wrote restricted test wrapper classes that called
only the methods called by the previous researchers. We ran
Nighthawk giving these test wrapper classes as command-
line classes, and observed the number of instrumented basic
blocks covered, and the number of lines covered as measured
by Cobertura.

Figure 4 shows the results of the comparison. We show the
block coverage ratio achieved by the best Java-Pathfinder-
based technique from Visser et al. (JPF), by Pacheco et al.’s
tool Randoop (RP), and by Nighthawk using the restricted
test wrappers. Nighthawk was able to achieve the same
coverage as the previous tools. The Time column shows the
clock time in seconds needed by Nighthawk to achieve its
greatest coverage. For BHeap and FibHeap, Nighthawk runs
faster than JPF, but for the other two units it runs slower

3All empirical studies in this paper were performed on a Sun
UltraSPARC-IIIi running SunOS 5.10 and Java 1.5.0 11.

Instr Blk Cov Time Line Cov
UUT JPF RP NH (sec) Restr Full

BinTree .78 .78 .78 .58 .84 1
BHeap .95 .95 .95 4.1 .88 .92

FibHeap 1 1 1 5.1 .74 .92
TreeMap .72 .72 .72 5.4 .76 .90

Figure 4: Comparison of results on the JPF subject
units.

Number of cond value combinations
UUT Total Reachable Covered

BinTree 34 28 28 (.82, 1.0)
BHeap 75 75 70 (.93, .93)

FibHeap 57 47 44 (.77, .94)
TreeMap 157 126 107 (.68, .85)

Figure 5: Multiple condition coverage of the subject
units.

than both JPF and Randoop (modulo the fact that our ex-
periments were run on a different machine architecture than
that of Pacheco et al). This is not surprising, since for cover-
age information Nighthawk relies on general-purpose Cober-
tura instrumentation, which slows down programs, rather
than the efficient, but application-specific, hand instrumen-
tation that the other methods used.

We then ran Nighthawk giving the target classes them-
selves as command-line classes (bypassing the test wrap-
pers), and observed the number of lines covered. The “Line
Cov” columns show the line coverage ratio achieved when
using the restricted wrappers and on the full target classes.
When using the full target classes, Nighthawk was able to
cover significantly more lines of code, including all the blocks
covered by the previous studies.

Visser et al. and Pacheco et al. also studied a form of
predicate coverage [3] whose implementation is linked to
the underlying Java Pathfinder code, and is difficult for
Nighthawk to access. For comparison, we therefore stud-
ied multiple condition coverage (MCC), a standard cover-
age metric which is, like predicate coverage, intermediate in
strength between decision/condition and path coverage. We
instrumented the source code so that every combination of
values of conditions in every decision caused a separate line
of code to be executed. We then ran Nighthawk on the test
wrappers, thus effectively causing it to optimize MCC rather
than just line coverage.

The results are in Figure 5. We list the total number of
valid condition value combinations in all the code, and the
number that were in decisions reachable by calling only the
methods called by the other research groups. We also list
the number of combinations covered by Nighthawk, both as
a raw total and as a fraction of the total combinations and
the reachable combinations. Nighthawk achieved between
68% and 93% of MCC, or between 85% and 100% when only
reachable condition combinations were considered. These
results are very good, since “code coverage of 70-80% is a
reasonable goal for system test of most projects with most
coverage metrics” [9].

In summary, the comparison suggests that Nighthawk was
achieving good coverage with respect to the results achieved

Source file SLOC PN EN PD ED
ArrayList 150 111 140 109 140 (.93)
EnumMap 239 7 9 10 7 (.03)
HashMap 360 238 265 305 347 (.96)
HashSet 46 24 40 26 44 (.96)
Hashtable 355 205 253 252 325 (.92)
IHashMap 392 156 196 283 333 (.85)
LHashMap 103 27 37 28 96 (.93)
LHashSet 9 6 6 7 9 (1.0)
LinkedList 227 156 173 196 225 (.99)
PQueue 203 98 123 140 155 (.76)
Properties 249 101 102 102 102 (.41)
Stack 17 17 17 17 17 (1.0)
TreeMap 562 392 415 510 526 (.94)
TreeSet 62 44 59 41 59 (.95)
Vector 200 183 184 187 195 (.98)
WHashMap 338 149 175 274 300 (.89)

Total 3512 1914 2194 2487 2880
Ratio .54 .62 .71 .82

Figure 6: Coverage achieved by configurations of
Nighthawk on the java.util Collection and Map
classes.

by previous researchers, even when strong coverage mea-
sures such as decision/condition and MCC were taken into
consideration.

