Combining Complementary
Formal Verification Strategies to
Improve Performance and
Accuracy

David Owen

June 15, 2007

Overview

e Four Key ldeas
A Typical Formal Verification Strategy
Complementary Verification Capability
Complementary Performance
Performance of Combined Strategy

Introduction

Related Work
Motivating Examples
Case Study
Conclusion

A Typical Formal Verification
Strategy

Software Communicating finite-state

. machines, Statecharts, etc.

[\
‘\

\ \"b Abstract Model of

\ Software Design
\

Manual or \\
Automatic N
Translation N » Correctness

Properties

Generic properties, assertions,

temporal logic properties Automated Configuration settings,
ViertieE e strategies for decreasing

time, memory required
Tool

|
\

Properties proved, property violations, paths
to property violations (counterexamples)

Complementary Verification

Capability

Three verification strategies:

Lurch (204) ¢

SPIN (233)

All (323)

Equivalent Mutants

1. Random search
2. Symbolic model checking

(Nu)SMV (141)7 3. Explicit-state model checking

Sets of fault-seeded software
models for which each strategy
could detect a property violation

Remaining software models, which
contain no property violations

Overlap = opportunity
to combine strategies

Complementary Performance

| Software models
1, 1 a4 forwhich it's hard
e b9 or impossible for
any tool to detect

Software models in which -~ a property violation

some tools easily detect a
property violation, but it's \

impossible for other tools

O
©
O
=
>
=
@
L
§e)
[0)
=
=
o
()
o
()
£
=
=
>
E
=
=

—_—
0.01

Software models
in which all tools
easily detect a

property violation

Maximum Time Required for any Tool (s)

Nearly all models not easily checked
by all tools are easy for at least one tool

Performance of Combined Strategy

1 || 1 1 II 1 1 II 1 III 1 Ill T

—— Baseline Complete Strategy (SPIN, MA, no d_step)
= Single Tool Complete Strategy (SPIN, 3 configurations)
--A--~ Combined Strategy (all tools)

SPIN, 1 Mode

~d

)
3
=
<}
£
)
p=

Medians

Strategy combining multiple tools is faster and often
requires less memory than single-tool alternative strategies

Overview (2)

Three Key Results

Introduction

Background
Combining Complementary Verification Strategies

Previous Work
Contributions

Related Work
Motivating Examples

Case Study
Conclusion

Background

e Increasingly complex software, increasingly critical
applications

e Powerful but costly verification methods

Cost in user effort and verification expertise, domain
knowledge

Cost in time and memory required to run automated tools
e Many different strategies for decreasing these costs

Strategies for decreasing modeling effort
Strategies for more efficient verification

Combining Complementary
Verification Strategies

e Alternative strategies have different strengths
How to choose the right strategy? (Cobleigh et.al.)
Here we propose to combine complementary strategies

e Benefits of combining strategies

Performance

Strategies can be cascaded—try a quick, efficient method first; try
resource-hungry methods later

Accuracy
Different strategies have complementary verification capabilities

Expose hidden assumptions, improve understanding of individual
strategies

Increase confidence in verification results
Ease of use

Less burden on user to choose between strategies

Less burden on user to understand idiosyncrasies of individual
strategies

Previous Work

e Random search for
debugging formal models

Consistent results when run
to saturation | |

500 1000

Efficient detection of property 0
violations

Saturation: unique results
at first but soon same
results over and over

Unique States Explored

—3¥— SPIN (-DCOLLAPSE)
—E— SPIN (-DHC)
——+— SPIN (-DMA)

10 |
i —O— SPIN (-DCOLLAPSE -DMA)

1k

Lurch vs. SPIN
Model Checker
(leader election
protocol model)

Number of Processes in Input Model

Contributions

e Specific
Effective verification strategy for SCR software specifications

Exploiting complementary capability and performance of
verification tools integrated with SCR Toolset

e (General

Justification for future work to develop multiple-tool verification
strategies for other types of formal models

e Additional contributions
Lurch random search tool for debugging formal models
Automatic translation from SCR to Lurch
Lessons learned in use of individual verification tools

How to get accurate results using SPIN and NuSMV model
checkers on SCR specifications

Overview (3)

e Three Key Results
e Introduction

e Related Work

Testability
Verification
Random Search

e Motivating Examples
e Case Study
e Conclusion

Testability

e Definitions

The degree to which a program facilitates the establishment of
test criteria and performance of tests (IEEE Glossary of Software
Engineering Terminology)

The probability a program will fail under test, if it contains at least
one fault (Voas and Miller, Bertolino and Stringini)

