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Abstract— In a recent May 2007 IEEE TSE article, Kitchenham et.al.
explored effort estimation and found contradictory evidence about the
value of cross- vs within-company data. Those contradictory results may
have been the result of effort estimation features, some of which are
subjective in nature.

Static code features are different than effort estimation features. They
can be generated in an automatic, rapid, and uniform manner across
multiple projects. Therefore, in theory, the conclusions reached from
such features may be more uniform. This paper tests that theory by
searching for uniform conclusions using cross- or within-company static
code features. Whereas Kitchenham et.al. explored effort estimation, this
paper explores defect prediction.

Cross-company static code features will be found to generate higher
false alarm rates than within-company data. Hence, cross-company data
is best used for mission critical software where (a) the extra costs
associated with high false alarm rates is compensated by (b) an associated
increase in the probability of predicting fault modules. For other classes
of software, false alarm rates can be decreased using a very small amount
of local data (often, just 100 modules). In our experiments, the use
of within-company data halved the false alarm rate while decreasing
prediction rates by only ≈ 10%. Hence, for non-mission-critical software,
we strongly recommend using within-company data for defect prediction.

I. INTRODUCTION

In the age of open source development, web-accessible XML data,
mash-ups, and reusable libraries of SE data, it is quite possible that
organizations can access more data on software engineering outside
their company than within. It is hence tempting to use such cross-
company data since, as Kitchenham et.al. [1] observe:
• The time required to collect enough data on past projects from

within a company may be prohibitive.
• Collecting within-company data may take so long that technolo-

gies change and older projects do not represent current practice.
In the case of software effort estimation the value of cross-company

data is an open question. Mendes et.al. [2] found within-company
data performed much better than cross-company data for predicting
estimation effort of web-based projects. They only recommend using
cross-company data in the special case when that “data is obtained
using rigorous quality control procedures”. A similar conclusion
was reached by Abrahansson et.al. who discussed learning effort
predictors in the context of an agile development process [3]. They
strongly advocate the use of WC-data.

Other studies are not so positive. MacDonnel & Shepperd tried
to find trends in a set of papers relating to project management and
effort estimation [4]. However, the papers studied by MacDonnel &
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(# modules) .
data language examples features %defective
pc5 C++ 17,186 38 3.0
mc1 C++ 9,466 38 0.71
pc2 C++ 5,589 36 0.41
pc3 C++ 1,563 37 10.23
pc4 C 1,458 37 12.2
pc1 C++ 1,109 21 6.94
kc1 C++ 845 21 15.45
kc2 C++ 522 21 20.49
cm1 C++ 498 21 9.83
kc3 JAVA 458 39 9.38
mw1 C++ 403 37 7.69
mc2 C++ 61 39 32.29

39,158

Fig. 1. Twelve tables of data, sorted in order of number of examples. For
details on this data, see the appendix.

Shepperd used a wide range of data sets so these authors found it
hard to offer a definitive combined conclusion. In other work, after
a review of numerous case studies, Kitchenham et.al. [1] concluded
that the value of CC vs WC data for effort estimation is unclear:

. . . some organizations would benefit from using models
derived from cross-company benchmarking databases but
others would not. [1].

Effort estimation requires the collection of project data, some of
which has ambiguous definitions. For example, one of the features
of the COCOMO-family [5] of effort predictors is ”applications
experience” (aexp). According to one on-line source1, this feature is
defined as follows: “the project team’s equivalent level of experience
with this type of application”. No guidance is offered regarding how
to characterize “this type of application”. Hence, there is some degree
of ambiguity in this definition. We conjecture that the ambiguity of
the effort estimation features is one reason for the variance in the
results reported by MacDonnel & Shepperd and Kitchenham et.al.

Static code features, on the other hand, are not so ambiguous.
Simple toolkits can be used to collect these features in a rapid,
automatic, and uniform manner across multiple projects. Therefore,
in theory, conclusions reached from these features should be less
ambiguous than those reached from effort estimation features.

