
Fault Prediction using Early Lifecycle Data

Yue Jiang, Bojan Cukic, Tim Menzies
Lane Department of Computer Science and Electrical Engineering

West Virginia University, Morgantown, WV 26506, USA
{yue, cukic@csee.wvu.edu; tim@menzies.us}

Abstract

The prediction of fault-prone modules in a software
project has been the topic of many studies. In this paper,
we investigate whether metrics available early in the de-
velopment lifecycle can be used to identify fault-prone soft-
ware modules. More precisely, we build predictive mod-
els using the metrics that characterize textual requirements.
We compare the performance of requirements-based models
against the performance of code-based models and mod-
els that combine requirement and code metrics. Using a
range of modeling techniques and the data from three NASA
projects, our study indicates that the early lifecycle metrics
can play an important role in project management, either by
pointing to the need for increased quality monitoring during
the development or by using the models to assign verifica-
tion and validation activities.

1 Introduction

The prediction of fault-proneness has been studied ex-
tensively [4, 5, 7, 11–13, 15, 18, 22]. In a stable develop-
ment environment, metrics can be used to predict mod-
ules that are likely to harbor faults. Some researchers en-
dorse to use of product metrics, such as Halstead com-
plexity [14], McCabe’s cyclomatic complexity [17], and
various code size measures to predict fault-prone modules
[4,5,7,11–13,15,18,22], while others are skeptical of such
simplistic approaches [10,23].

V&V textbooks, [21] for example, recommend using
static code metrics to decide whether modules are worthy
of manual inspections. Our experience with NASA soft-
ware Independent Verification and Validation facility and
with several large government software contractors is that
they won’t review software modulesunlesstools like Mc-
Cabe predict that they are fault prone. The use of such
measures is controversial. Fenton offers an example where
the sameprogram functionality is achieved usingdifferent
programming language constructs resulting indifferentsta-

tic measurements for that module [12]. Fenton uses this
example to argue the uselessness of static code attributes.
Fenton & Pfleeger note that the main McCabe’s attribute
(cyclomatic complexity, orv(g)) is highly correlated with
lines of code [12]. Also, Shepperd & Ince remark that “for
a large class of software cyclomatic complexity is no more
than a proxy for, and in many cases out performed by, lines
of code” [23]. Therefore, they argue against the use ofsin-
gle features to predict for defects. Further, they reject other
commonly used indicators since they are all highly corre-
lated and, so they argue, just as uninformative.

When individual features fail,combinationscan succeed.
This paper argues thatcombinationsof static features ex-
tracted from requirements and code can be exceptionally
good predictors for modules that actually harbor defects.
We do not intend to propose yet another classification al-
gorithm. Our overall goal is to explore whether prediction
of fault prone modules can be achieved using the informa-
tion available in the early phases of software development.

In this paper, we investigate whether metrics available
early in the development lifecycle can be used to identify
fault-prone software modules. More precisely, we build
predictive models using the metrics that characterize struc-
tured textual requirements. We compare the performance
of requirements-based prediction models against the per-
formance of code-based models. Finally, we develop a
methodology that combines requirement and code/module
metrics. Since such models cannot be developed early in
the lifecycle, we evaluate whether such combination can in-
crease the prediction accuracy. Using a range of modeling
techniques and the data from three NASA projects, CM1,
JM1, and PC1, our experiments indicate that the early life-
cycle metrics can play an important role in project manage-
ment, either by pointing to the need for increased quality
monitoring during the development or by using the models
to assign verification and validation activities.

The rest of paper is organized as follows. Section 2 in-
troduces the measurement techniques used to evaluate pre-
dictive software classification models. Section 3 explains
the experimental setup, while Section 4 presents the results.

1

Real data

 Yes

 No

Yes

 TP

 FP

P
r
e

d
ic

te
d

No

 FN

 TN

Figure 1. A defect level prediction sheet.

These results are discussed in Section 5. Section 6 sum-
marizes our findings and points out possible directions for
future work.