6. CASE STUDY
In order to study the effects of different test wrapper gen-

eration and command-line switches to Nighthawk, we stud-
ied the Java 1.5.0 Collection and Map classes; these are the
16 concrete classes with public constructors in java.util

that inherit from the Collection or Map interface. The
source files total 12137 LOC, and Cobertura reports that
3512 of those LOC contain executable code. These units
are ideal subjects because they are heavily used and contain
complex code, including templates and inner classes.

For each unit, we generated test wrappers of two kinds:
plain test wrappers (P), and enriched wrappers (E) gener-
ated with the -checkTypedEquals and -checkSerializable

switches (see Section 4.5). We studied two different option
sets for Nighthawk: with no command-line switches (N),
and with the -deep switch (see Section 4.4) turned on (D).
For each 〈UUT, test wrapper, option set〉 triple, we ran
Nighthawk and saved the best chromosome it found. For
each triple, we then executed RunChromosome (see Section
4.4) specifying that it generate 10 test cases with the given
chromosome, and we measured the coverage achieved.

Figure 6 shows the results of this study. The column la-
belled SLOC shows the total number of source lines of code
reported by Cobertura (including inner classes) in the source
file associated with the class. Column PN shows the SLOC
covered by Nighthawk with the plain test wrappers and no
Nighthawk switches; columns EN, PD and ED show the
other combinations, and column ED also shows the cover-
age ratio with respect to total SLOC. The second last line
shows the totals for each column, and the last line shows the
coverage ratio attained.

With enriched test wrappers and deep target class analy-

Source file PN EN PD ED RC
ArrayList 75 91 29 48 15
EnumMap 3 9 6 5 8
HashMap 63 37 136 176 30
HashSet 25 29 27 39 22
Hashtable 8 110 110 157 25
IHashMap 31 41 59 134 34
LHashMap 1 5 4 129 25
LHashSet 1 4 6 24 16
LinkedList 32 61 41 53 17
PQueue 23 40 242 103 13
Properties 104 19 49 47 18
Stack 5 10 5 26 8
TreeMap 80 131 231 106 26
TreeSet 110 93 98 186 26
Vector 106 83 156 176 20
WHashMap 37 35 92 110 21

Total 704 798 1291 1519 324

Figure 7: Time in seconds taken by configurations
of Nighthawk to achieve highest coverage on the
java.util Collection and Map classes.

sis, Nighthawk performs well, achieving over 90% coverage
on 11 out of the 16 classes, and 82% coverage overall. Paired
t tests with Bonferroni correction (corrected α = .00833) on
each pair of columns in the table indicate that there are sta-
tistically significant differences between every pair except
the (EN, PD) pair.

Nighthawk performed poorly on the EnumMap class because
the main constructor to EnumMap expects an enumerated
type as one of the parameters. Nighthawk had no facility
for supplying such a type, and so only a few lines of error
code in constructors were executed. When we customized
the test wrapper class so that it used a fixed enumerated
type, Nighthawk covered 204 lines of code (coverage ratio
.85), raising the total coverage ratio for all classes to .88.

Table 7 shows the amount of time taken by Nighthawk on
the various configurations. In columns PN-ED, we report
the number of seconds of clock time taken for Nighthawk
to first achieve its best coverage. t tests showed that the
only pairs of columns that were different to a statistically
significant level were (PN, ED) and (EN, ED). This suggests
that generating the enriched wrappers allowed Nighthawk to
cover significantly more code without running significantly
longer; the deep target class analysis also caused Nighthawk
to cover significantly more code, but took significantly longer
(though still less than 100 seconds per unit on average).

In column RC of Table 7, we report the number of CPU
seconds needed for the RunChromosome program to create
and run the 10 new test cases with the parameters chosen by
Nighthawk in the ED configuration. This time includes JVM
startup time. The results show that with the parameters
chosen by Nighthawk, RunChromosome can automatically
generate many new test cases that achieve high coverage, in
an average of approximately 2 seconds per test case.

7. THREATS TO VALIDITY
Here we discuss the threats to validity of the empirical

results in this paper.

The representativeness of the units under test is the ma-
jor threat to external validity. We studied Java collection
classes because these are complex, heavily-used units that
have high quality requirements. However, other units might
have characteristics that cause Nighthawk to perform poorly.
Randomized unit testing schemes in general require many
test cases to be executed, so they perform poorly on meth-
ods that do a significant amount of disk I/O or thread gen-
eration.

Nighthawk uses Cobertura, which measures line coverage,
a weak coverage measure. The results that we obtained
may not extend to stronger coverage measures. However,
the Nighthawk algorithm does not perform special checks
particular to line coverage. The comparison studies suggest
that it still performs well when decision/condition coverage
and MCC are simulated. The question of whether code cov-
erage measures are a good indication of the thoroughness
of testing is still, however, an area of active debate in the
software testing community.