To test this hypothesis, in this paper, we seek conclusions using
cross- vs within-company data from static code features taken from
the 12 projects of Figure 1. Our hypothesis was confirmed. The
relative merits of CC-vs-WC is clear and unambiguous, as revealed
by two experiments. The first experiment concerns cross-company
data and shows that cross-company data increases the probability
of detecting a module (pd) dramatically. However, it does so at the
cost of increasing the probability of false alarms (pf ). When such
large pfs are unacceptable, companies must take the time to collect
within-company data.

The second experiment explores how little within-company data
is required to learn useful predictors. We will show that, often, the
predictors learned from a mere one hundred examples perform as
well as predictors learned from many more examples. Hence, there
are two reasons not to use cross-company data for learning defect
predictors:
• Predictors tuned to the particulars of one company can be

learned using very little data, collected in a very small amount
of time;

• Using within-company data avoids the problem of high false
alarm rates.

The rest of this paper discusses the data of Figure 1 and reviews
the design and results of our two experiments.

1http://sunset.usc.edu/research/COCOMOII/expert_
cocomo/drivers.html
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Note that an important aspect of this work is its reproducibility. All
the data used in this study is freely available, on-line2. Reproducibility
is an important methodological principle in other disciplines since
it allows a community to confirm, refute, or even improve prior
results. In our view, in the field of software engineering, there are
all too few examples of reproduced and extended results. We would
strongly encourage software engineering researchers to share data,
define challenges, and to take the time to rework the results of others.

II. BACKGROUND

The Figure 1 data comes from 12 NASA systems. These systems
were developed in different geographical locations across North
America. Within a system, the sub-systems shared some common
code base but did not pass personnel or code between sub-systems.

The external validity of generalizing from NASA examples has
been discussed elsewhere [6]. In summary, NASA uses contractors
who are contractually obliged (ISO-9O01) to demonstrate their un-
derstanding and usage of current industrial best practices. These con-
tractors service many other industries; for example, Rockwell-Collins
builds systems for many government and commercial organizations.
For these reasons, other noted researchers such as Basili, Zelkowitz,
et al. [7] have argued that conclusions from NASA data are relevant
to the general software engineering industry.

At first glance, this data seems to come from one company
(NASA). However, that “company” is really an umbrella organization
used to co-ordinate and fund a large and diverse set of organizations.
All the Figure 1 were built by different groups, often at different
geographical locations, usually for different tasks. That is, this data
satisfies Kitchenham et.al.’s definition of “cross-company” data.

Previously [6], we have explored the drawbacks and advantages of
learning module defect predictors from static code features. To learn
such predictors, tables of examples are formed (like those in Figure 1)
where one column has a boolean value for “defects detected” and
the other columns describe static code features such as lines of code,
number of unique symbols, or max. number of possible execution
pathways. Each row in the table holds data from one “module”;
i.e. the smallest unit of functionality. Depending on the language,
modules may be called “functions”, “methods” or “procedures”.

The data mining task is to find combinations of code features that
predict for the value in the defects column. The results of such data
mining can be baselined against known industrial averages:
• Raffo found that industrial reviews find pd = TR(35, 50, 65)%3

of a systems errors’ (for full Fagan inspections [8]) to
pd = TR(13, 21, 30)% for less-structured inspections.

• Similar conclusions were made at a panel at IEEE Metrics
2002. That panel declined to endorse claims by Fagan [9] and
Schull [10] regarding the efficacy of their inspection or directed
inspection methods. Rather, it concluded that manual software
reviews can find ≈60% of defects [11];

• Using NASA data, our new defect predictors [6] have a proba-
bility of detection (pd) and probability of false alarm (pf ) of

mean(pd, pf) = (71%, 25%)

It is difficult to compare these new results with those reported by
Raffo or those reported at the 2002 IEEE Metrics since they were
collected by a variety of different methods. The least we can say
is that automatically generated defect predictors do not appear to
perform worse than industrial averages and might even perform
somewhat better. Also, while the manual methods require manual

2http://promisedata.org/repository
3TR(a, b, c) is a triangular distribution with min/mode/max of a, b, c.

effort, our defect predictors can be automatically and rapidly learned,
then quickly and cheaply applied to very large libraries of code.