2 Measurement

In this study, we develop statistical models to predict de-
fective software modules. Requirement metrics, module-
based code metrics, and the fusion of requirement and mod-
ule metrics serve as predictors. The predicted variable is
whether one or more defects exists in the given module.
Figure 1 describes prediction outcomes.

Throughout the paper, we use the following set of evalu-
ation measures. The Probability of Detection (PD), also
called recall or specificity in some literature [13, 18]), is
defined as the probability of the correct classification of a
module that contains a defect:

PD =
TP

TP + FN

The Probability of False alarm (PF) is defined as the ratio
of false positives to all non-defect modules:

PF =
FP

FP + TN

Intuitively, we would like to maximizePD and at the same
time minimizePF . Since we have a limited space avail-
able here, we refer readers to a recent publication [16]
which provides a rather comprehensive overview of statis-
tical methods relevant for evaluating predictive models in
software engineering.

3 Experimental Methodology

3.1 Random Forests

Random Forest is a tree-based classifier which has
demonstrated its robustness in building software engineer-
ing models [13]. As implied from its name, it builds an
ensemble, i.e., the “forest” of classification trees using the
following strategy:

 0

 0.25

 0.5

 0.75

 1

 0 0.25 0.5 0.75 1

P
D

=
 p

ro
b

a
b
ili

ty
 o

f
d

e
te

c
ti
o

n

PF= probability of false alarm

risk-adverse region

cost-
adverse
region

PF=PD=no
information

negative
curve

preferred curve

Figure 2. Regions of a typical ROC curve.

1. The root node of each tree contains a bootstrap sample
data. Each tree has a different bootstrap sample.

2. At each node, a subset of variables are randomly se-
lected to split the node.

3. Each tree is grown to the largest extent possible with-
out pruning.

4. When all trees in the forest are built, test instances are
fitted into all the trees and a voting process takes place.
The forest selects the classification with the most votes
as the prediction of new instances.

Random forest [6] as a machine learning classifier pro-
vides many advantages. One, it automatically generates the
importance of each attribute in the process of classification.
Two, by varying voting thresholds in step 4 of the algorithm,
we can generate aReceiver Operator Characteristic
(ROC) curve that represents an entire range of achievable
performance characteristics relative toPD andPF . In the
experiments, we build 20 random forests for each data set,
each with a different voting threshold ranging from 0.05 to
0.95.

3.2 ROC curve

In this study, we apply the same set of classification al-
gorithms to the set of software engineering datasets. There-
fore, we need an intuitive way to compare the ensuing clas-
sification performance. An ROC curve provides a visual
comparison of the classification performance. It is a plot
of PD as a function ofPF across all the possible exper-
imental settings. A typical ROC curve is shown in Figure
2. Typical ROC curve has a concave shape with (0,0) as the
beginning and (1,1) as the end point.

Figure 2 provides an insight into the implications of the
classification performance to software engineering experi-
ments. A straight line connecting the (0,0) and (1,1) implies
that the performance of a classifier is no better than random

2

guessing. The cost-adverse region in Figure 2 has lowPD
andPF . If a classifier falls into this region it will be use-
ful for organizations with limitedV &V budgets. The risk-
adverse region indicates highPD and highPF . For safety
critical systems, classifiers demonstrating such performance
may be preferred because the identification of faults is more
important than the cost to validate false alarms. The nega-
tive curve in Figure 2 is not necessarily a bad news, as it can
be transposed into a preferred curve [18, 19]. In an ROC
curve, software engineers need to identify the points that
suit technical risks and budgets specific to their project.

3.3 Experimental Design

In this paper, we report the development and evaluation
of models to predict fault-prone software modules using the
following information from NASA MDP datasets [2]:

1. Experiment 1: Available metrics describing unstruc-
tured textual requirements;

2. Experiment 2: Available static code metrics;

3. Experiment 3: A combination of the requirement met-
ric and static code metrics.

The goal of each of these experiments is different. In
experiment 1, we try to assess how useful the early lifecycle
data and the related metrics are in identifying potentially
problematic modules. The second experiment is the least
interesting from the research standpoint as the use of static
code metrics in the prediction of faulty modules has been
investigated extensively, even on the same datasets we use
here. However, in our case, it sets the performance baseline
for the third experiment. We will demonstrate that the use
of combined requirements metrics and static code metrics
performs extremely well in predicting fault-prone modules.