Time measurement is a threat to construct validity. We
measured time using Java’s systemTimeInMillis, which
gives total wall clock time rather than CPU time. This may
give run time numbers that do not reflect the actual cost to
the user of the testing.

8. CONCLUSIONS AND FUTURE WORK
Randomized unit testing is a promising technology that

has been shown to be effective, but whose thoroughness de-
pends on the settings of test algorithm parameters. In this
paper, we have described Nighthawk, a system in which an
upper-level genetic algorithm automatically derives good pa-
rameter values for a lower-level randomized unit test algo-
rithm. We have shown that Nighthawk is able to achieve
high coverage of complex Java units. The code is available
by writing to the first author.

Future work includes the integration into Nighthawk of
useful facilities from past systems, such as failure-preserving
or coverage-preserving test case minimization, and further
experiments on the effect of program options on coverage
and efficiency.

Finally, we comment that once a large community starts
comparatively evaluating some technique, then evaluation
methods for different methods become just as important as
the generation of new methods. To place this comment in an
historical perspective, we note that evaluation bias is an ac-
tive research area in the field of data mining [4, 13]. Much of
our future work should hence focus on a meta-level analysis
of the advantages and disadvantages of different assessment
criteria. Currently, there are no clear conventions on how
this type of work should be assessed. For example:

• While the predicate coverage proposed by Visser et al.
is an interesting assessment criteria, there is no consen-
sus in the literature on the connection of this criteria
to other measures.

• Static code analysis can direct the generation of the
test cases. Our method, on the other hand, generates
test cases at random, so it is possible that we cover
some code more than is necessary, and that parts of our
value pools are useless. Our view is that this is not a
major issue since our runtimes, on real-world systems,
are quite impressive. Nevertheless, there needs to be
more discussion on how to assess test suite generation;

i.e. runtimes versus superfluous tests versus any other
criteria.

9. ACKNOWLEDGMENTS
Thanks to Willem Visser for making the source code of the

Java Pathfinder subject units available, and to the JDEAL
development team for their tool package. Thanks also for in-
teresting comments and discussions to Rob Hierons, Charles
Ling, Bob Mercer and Andy Podgurski. This research is sup-
ported by the first author’s grant from the Natural Sciences
and Research Council of Canada (NSERC).

10. REFERENCES
[1] J. H. Andrews, S. Haldar, Y. Lei, and C. H. F. Li.

Tool support for randomized unit testing. In
Proceedings of the First International Workshop on
Randomized Testing (RT’06), pages 36–45, Portland,
Maine, July 2006.

[2] S. Antoy and R. G. Hamlet. Automatically checking
an implementation against its formal specification.
IEEE Transactions on Software Engineering,
26(1):55–69, January 2000.

[3] T. Ball. A theory of predicate-complete test coverage
and generation. In Third International Symposium on
Formal Methods for Components and Objects (FMCO
2004), pages 1–22, Leiden, The Netherlands,
November 2004.

[4] R. R. Bouckaert. Choosing between two learning
algorithms based on calibrated tests. In Proceedings of
the Twentieth International Conference on Machine
Learning (ICML 2003), pages 51–58, Washington, DC,
USA, August 2003.

[5] L. Burdy, Y. Cheon, D. R. Cok, M. D. Ernst, J. R.
Kiniry, and G. T. Leavens. An overview of JML tools
and applications. International Journal on Software
Tools for Technology Transfer, 7(3):212–232, June
2005.

[6] K. Claessen and J. Hughes. QuickCheck: A lightweight
tool for random testing of Haskell programs. In
Proceedings of the Fifth ACM SIGPLAN International
Conference on Functional Programming (ICFP ’00),
pages 268–279, Montreal, Canada, September 2000.

[7] L. A. Clarke. A system to generate test data and
symbolically execute programs. IEEE Transactions on
Software Engineering, SE-2(3):215–222, September
1976.

[8] Cobertura Development Team. Cobertura web site.
cobertura.sourceforge.net, accessed February 2007.

[9] S. Cornett. Minimum acceptable code coverage.
http://www.bullseye.com/minimum.html, 2006.

[10] J. Costa, P. Silva, and N. Lopes. JDEAL Java
Distributed Evolutionary Algorithms Library version
1.0: Getting started. Technical report, LaSEEB
Instituto Superior Técnico, Universidade Técnica de
Lisboa, Portugal, 2005.

[11] C. Csallner and Y. Smaragdakis. JCrasher: an
automatic robustness tester for Java. Software
Practice and Experience, 34(11):1025–1050, 2004.

[12] K. A. DeJong and W. M. Spears. An analysis of the
interacting roles of population size and crossover in
genetic algorithms. In First Workshop on Parallel

Problem Solving from Nature, pages 38–47. Springer,
1990.