In any case, according to the terminology of Kitchenham et.al.
our prior work was a within-company (WC) study: the new defect
predictors were learned on 90% of the rows in one table (selected
at random) then tested on the remaining rows in that table. The rest
of this paper extends our methodology to the study of the relative
merits of within-vs cross-company data for defect prediction.

III. EXPERIMENT #1: WC-VS-CC

A. Design

Our first WC-vs-CC experiments repeated the following procedure
for all 12 example tables of Figure 1. For each table, test sets were
built from 10% of the rows, selected at random. Defect predictors
were then learned from:
• Treatment 1 (CC): all rows from the other 11 tables.
• Treatment 2 (WC): just the other 90% rows of this table;

Most of the Figure 1 tables comes from systems written in “C/C++”
but at least of one of the system was written in JAVA. For cross-
company data, an industrial practitioner may not have access to
detailed meta-knowledge (e.g. whether it was developed in “C” or
JAVA). They may only be aware that data, from an unknown source,
is available for download from a certain url. To replicate that scenario,
we will make no use of our meta-knowledge about Figure 1. As
we shall see, a clear stable effect will occur across all the tables,
regardless of (say) the implementation language.

In order to control for order effects (where the learned theory is
unduly affected by the order of the examples) our procedure was
repeated 10 times, randomizing the order of the rows in the table
each time. In all, we ran 1200 experiments to compare WC-vs-CC:

(10*10% test sets) ∗ (10 randomized orderings) ∗ (12 tables)

All the numeric distributions in the Figure 1 data are exponential. A
“log-filter” replaces all numerics N with log(N). This spreads out ex-
ponential curves more evenly across the space from the minimum to
maximum values (to avoid numerical errors with ln(0), all numbers
under 0.000001 are replaced with ln(0.000001)). This “spreading”
can significantly improve the effectiveness of data mining [6].

In prior work we have explored a range of data mining methods for
defect prediction and found that classifiers based on Bayes theorem
work best for the Figure 1 data [6]. This theorem offers a relationship
between fragments of evidence Ei, a prior probability for a class
P (H), and a posteriori probability P (H|E):

P (H|E) = P (H)/P (E)
∏

i

P (Ei|H)

When building defect predictors, the posterior probability of each
class (“defective” or “defect-free”) is calculated, given the features
extracted from a module. The module is assigned to the possibility
with the highest probability. For numeric features, a feature’s mean
µ and standard deviation σ is used in a Gaussian probability func-
tion [12]:

f(x) = 1/(
√

2πσ)e
− (x−µ)2

2σ2

Data mining effectiveness was measured using pd, pf and balance.
If {A, B, C, D} are the true negatives, false negatives, false positives,
and true positives (respectively) found by a defect predictor, then:

pd = recall = D/(B + D) (1)
pf = C/(A + C) (2)

bal = balance = 1−

√
(0− pf)2 + (1− pd)2

√
2

(3)
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All these values range zero to one. Better and larger balances fall
closer to the desired zone of no false alarms (pf = 0) and 100%
detection (pd = 1).

Other measures such as accuracy and precision were not used
since, as shown in Figure 1, the percent of defective examples in our
tables was usually very small (median value around 8%). Accuracy
and precision are poor indicators of performance for data were the
target class is so rare (for more on this issue, see [6], [13]).

The WC and CC results were visualized using quartile charts.
To generate these charts, the performance deltas for some treatment
are sorted to isolate the median and the lower and upper quartile of
numbers. For example:

{
q1︷ ︸︸ ︷

4, 7, 15, 20, 31,

median︷︸︸︷
40 , 52, 64,

q4︷ ︸︸ ︷
70, 81, 90}

In our quartile charts, the upper and lower quartiles are marked
with black lines; the median is marked with a black dot; and vertical
bars are added to mark the 50% percentile value. The above numbers
would therefore be drawn as follows:

0% u 100%

The Mann-Whitney U test [14] was used to test for statistical
difference between treatments. This non-parametric test replaces
(e.g.) pd values with their rank inside the population of all sorted pd
values. Such non-parametric tests are recommended in data mining
since many of the performance distributions are non-Gaussian [15].