In order to enable these experiments, we had to be able to
relate individual requirements with software modules. The
generic structure of an entity relationship diagram that con-
nects requirements with modules for a specific project en-
tered in NASA MDP database is shown in Figure 3. All
software requirements and modules are uniquely numbered.
A requirement may be implemented in one or more mod-
ules. A module implementation may reflect one or more
requirements. Further, a module may contain zero, one or
more faults. For the purpose of our study, if a module con-
tains any faults, it is considered fault-prone. Otherwise, it
is defect free. Unfortunately, MDP datasets reveal anom-
alies too. Some requirements are associated with no soft-
ware modules and some modules cannot be traced to any
stated requirement. As our research group has not been in-
volved with the data collection, we could only point out to
such inconsistencies. The extent of such inconsistencies is
described later.

1

n

1

n

n

Figure 3. An entity-relationship diagram re-
lates project requirements to modules and
modules to defects

3.4 Combining requirement and module metrics

Combining requirement metrics and module metrics if
there is a one-to-one relationship between the requirements
and modules is trivial. But, due to many-to-many relation-
ship, we need to utilize theinner−join database operation.
Inner-join creates an all-to-all association between the cor-
responding entries in two database tables. This is the most
common type of the database join operation.

For clarity, we provide an example of the inner-join. Ta-
ble 1 shows a few entries from the table which relates re-
quirements and modules for CM1 project.

Table 1. CM1 requirement product relation
table.

MODULE ID REQUIREMENTID
25321 100
25333 100
25325 101
25321 102
25333 102
··· ···

Referring to Figure 3, the inner-join takes all
the records from CM1productrequirementmetrics
table and finds the matching record(s) in table
CM1 requirementproductrelations based on the common
predicate — RequirementID. The result is written into a
temporary table. Inner-join further takes all the records
from the temporary table and looks for the matching
records in CM1productmodulemetrics via the join
predicate ModuleID. Table 2 shows partial results of this
operation.

3.5 Machine learning algorithms

We construct predictive models using machine learners
from Weka package [20] as shown in Table 3. All these

3

Table 2. The result of inner join on CM1 requirement and module metrics.
REQUIREMENT ACTION CONTINUANCE MODULE LOC BLANK BRANCH COUNT ···
100 1 0 25321 82 43 ···
100 1 0 25333 34 17 ···
101 3 1 25325 14 7 ···
102 1 0 25321 82 43 ···
102 1 0 25325 14 7 ···
102 1 0 25333 34 17 ···
··· ··· ··· ··· ··· ···

machine learning algorithms are used with their default pa-
rameters. For the Random Forest algorithm we used the im-
plementation from the statistical package R [3]. We would
like to stress that Weka and R are publicly available. Also
publicly available are NASA MDP datasets. Therefore, our
results should be easily checked and reproduced.

Table 3. Machine learners used in experi-
ments

learners abbreviation
OneR OneR
NaiveBayes with kernel nbaye
VotedPerceptron VP
Logistic Log
J48 J48
VFI VFI
IBk IBk
Random Forest RF

Cross-validation is the statistical practice of partitioning
a sample of data into two subsets: one is training subset
and the other is testing subset. The training subset trains
the predictors and the testing subset validates the predic-
tors. We use80% of data as training subset and20% of
data as validation subset in all the experiments. The data
is randomly divided into 5 fixed bins with equal size. We
leave one bin to act as test data, and the other 4 bins is used
to train the learners. Our experiments use the same training
set and testing set 10 times, and then one of the training bins
becomes the test bin. We conduct 50 experiments (5 × 10)
and predict the mean prediction result. This methodology is
called the five-fold (5× 10 way) cross validation.

3.6 Datasets

The datasets used in this study come from NASA Metrics
Data Program (MDP) data repository [2]. The repository
provides metrics that describe the software artifacts from
13 NASA projects.