[13] J. Demsar. Statistical comparisons of classifiers over
multiple data sets. Journal of Machine Learning
Research, 7:1–30, 2006.

[14] R.-K. Doong and P. G. Frankl. The ASTOOT
approach to testing object-oriented programs. ACM
Transactions on Software Engineering and
Methodology, 3(2):101–130, April 1994.

[15] M. D. Ernst, J. Cockrell, W. G. Griswold, and
D. Notkin. Dynamically discovering likely program
invariants to support program evolution. IEEE
Transactions on Software Engineering, 27(2):99–123,
February 2001.

[16] P. Godefroid, N. Klarlund, and K. Sen. DART:
Directed automated random testing. In Proceedings of
the ACM SIGPLAN 2005 Conference on Programming
Language Design and Implementation (PLDI), pages
213–223, Chicago, June 2005.

[17] D. E. Goldberg. Genetic Algorithm in Search,
Optimization, and Machine Learning. Addison-Wesley,
1989.

[18] A. Groce, G. J. Holzmann, and R. Joshi. Randomized
differential testing as a prelude to formal verification.
In Proceedings of the 29th International Conference on
Software Engineering (ICSE 2007), pages 621–631,
Minneapolis, MN, May 2007.

[19] Q. Guo, R. M. Hierons, M. Harman, and
K. Derderian. Computing unique input/output
sequences using genetic algorithms. In 3rd
International Workshop on Formal Approaches to
Testing of Software (FATES 2003), volume 2931 of
LNCS, pages 164–177. Springer, 2004.

[20] N. Gupta, A. P. Mathur, and M. L. Soffa. Automated
test data generation using an iterative relaxation
method. In Sixth International Symposium on the
Foundations of Software Engineering (FSE 98), pages
224–232, November 1998.

[21] K. Havelund and T. Pressburger. Model checking Java
programs using Java PathFinder. International
Journal on Software Tools for Technology Transfer,
2(4):366–381, 2000.

[22] W. C. Hetzel, editor. Program Test Methods.
Automatic Computation. Prentice-Hall, Englewood
Cliffs, N.J., 1973.

[23] M. Kelly. Beyond the black art. EvoWeb News and
Features, July 2001. evonet.lri.fr/evoweb/.

[24] W. K. Leow, S. C. Khoo, and Y. Sun. Automated
generation of test programs from closed specifications
of classes and test cases. In Proceedings of the 26th
International Conference on Software Engineering
(ICSE 2004), pages 96–105, Edinburgh, UK, May
2004.

[25] F. C. H. Li. Applications of genetic algorithms to
randomized unit testing. Master’s thesis, Department
of Computer Science, University of Western Ontario,
December 2006.

[26] C. C. Michael, G. McGraw, and M. A. Schatz.
Generating software test data by evolution. IEEE
Transactions on Software Engineering, 27(12),
December 2001.

[27] B. P. Miller, L. Fredriksen, and B. So. An empirical

study of the reliability of UNIX utilities. Commun.
ACM, 33(12):32–44, December 1990.

[28] D. Owen and T. Menzies. Lurch: a lightweight
alternative to model checking. In Proceedings of the
Fifteenth International Conference on Software
Engineering and Knowledge Engineering
(SEKE’2003), pages 158–165, San Francisco, July
2003.

[29] C. Pacheco, S. K. Lahiri, M. D. Ernst, and T. Ball.
Feedback-directed random test generation. In
Proceedings of the 29th International Conference on
Software Engineering (ICSE 2007), pages 75–84,
Minneapolis, MN, May 2007.

[30] L. Rela. Evolutionary computing in search-based
software engineering. Master’s thesis, Lappeenranta
University of Technology, 2004.

[31] K. Sen, D. Marinov, and G. Agha. CUTE: a concolic
unit testing engine for C. In Proceedings of the 13th
ACM SIGSOFT International Symposium on
Foundations of Software Engineering (ESEC/FSE),
pages 263–272, Lisbon, September 2005.

[32] P. Tonella. Evolutionary testing of classes. In
Proceedings of the ACM/SIGSOFT International
Symposium on Software Testing and Analysis (ISSTA
2004), pages 119–128, Boston, Massachusetts, USA,
July 2004.

[33] W. Visser, C. S. Păsăreanu, and S. Khurshid. Test
input generation with Java PathFinder. In Proceedings
of the ACM/SIGSOFT International Symposium on
Software Testing and Analysis (ISSTA 2004), pages
97–107, Boston, MA, July 2004.

[34] W. Visser, C. S. Păsăreanu, and R. Pelánek. Test
input generation for Java containers using state
matching. In Proceedings of the International
Symposium on Software Testing and Analysis (ISSTA
2006), pages 37–48, Portland, Maine, July 2006.