We report one deviation from our prior procedure. The tables of
data come from different sources and, hence, have different features.
For this study, all the tables were pruned such that they only contained
features that appear in all the twelve tables (see appendix).

B. Results from Experiment #1

Figure 2 shows the {pd, pf} quartile charts for CC vs WC data.
The trend is very clear: CC data dramatically increases both the
probability of detection and the probability of false alarms. The pd
results are particularly striking. For cross-company data:
• 25% of the pd values are at 100%.
• 50% of the pd values are above 90%
• 75% of the pd values are at or above 80%;
• And all the pd values are at or over 50%.

By way of comparison, recall from the above that than our previous
result had a average pd of 71% [6].

To the best of our knowledge, Figure 2 are the largest pd values
ever reported from this data. However, these very high pd values
come at some considerable cost. Note in Figure 2 that the median
false alarm rate has changed from 26% (with WC) to 52% (with CC)
and the maximum pf rate now reaches 100%.

We explain these increases in pd, pf with the following specula-
tion. Using a large training set (e.g. eleven of the tables in Figure 1)
informs not only all the causes of errors, but also of numerous
irrelevancies (e.g. applying statistics gathered from JAVA programs
to “C” programs). Hence, large training sets increase the probability
of detection (since there are more known sources of errors) as well
as the probability of false alarms (since there are more extraneous
factors introduced to the analysis).

C. Sanity Checks on Experiment #1

This section explores threats to the external validity of the Exper-
iment#1 conclusions. It can be skipped at first reading of this paper.

Once a general result is defined (e.g. CC dramatically increases
both pf and pd), it is good practice to check for specific exceptions

treatment min Q1 median Q3 max

pd CC 50 80 91 100 100 u
WC 17 67 80 88 100 u

pf CC 4 26 52 73 100 u
WC 0 17 26 33 73 u

Fig. 2. Experiment #1 results. Numeric results on left; quartile charts on right.
“Q1” and “Q3” denote the 25% and 75% percentile points (respectively). The
upper quartile of the first row is not visible since it runs from 100% to 100%;
i.e. it has zero length.

pd pf
group WC → CC WC → CC tables |tables|

a increased increased CM1 KC1 KC2
MC2 MW1 PC1
PC3 PC4

8

b same same KC3 1
c same increased MC1 PC2 2
d decreased decreased PC5 1

Fig. 3. U test results (95% confidence): moving from WC to CC

to that pattern. Figure 3 shows a summary of results when U tests
were applied to test results from each of the 12 tables, in isolation:
• Usually ( 8

12
), the general pattern still holds (see group a).

• In one case (see group b), there was no difference in the results
of the different treatments.

• In another case, two tables of data (see group c) saw no change
to pd but the false alarm grew worse.

• In only one case was there a clear contradiction to the majority
case. In group d, containing pc5, using cross-company data
decreased pf at the cost of also decreasing pd.

Overall, the general result holds in the majority of cases and is only
clearly contradicted in the pc5 table.

Pc5’s anomalous behavior prompted the following investigation.
Observe in Figure 1 that the two largest data sets (pc5 and mc1)
contain more modules than the remaining 10 tables of data. Therefore,
it seemed prudent to repeat our experiment with and without these
two data sets. Figure 4 repeats the cross-company parts of experiment
#1 without pc1, then without pc1 and mc1. Note how that the general
pattern reported above (of large pd and pf values) is not altered. In
fact, Figure 4 changes very little from Figure 2. It turns out that since
these larger files have the lowest defect rates, they tend to introduce
far more non-defective modules than defective modules. When we
remove the largest file (which contains nearly half of all modules),
we reduce this bias and increase the median pd (from 91% in Figure 2
to 97% in Figure 4). If we further remove the next largest file (mc1),
then pd does not change much. However, the first pf quartile jumps
from 29% to 45% since now we have removed a very large portion
of non-defective samples so the model is more frequently saying
“defective”.

In summary, pc5 has enough unusual features to let us safely
discount its anomalous results in Figure 3.