Although MDP data repository contains 13 projects,
only 3 of them offer requirement metrics. These three

projects are CM1, JM1, and PC1. CM1 project is a NASA
spacecraft instrument, JM1 is a realtime ground system,
PC1 is an earth orbiting satellite system. There are 10 at-
tributes that describe requirements. One of them is the
unique requirement identifier. The remaining 9 attributes
are the metrics shown in Table 4. We use them as attributes
when building defect prediction models.

All the MDP requirement metrics follow the definitions
from Wilson [24, 25]. According to these references, a
tool “searches the requirements document for terms [the
research at NASA-Goddard Software Assurance Research
Center has] identified as quality indicators”. ARM (Au-
tomated Requirement Measurement) tool [24] was an ex-
periment in lightweight parsing of requirements documents.
Rather than to tackle the complexities of full-blown natural
language, the ARM research explored what could be eas-
ily automatically identified. The ARM work resulted in an
automatic parser and some threshold guidelines regarding
when to be concerned about a document. Since our classi-
fication algorithms can automatically generate such thresh-
olds, we ignored the ARM thresholds and just used the re-
sults of the parser.

3.7 Static Requirements Features

The ARM parser reports information at the level of indi-
vidual requirement specifications. Specification statements
are evaluated along the following dimensions:

• Imperatives(something that must be provided) con-
tain the phrases “shall”, “must” or “must not”, “is re-
quired to”, “are applicable”, “responsible for”, “will”,
or “should”.

• Continuances(connections between statements) con-
tain the phrases “as follows”, “following”, “listed”, “in
particular”, or“support”.

• Directives (to supporting illustrations) contain the
phrases “figure”, “table”, “for example”, “note”.

• Options (giving the developer latitude in satisfying
the specification statement) contain the phrases “can”,
“may”, “optionally”.

4

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

CM1_r req.

PF

P
D

IBk
J48
Log
nbayes
OneR
VFI
VP

RF

Figure 4. CM1 r prediction using require-
ments metrics only.

• Weak Phrases(causing uncertainty, leave room for
multiple interpretations) contain the phrases “ade-
quate”, “as a minimum”, “as appropriate”, “be able
to”, “be capable”, “but not limited to”, “capability of”,
“capability to”, “ effective”, “if practical”, “normal”, “
provide for”, “timely”, and “tbd”.

4 Experimental Results

As mentioned earlier, partial requirement metrics are
available for the three MDP datasets: CM1, JM1 and PC1.
In addition, our analysis uncovered several data discrepan-
cies. Table 5 summarizes the available data. In projects
CM1 and PC1, only 22% and 18% of all modules, respec-
tively, have their requirements identified. The extreme case
is the dataset JM1 in which only 1% of modules are asso-
ciated with any requirement. But, due to the fact that JM1
is the largest project, the number of modules with identified
requirements (97) is similar to the corresponding value for
PC1 (109). In experiments, we will consider only the subset
of modules in CM1, JM1 and PC1 which have their require-
ments identified. We will call these datasets CM1r, JM1 r
and PC1r, to separate them from their usage in existing lit-
erature [7,13,18].

4.1 Prediction from Requirements Metrics

4.1.1 CM1 r dataset

CM1 r dataset describes software artifacts of a NASA
spacecraft instrument. CM1r has 160 requirements, but
only 114 of them have associated program modules identi-
fied. Among these 114 requirements, 69 (60.53%) of them

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

JM1_r req.

PF

P
D

IBk
J48
Log
nbayes
OneR
VFI
VP

RF

Figure 5. JM1 r prediction using requirements
metrics only.

are related to a module which contains at least one defect.
This is a very significant percentage. On the other hand,
only the modules with identified requirements (109 of them
out of 505) were used in the training/testing datasets.

As described in the Experimental Design section, we first
developed models that predict defective modules using the
requirements metrics only. The performance of different
machine learning algorithms is depicted in the ROC curve
shown in Figure 4. No model appears to provide partic-
ularly useful information for project managers, which can
probably be attributed to the fact that more than 60% of the
requirements are related to defective modules.

4.1.2 JM1 r dataset

JM1 metrics represent a realtime ground system that uses
simulations to generate flight predictions. JM1r has 74 re-
quirements available (see Table 5). Only 17 of them are re-
lated to program modules. Three of these 17 requirements
are associated to defective modules defect (17.65%). Figure
5 compares the performance of different models in an ROC
curve. Although the performance of most models fails to
provide useful information, the models built using Logis-
tic and VFI algorithms appear to do better than the others.
Although JM1 is a very large project (> 10, 000 modules
overall), JM1r is very small as the information that relates
requirements and program modules is largely missing.

4.1.3 PC1r dataset

PC1 project refers to an Earth orbiting satellite software sys-
tem. PC1r has 320 available requirements (Table 5) and,
in contrast to CM1r and JM1r, all of them are associated

5

Table 4. Requirement Metrics.
Requirement Definitions
action Represents the number of actions the requirement needs to be capable of performing.
conditional Represents whether the requirement will be addressing more than one condition.
continuance Phrases such as the following: that follow an imperative and precede the definition of

lower level requirement specification.
imperative Those words and phrases that command that something must be provided.
incomplete Phrases such as ‘TBD’ or ‘TBR’. They are used when a requirement has yet

to be determined.
option Those words that give the developer latitude in the implementation of the specification

that contains them.
risk level A calculated risk level metric based on weighted averages from metrics collected for

each requirement.
source Represents the number of sources the requirement will interface with or receive data from.
weakphrase Clauses that are apt to cause uncertainty and leave room for multiple interpretations.

Table 5. The associations between modules and requirements in CM1, JM1 and PC1.
total modules with modules defect modules total # req. related # of req.
modules defects have req. with req. of req. to module(s) related to defects

CM1 r 505 81(16.03%) 109(22%) 58(53.21%) 160 114 69(60.53%)
JM1 r 10,878 2102 (19.32%) 97(1%) 4(4.12%) 74 17 3(17.65%)
PC1r 1107 73(6.59%) 203(18%) 44(21.67%) 320 320 109(34.06%)

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

PC1_r requirement

PF

P
D

Ibk
J48
Log
nbayes
OneR
VFI
VP

RF

Figure 6. PC1 r prediction using requirements
metrics only.

with program modules. 109 (34.06%) requirements, or at
least some aspect of these requirements, are implemented
by modules which contain one or more defects. On the other
hand, all these requirements point to only 203 out of 1107
modules indicating, again, missing information. Consistent
with our experimental design, we developed PC1r models
using the 320 requirements and 203 modules.

The performance of PC1r is shown in Figure 6. Unlike
in the other two experiments, the useful portion of the ROC
curve is in the cost-adverse region with low false alarm rate
(PF < 0.5), but coupled with the low probability of detec-
tion (PD < 0.5). If the data represented a stable develop-
ment environment in which this type of a model was built
from an earlier project, the fact that the V&V team could
start to develop information about modules in which defects
can be expected seems very encouraging. However, given
that these are the first-of-the-kind, preliminary experiments
with defect prediction models build from requirement met-
rics, we can only cautiously suggest that our results warrant
further research in this area.

4.2 Prediction from Static Code Metrics

As discussed, an extensive body of work describes de-
fect prediction from module code metrics. Therefore, the
purpose of this section is to establish the baseline perfor-
mance to be used for performance comparison throughout
this paper. When building models, we use 37 static code

6

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

CM1_r module

PF

P
D

IBk
J48
Log
nbayes
OneR
VFI
VP

RF

Figure 7. CM1 r using module metrics.

attributes of CM1r and PCr datasets. JM1r dataset offers
21 code metrics. The predicted class is always the presence
of defects in a module (defect-free or defective). A detailed
description of module attributes can be found in [13, 18].
Several recent studies describe the defect prediction results
for the NASA MDP datasets [7, 13, 18]. These studies pro-
vide insights into the effects of feature (attribute) selection
to model performance, as well as the variations caused by
the use of a wide spectrum of machine learning algorithms.
The observation has been that the choice of learning meth-
ods have a much stronger impact on performance than fea-
ture selection [18].