D. Discussion of Experiment #1

When practitioners use defect predictors with high false alarm
rates, they must allocate a large portion of their debugging budget to
the unfruitful exploration of erroneous alarms. Hence:
• For most software applications, very high pf rates like the CC

results of Figure 2 make the predictors impractical to use.
• Therefore, we can only recommend cross-company learning for

mission critical software where the extra costs associated with
high false alarm rates are compensated by the associated increase
in software assurance.
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Without largest data set (pc5)
treatment min Q1 median Q3 max

pd CC 33 83 97 100 100 u
pf CC 14 29 54 73 98 u

Without twp largest data set (pc5 + mc1)
treatment min Q1 median Q3 max

pd CC 33 83 97 100 100 u
pf CC 12 45 55 76 98 u

Fig. 4. Variants on the experiment #1 results.

When budgetary considerations restrict the exploration of numerous
false alarms, projects seek predictors with lower pf values and
adequate pd values. Our next experiment addresses this concern.

IV. EXPERIMENT #2: INCREMENTAL WC

A. Design

A curious aspect of the above results is that defect predictors were
learned using only a handful of defective modules. For example,
consider a 90%/10% train/test split on pc1 with 1,109 modules, only
6.94% of which are defective. On average, the test set will only
contain 1109 ∗ 0.9 ∗ 6.94/100 = 69 defective modules. Despite this,
pc1 yields an adequate median {pd, pf} results of {88, 34.5}%.

Experiment #2 was therefore designed to check how little data is
required to learn defect predictors. Experiment #2 was essentially
the same as the last experiment, but without treatment #1 (the cross-
company study). Instead, experiment #2 took the 12 example tables
of Figure 1 and learned predictors using:
• Treatment 3 (reduced WC): a randomly selected subset of the

90% rows of this table;
Specially, after randomizing the order of the rows, training sets were
built using just the first 100,200,300,. . . rows in the tables. After
training, the learned theory was applied to 100 rows not used in
training (selected at random).

Experiment #1 only used the features found in all tables of data. For
this experiment, we imposed no such restrictions and used whatever
features were available in each data set.

B. Results from Experiment #2

Recall that Equation 3 defined “balance” to be a combination of
{pd, pf} that decreases if pd decreases or pf increases. As shown in
Figure 5, there was very little change in balanced performance after
learning from 100,200,300,... examples. Indeed, there is some evi-
dence that learning from larger training sets had detrimental effects:
the more training data, the larger the variance in the performance
of the learned predictor. Observe how, in pc2, as the training set
size increases (moving right along the x-axis) the dots showing the
on balance performance start spreading out. A similar, but smaller,
spread effect can be see in kc2 and mc1.

The Mann-Whitney U test was applied to check the visual trends
seen in Figure 5. For each table, all results from training sets of
size 100,200,300. . . were compared to all other results from the same
table. The issue was “how much data is enough?” i.e. what is the
minimum training set size that never lost to other training set of a
larger size. Usually, that min value was quite small:
• In seven tables {cm1, kc2, kc3, mw1, pc3, pc4}, min = 100;
• In {kc1, pc1}, min = {200, 300} instances, respectively.
In other tables of data, min was much larger. In {pc2, mc1, pc5}

the min values were found at {4900, 8300, 11000}, respectively.
However, much smaller training set sizes performed nearly as well
as these larger training sets:
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Fig. 6. Y-axis shows plateau point after learning from data sets that have
up to X examples (from [17]). The top plot shows results from using Naive
Bayes (nbk) or a decision tree learner (j48) [18] to predict for discrete classes.
Bottom plot shows results from using linear regression (lsr) or model trees
(m5) [19] to learn predictors for continuous classes. In this study, data sets
were drawn from the UC Irvine data repository [20].

• In pc5, predictors learned from 300 examples only lost to other
sizes twice in 169 trials;

• In mc1, predictors learned from 400 examples only lost to other
sizes once out of 92 trials);

• In pc2, predictors learned from 800 examples only lost to other
size twice out of 53 trials.