Although CM1, JM1 and PC1 have static code metrics
data available for all modules (505, 10, 878 and 1, 107,
respectively), to make performance comparisons fair, we
only use modules that explicitly correspond to requirements
(109, 97, 203, respectively). Therefore, the performance re-
sults embodied by the ROC curves are not the same as re-
ported in related literature [7,13,18], but similar.

Figures 7, 8 and 9 depict the performance of defect pre-
diction models based on code metrics. Machine learning
algorithms provide models in the different regions of the
ROC space. While the performance on neither of the project
datasets appears impressive, consistent with the trends ob-
served in related studies, JM1r dataset proves extremely
difficult. Among those who use NASA MDP datasets, JM1
has been suspected of containing noisy (inaccurate) infor-
mation. But while its large size usually makes it challeng-
ing for defect prediction, in our experiment JM1r contains
only 97 modules, with4 of them being defective. Therefore
it comes as no surprise that most machine learning algo-
rithms (all except the random forest) generate theories that
classify all the modules as defect-free.

The machine learning algorithms which typically per-
form better than others are random forests, naive bayes, and

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

JM1_r module

PF

P
D

IBk
J48
Log
nbayes
OneR
VFI
VP

RF

Figure 8. JM1 r using module metrics.

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

PC1_r module

PF

P
D

Ibk
J48
Log
nbayes
OneR
VFI
VP

RF

Figure 9. PC1 r using module metrics.

IBk, although the usefulness of their predictions in the con-
text of software engineering projects appears rather limited.

4.3 Combining Requirement and Module Metrics

We combine requirement and module metrics using the
inner-join method described earlier. Recall that, there are
109, 97 and 203 modules associated to requirements in
CM1, JM1 and PC1 datasets, respectively. When many-
to-many relationship exists between modules and require-
ments, the inner join creates multiple entries in the resulting
table, one for each unique RequirementID and ModuleID
pair. Consequently, the datasets used in this experiment are
larger. CM1RM has266 records, while PC1RM has477
records. JM1RM maintained the same number of records,
97 because each module is related to a single requirement.
The number of defective modules in each dataset remains

7

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

CM1_r mod+req (innerjoin)

PF

P
D

IBk
J48
Log
nbayes
OneR
VFI
VP

RF

Figure 10. CM1 RM model uses requirements
and code metrics.

the same as in the previous experiments; 147 defect records
for CM1 RM, only 4 for JM1RM, and111 for PC1RM,
but multiple defect records may exist for a single module.

Following the preparation of data set, we ran the same
set of experiments as before. The prediction results for
CM1 RM are shown in Figure 10 and for PC1RM in Fig-
ure 11. The presence of additional requirement metrics at-
tributes in JM1RM did not improve the prediction model
which used code metrics only. Both JM1r and JM1RM
have the same number of entries,97, which seems to justify
the lack of performance gains.

5 Discussion

Upon seeing the results of the experiments that combine
requirements and static code metrics, we were simply aston-
ished. We have been building models for defect prediction
in NASA MDP datasets for several years. A recent publi-
cation [18] reports that the best model performance based
on code metrics only is(PD = 71%, PF = 27%) for
CM1 dataset and is(PD = 48%, PF = 17%) for PC1.
Our own experiments with static code metric models re-
ported in this paper reflect the use of subsets of CM1, JM1
and PC1 project data and are somewhat different. But the
performance improvement gained by adding requirements
metrics has surpassed all our expectations. Figures 12, 13
and 14 depict ROC curves for the three datasets, CM1, JM1
and PC1, respectively. Depicted models have been devel-
oped using the random forests algorithm. Random forests
have demonstrated the most consistent performance in all
our experiments and we believe it is appropriate to use
them for performance comparisons. Each of these three
figures contains three lines, depicting the performance of

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

PC1_r mod+req (innerjoin)

PF

P
D

IBk
J48
Log
nbayes
OneR
VFI
VP

RF

Figure 11. PC1 RM model uses requirements
and code metrics.

requirements-only based model, the code-only based model
and, finally, the model that combines requirements and code
metrics.

These results demand a careful analysis. Our first obser-
vation is specific and it relates to the inner workings of ma-
chine learning algorithms we used for modeling. After the
inner-join, the datasets have more records. In other words,
the datasets became oversampled. Oversampling is known
to be an effective method in signal processing. Recent stud-
ies show that tree-based classifiers do not increase the per-
formance as the result of oversampling in the training data
[8,9]. Random forests is a tree based ensemble-forming al-
gorithm. So our results appear to contradict the results of
Drummond and Holte in [8, 9]. Why random forests per-
form so well on the inner-join data? This phenomenon cer-
tainly is worth exploring in the future. However, nearly all
the learners we used except VotedPerceptron (VP) achieve
better performance when requirements and code metrics are
combined. Therefore, the observed performance improve-
ment cannot be explained through better understanding of
the machine learning algorithms only.

The obvious speculation here is that the training/test
datasets after the inner-join represent real world software
engineering situations better. In the Introduction, we of-
fered a glimpse of the debate on the usefulness of static code
metrics for defect prediction. Our experiments provide ini-
tial evidence that combining metrics that describe different
yet related software artifacts may significantly increase the
effectiveness of defect prediction models. Although each
metric, regardless whether it describes requirement or code
features, appears highly abstract and seemingly unrelated to
software defects, when combined they support what appear
to be superior defect prediction models.

8

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Comparison of ROC curves of CM1_r

PF

P
D

req
mod
innerjoin

Figure 12. ROC curves for CM1 project.

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Comparison of ROC curves of JM1_r

PF

P
D

req
mod
innerjoin

Figure 13. ROC curves for JM1 project.

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Comparison of ROC curves of PC1_r

PF

P
D

req
mod
innerjoin

Figure 14. ROC curves for PC1 project.

We need to add a few caveats. NASA MDP is a contin-
ually growing dataset of software engineering data. There-
fore, the data we were able to obtain for the three projects
do not appear to be highly accurate. As we mentioned, there
are many requirements with no corresponding modules and,
even more concerning, many modules with no correspond-
ing requirements. We believe to have alleviated this prob-
lem by limiting our study to only include modules which
have identified links to requirements. But as a result, we
have models designed for a subset of project data. Fur-
ther, machine learning algorithms generally perform better
on smaller datasets. Therefore, our results may be overly
optimistic.

6 Conclusion

In this study, we build defect prediction models using
metrics extracted from unstructured textual requirements,
the product/module code metrics, and the fused require-
ment and module metrics. The models were developed
and evaluated using metrics data from three NASA MDP
projects: CM1, JM1, and PC1. Model comparison shows
that requirement metrics can be highly useful for defect
prediction. Although the requirement metrics do not pre-
dict defects well by themselves, they significantly improve
the performance of the prediction models that combine re-
quirement and module metrics together using the inner-join
method. Our experiments suggest that the early lifecycle
metrics can play an important role in project management,
either by pointing to the need for increased quality monitor-
ing during the development or by using the models to assign
verification and validation activities.

Another aspect that sets this work apart from other
studies isreproducibility. Reproducibility is an important

9

methodological principle in other disciplines since it allows
a community to confirm, refute, or even improve prior re-
sults. Every experiment we report in this paper can be re-
produced. The datasets are publicly available, as well as
all the modeling tools. We strongly encourage software en-
gineering researchers to share data with publicly available
repositories such as [1], define challenges, and to take the
time to reproduce and demonstrate how to improve the re-
sults of others.

References

[1] Promise Data Repository,http://promisedata.org/
repository .

[2] Nasa iv&v facility. metric data program. Available from
http://MDP.ivv.nasa.gov/ .

[3] The r project for statistical computing. availablehttp://
www.r-project.org/ .

[4] S. H. Aljahdali, A. Sheta, and D. Rine. Prediction of soft-
ware reliability: a comparison between regression and neural
network non-parametric models. InACS/IEEE International
Conference on Computer Systems and Applications, pages
25–29, June 2001.