We explain the experiment #2 results as follows. These experiments
used simplistic static code features such as lines of code, number
of unique symbols in the module, etc. Such simplistic static code
features are hardly a complete characterization of the internals of
a function. Fenton offers an insightful example where the same
functionality is achieved using different programming language con-
structs resulting in different static measurements for that module [16].
We would characterize such static code features as having limited
information content. Limited content is soon exhausted by repeated
sampling. Hence, such simple features reveal all they can reveal after
a small sample

C. Sanity Checks on Experiment #2

This section checks for precedents on the Experiment #2 results
and can be skipped at first reading of this paper.

There is also some evidence that the results of Experiment 2 (that
performance improvements stop after a few hundred examples) has
been seen previously in the data mining literature (caveat: to the
best of our knowledge, this is first report of this effect in the defect
prediction literature):

• In their discussion on how to best handle numeric features, Lan-
gley and John offers plots of the accuracy of Naive Bayes clas-
sifiers after learning on 10,20,40,..200 examples. In those plots,
there is little change in performance after 100 instances [21].

• Orrego [17] applied four data miners (including Naive Bayes) to
20 data sets to find the plateau point: i.e. the point after which
there was little net change in the performance of the data miner.
To find the plateau point, Oreggo used t-tests to compare the
results of learning from Y or Y + ∆ examples. If, in a 10-way
cross-validation, there was no statistical difference between Y
and Y +∆, the plateau point was set to Y . As shown in Figure 6,
many of those plateaus where found at Y ≤ 100 and most were
found at Y ≤ 200. Note that these plateau sizes are consistent
with the results of Experiment 2.
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Fig. 5. Results from experiment #2. Training set size grows in units of 100 examples, moving left to right over the x-axis. The MC2 results only appear at
the maximum x-value since MC2 has less than 200 examples.

100 modules may take as little as two to four months to construct.
This estimate was generated as follows:
• In the cm1 data base, the median module size is 17 lines. 100

randomly selected modules would therefore use 1700 LOC.
• To generate an effort estimate for these modules,

we used the on-line COCOMO [5] effort estimator
(http://sunset.usc.edu/research/COCOMOII/
expert_cocomo/expert_cocomo2000.html).
Estimates were generated assuming 1700 LOC and the
required reliability varying from very low to very high.

• The resulting estimates ranged from between 2.4 and 3.7 person
months to build and test those modules.

Fig. 7. An estimate of the effort required to build and test 100 modules.

D. Discussion of Experiment #2

In the majority case, predictors learned from as little as one
hundred examples perform as well as predictors learned from many
more examples. This suggests that the effort associated with learning
defect predictors from within-company data may not be overly large.
For example, Figure 7 estimates that the effort required to build and
test 100 modules may be as little as 2.4 to 3.7 months.

V. CONCLUSION

The value of cross-vs-within-company data (CC vs WC) for effort
estimation is an open question. Three of the papers reviewed in the
introduction comment that it can be hard to use CC data due to
different data collection practices at different organizations [1], [2],
[22].

Our hypothesis was that the uncertainties seen in studies of CC-
vs WC-data may be due to ambiguity in the definitions of the effort

estimation features. Static code features, on the other hand, can be
collected in a uniform, rapid and automatic manner. For example,
in this study, we have found a clear and unambiguous conclusion
amongst our static code features:

• CC-data dramatically increases the probability of detecting de-
fective modules;

• But CC-data also dramatically increases the false alarm rate.
• Therefore, we can only recommend cross-company learning for

mission critical software where the extra costs associated with
high false alarm rates are compensated by the associated increase
in software assurance.

Another clear and unambiguous conclusion from static code fea-
tures is that, for the purposes of defect prediction, the need for CC
data may be less than previously believed. Kitchenham et.al. list many
reasons to use CC-data including these two points:

• The time required to collect enough data on past projects from
within a company may be prohibitive.

• Collecting within-company data may take so long that technolo-
gies change and older projects do not represent current practice.

Our incremental WC results suggest that, in the case of defect
prediction, these two points may not be compelling arguments. In
most of our experiments, as little as 100 modules may be enough to
learn adequate defect predictors. When so few examples are enough,
it is possible that projects can learn local defect predictors that are
relevant to their current technology in just a few months.