[5] N. N. T. Ball and B. Murphy. Using historical data and prod-
uct metrics for early estimation of software failures. InProc.
ISSRE , Raleigh, NC, 2006.

[6] L. Breiman. Random forests.Machine Learning, 45:5–32,
2001.

[7] V. U. Challagulla, F. B. Bastani, and I.-L. Yen. A unified
framework for defect data analysis using the mbr technique.
In Proc. of the IEEE International Conference on Tools with
Artificial Intelligence (ICTAI’06), 2006.

[8] C. Drummond and R. C. Holte. C4.5, class imbalance, and
cost sensitivity: why under-sampling beats over-sampling. In
Workshop on Learning from Imbalanced Datasets II, Wash-
ington DC, 2003.

[9] C. Drummond and R. C. Holte. Severe class imbalance: Why
better algorithms aren’t the answer? InProc. of the 16th
European Conference of Machine Learning,Porto,Portugal,
Oct. 2005.

[10] N. Fenton and N. Ohlsson. Quantitative analysis of faults and
failures in a complex software system.IEEE Transactions on
Software Engineering, pages 797–814, August 2000.

[11] N. E. Fenton and M. Neil. A critique of software
defect prediction models. IEEE Transactions on
Software Engineering, 25(5):675–689, 1999. Avail-
able from http://citeseer.nj.nec.com/
fenton99critique.html .

[12] N. E. Fenton and S. Pfleeger. Software Metrics: A
Rigorous & Practical Approach. PWS Publishing Com-
pany,International Thompson Press, 1997.

[13] L. Guo, Y. Ma, B. Cukic, and H.Singh. Robust prediction of
fault-proneness by random forests. InProc. of the 15th In-
ternational Symposium on Software Relaibility Engineering
ISSRE’04, 2004.

[14] M. H. Halstead. Elements of Software Science. Elsevier,
North-Holland, 1975.

[15] T. Khoshgoftaar. An application of zero-inflated poisson re-
gression for software fault prediction. InProceedings of the

12th International Symposium on Software Reliability Engi-
neering, Hong Kong, pages 66–73, Nov 2001.

[16] Y. Ma and B. Cukic. Adequate and precise evaluation of pre-
dictive models in software engineering studies. In3rd Intl.
Workshop on Predictor Models in SE (PROMISE 2007),Min-
neapolis, MN, 2007.

[17] T. McCabe. A complexity measure.IEEE Transactions on
Software Engineering, 2(4):308–320, Dec. 1976.

[18] T. Menzies, J. Greenwald, and A. Frank. Data min-
ing static code attributes to learn defect predictors.
IEEE Transactions on Software Engineering, January
2007. Available from http://menzies.us/pdf/
06learnPredict.pdf .

[19] T. Menzies, J. D. Stefano, K. Ammar, K. McGill, P. Callis,
R. Chapman, and D. J. When can we test less? InIEEE Met-
rics’03, 2003. Available fromhttp://menzies.us/
pdf/03metrics.pdf .

[20] U. of Waikato. Weka software package. The University
of Waikato, availablehttp://www.cs.waikato.ac.
nz/ml/weka/ .

[21] S. Rakitin. Software Verification and Validation for Practi-
tioners and Managers, Second Edition. Artech House, 2001.

[22] N. F. Schneidewind. Investigation of logistic regression as a
discriminant of software quality. InProceedings of the 7th
International Software Metrics Symposium, London, pages
328–337, April 2001.

[23] M. Shepperd and D. Ince. A critique of three metrics.The
Journal of Systems and Software, 26(3):197–210, September
1994.

[24] W. Wilson, L. Rosenberg, and L. Hyatt. Automated analysis
of requirement specifications. InICSE ’97, pages 161–171,
May 1997.

[25] W. M. Wilson, L. H. Rosenberg, and L. E.Hyatt. Auto-
mated quality analysis of natural language requirement spec-
ifications. availabelhttp://satc.gsfc.nasa.gov/
support/PNSQC OCT96/pnq.html .

10