REFERENCES

[1] B. A. Kitchenham, E. Mendes, and G. H. Travassos, “Cross- vs.
within-company cost estimation studies: A systematic review,” IEEE
Transactions on Software Engineering, pp. 316–329, May 2007.



JOURNAL OF ???, VOL. 6, NO. 1, JANUARY 2007 6

[2] M. E, G. Dinakaran, and N. Mosley, “How valuable is it for a web
company to use a cross-company cost model, compared to using its
own single-company model?” in 16th International World Wide Web
Conference, Banff, Canada, May 8-12, 2007, available from http://
www2007.org/paper326.php.

[3] P. Abrahamsson, R. Moser, W. Pedrycz, A. Sillitti, and G. Succi, “Effort
prediction in iterative software development processes – incremental
versus global prediction models,” in First International Symposium on
Empirical Software Engineering and Measurement (ESEM 2007), 2007,
pp. 344–353.

[4] S. MacDonell and M. Shepperd, “Comparing local and global software
effort estimation models – reflections on a systematic review,” in
Empirical Software Engineering and Measurement, ESEM 2007, 2007,
pp. 401–409.

[5] B. Boehm, “Safe and simple software cost analysis,” IEEE Software, pp.
14–17, September/October 2000, available from http://www.computer.
org/certification/beta/Boehm Safe.pdf.

[6] T. Menzies, J. Greenwald, and A. Frank, “Data mining static code
attributes to learn defect predictors,” IEEE Transactions on Soft-
ware Engineering, January 2007, available from http://menzies.us/pdf/
06learnPredict.pdf.

[7] V. Basili, F. McGarry, R. Pajerski, and M. Zelkowitz, “Lessons learned
from 25 years of process improvement: The rise and fall of the NASA
software engineering laboratory,” in Proceedings of the 24th Inter-
national Conference on Software Engineering (ICSE) 2002, Orlando,
Florida, 2002, available from http://www.cs.umd.edu/projects/SoftEng/
ESEG/papers/83.88.pdf.

[8] M. Fagan, “Design and code inspections to reduce errors in program
development,” IBM Systems Journal, vol. 15, no. 3, 1976.

[9] ——, “Advances in software inspections,” IEEE Trans. on Software
Engineering, pp. 744–751, July 1986.

[10] F. Shull, I. Rus, and V. Basili, “How perspective-based reading can
improve requirements inspections,” IEEE Computer, vol. 33, no. 7, pp.
73–79, 2000, available from http://www.cs.umd.edu/projects/SoftEng/
ESEG/papers/82.77.pdf.

[11] F. Shull, V. B. ad B. Boehm, A. Brown, P. Costa, M. Lindvall, D. Port,
I. Rus, R. Tesoriero, and M. Zelkowitz, “What we have learned about
fighting defects,” in Proceedings of 8th International Software Metrics
Symposium, Ottawa, Canada, 2002, pp. 249–258, available from http:
//fc-md.umd.edu/fcmd/Papers/shull defects.ps.

[12] I. H. Witten and E. Frank, Data mining. 2nd edition. Los Altos, US:
Morgan Kaufmann, 2005.

[13] T. Menzies, A. Dekhtyar, J. Distefano, and J. Greenwald, “Problems
with precision,” IEEE Transactions on Software Engineering, September
2007, http://menzies.us/pdf/07precision.pdf.

[14] H. B. Mann and D. R. Whitney, “On a test of whether one
of two random variables is stochastically larger than the other,”
Ann. Math. Statist., vol. 18, no. 1, pp. 50–60, 1947, available on-
line at http://projecteuclid.org/DPubS?service=UI&version=1.0&verb=
Display&hand%le=euclid.aoms/1177730491.

[15] J. Demsar, “Statistical comparisons of clasifiers over multiple data sets,”
Journal of Machine Learning Research, vol. 7, pp. 1–30, 2006, avaliable
from http://jmlr.csail.mit.edu/papers/v7/demsar06a.html.

[16] N. E. Fenton and S. Pfleeger, Software Metrics: A Rigorous & Practical
Approach. International Thompson Press, 1997.

[17] A. Orrego, “Sawtooth: Learning from huge amounts of data,” Master’s
thesis, Computer Science, West Virginia University, 2004.

[18] R. Quinlan, C4.5: Programs for Machine Learning. Morgan Kaufman,
1992, iSBN: 1558602380.

[19] J. R. Quinlan, “Learning with Continuous Classes,” in 5th Australian
Joint Conference on Artificial Intelligence, 1992, pp. 343–348, available
from http://citeseer.nj.nec.com/quinlan92learning.html.

[20] C. Blake and C. Merz, “UCI repository of machine learning databases,”
1998, uRL: http://www.ics.uci.edu/∼mlearn/MLRepository.html.

[21] G. John and P. Langley, “Estimating continuous distributions in bayesian
classifiers,” in Proceedings of the Eleventh Conference on Uncertainty
in Artificial Intelligence Montreal, Quebec: Morgan Kaufmann, 1995,
pp. 338–345, available from http://citeseer.ist.psu.edu/john95estimating.
html.

[22] M. Shepperd, “Software project economics: A roadmap,” in Interna-
tional Conference on Software Engineering 2007: Future of Software
Engineering, 2007.

[23] M. Halstead, Elements of Software Science. Elsevier, 1977.
[24] T. McCabe, “A complexity measure,” IEEE Transactions on Software

Engineering, vol. 2, no. 4, pp. 308–320, Dec. 1976.
[25] N. E. Fenton and S. Pfleeger, Software Metrics: A Rigorous & Practical

Approach (second edition). International Thompson Press, 1995.

m = Mccabe v(g) cyclomatic complexity
iv(G) design complexity
ev(G) essential complexity

locs loc loc total (one line = one count
loc(other) loc blank

loc code and comment
loc comments
loc executable
number of lines (opening to clos-
ing brackets)

Halstead h N1 num operators
N2 num operands
µ1 num unique operators
µ2 num unique operands

H N length: N = N1 + N2

V volume: V = N ∗ log2µ
L level: L = V ∗/V where

V ∗ = (2 + µ2
∗)log2(2 + µ2

∗)
D difficulty: D = 1/L

I content: I = L̂ ∗ V where
L̂ = 2

µ1
∗ µ2

N2
E effort: E = V/L̂
B error est
T prog time: T = E/18 seconds

Fig. 8. Features used in this study.

APPENDIX

The data tables used in this study can be downloaded from the
PROMISE repository4. The static code features of our 12 tables of
data are shown in Figure 8. These features divide into lines of code
features, Halstead features, and McCabe features.

The Halstead features were derived by Maurice Halstead in 1977.
He argued that modules that are hard to read are more likely to be
fault prone [23]. Halstead estimates reading complexity by counting
the number of operators and operands in a module: see the h features
of Figure 8. These three raw h Halstead features were then used
to compute the H: the eight derived Halstead features using the
equations shown in Figure 8. In between the raw and derived Halstead
features are certain intermediaries:
• µ = µ1 + µ2;
• minimum operator count: µ∗1 = 2;
• µ∗2 is the minimum operand count and equals the number of

module parameters.
An alternative to the Halstead features are the complexity features

proposed by Thomas McCabe in 1976. Unlike Halstead, McCabe
argued that the complexity of pathways between module symbols
are more insightful than just a count of the symbols [24]. The first
three lines of Figure 8 shows McCabe three main features for this
pathway complexity. These are defined as follows. A module is
said to have a flow graph; i.e. a directed graph where each node
corresponds to a program statement, and each arc indicates the flow
of control from one statement to another. The cyclomatic complexity
of a module is v(G) = e − n + 2 where G is a program’s flow
graph, e is the number of arcs in the flow graph, and n is the number
of nodes in the flow graph [25]. The essential complexity, (ev(G))
or a module is the extent to which a flow graph can be “reduced”
by decomposing all the subflowgraphs of G that are D-structured
primes (also sometimes referred to as “proper one-entry one-exit
subflowgraphs” [25]). ev(G) = v(G) − m where m is the number
of subflowgraphs of G that are D-structured primes [25]. Finally, the
design complexity (iv(G)) of a module is the cyclomatic complexity
of a module’s reduced flow graph.

4http://promisedata.org/repository