Reachability: for a more testable program, fewer tests exercise
more behavior (Menzies and Cukic)

e Testability in the context of random search
Saturation — quick rise to a high plateau

e Testability in the context of alternative testing strategies
Testability is relative to testing strategy

A given program will be most testable by a combination of
complementary strategies

Verification

e Formal methods
Powerful but costly in user effort, expertise
Model Checking

Easier to use (although still difficult), but costly in time and memory
requirements

Complete Strategies for Improving Scalability
BDDs (SMV), partial order reduction (SPIN), state compression

Incomplete Strategies

Boun?}ed model checking (SMV), lossy state compression, random
searc

Use of model checking terminated early

More powerful testing tools (which scale to, e.g., source code)
inspired by ideas from Model Checking

Many strategies for improving scalability—many different
strengths and weaknesses

Phase Transition
(hard or hard to
show impossible)

Random Search s

Easy to Show
Impossible

e Randomized algorithms
Simplicity, robustness, efficiency,
effectiveness

But not repeatable, not guaranteed to More Conétraihts _
find the best solution

e Problem structures (theoretically) favorable to random search

Because of a phase transition
Worst-case problem instances a small subset of all instances

Because of funnels
A small subset of key variables largely determine the behavior of everything
else

e Random search used to debug protocol models (West)

Surprisingly successful
Faults (much) less complex than the systems they reside in?

More Effort —

Overview (4)

e Three Key Results
e Introduction
e Related Work

e Motivating Examples
Inconsistent Results (3 Examples)
Performance Variations (4 Examples)

e Case Study
e Conclusion

Inconsistent Results

(from alternative verification tools)

e Cadence SMV and NuSMV

NuSMV missed error detected by Cadence \

SMV

Automatic translator output fine for Cadence
SMV, but not right (although syntactically
correct) for NuSMV

e SPIN and Lurch

SPIN (complete tool) missed error detected
by Lurch (incomplete tool)

Translator to SPIN used invalid d_step

e SPIN and Salsa
SPIN reported violation of property proved
true by Salsa

NATURE constraint in SCR model ignored
by translator to SPIN

>

y

No indication
NuSMV or SPIN
had been used
incorrectly on
these models

Performance Variations

e SPIN and Lurch on fault-seeded SCR specifications

Lurch more quickly detected errors in 34 of 38 fault-seeded
versions

Lurch: 3.74 s; SPIN: 43.3 s (avg for 34)
Combined strategy: 46.5 s; SPIN: 82.4 s (avg for 38)

e NuSMV and Lurch on fault-seeded versions of
(large) RSML model

Lurch more quickly detected errors in 42 of 44 fault-seeded
versions

Lurch: 251 s; NuSMV: 7920 s (avg for 42)
Combined strategy: 1100 s; NuSMV: 8200 s (avg for 44)

Performance Variations (2)

e Two (slightly) different versions of the dining philosophers problem
SPIN finds deadlock much faster in the normal version
NuSMV finds deadlock much faster in the no-/oop version

e Scalable multi-process leader election protocol
Model seeded with two faults

SPIN very fast at detecting property violation on instances with an even
number of processes, but very slow on instances with an odd number

Lurch fast (but
| | | | | | |

inCOmplete) on 1000 F 4 Lurch, Combined Strategy
all instances 100 |- --->%-- SPIN

10 |

il

0.1 F

Number of Processes Participating in Election

Overview (5)

Three Key Results
Introduction

Related Work
Motivating Examples
Case Study

Verification Tools

PACS SCR Specification

Generating Fault-Seeded Specifications
Experimental Results

Comparing Subsets of Specifications
Proposed Combination Strategy

Conclusion

Verification Tools

e SCR Toolset Consistency Checker
Can check syntax, generic properties

e Salsa Invariant Checker

Can prove user-specified and generic properties, buk
unproven properties may or may not be true

Cadence SMV and NuSMV Symbolic Model
Checkers

Can detect property violations, but only for single- (= Automatic -
state assertions translators in

SPIN Explicit-State Model Checker SCR Toolset

Can detect violations of single and two-state
assertions, but requires most time and memory 7

Lurch Random Search Tool

Can detect violations of single and two-state
assertions, but not complete

Translator from SPIN (Promela), produced by SCR
Toolset, to Lurch

PACS SCR Specification

p\,\\)

EnterCard

Closed)

- e heckPIN
CheckCard) @T(mCardvaiid) e @CmPiNinput) * o

@F(mPINValid) WHEN

@F(mCardValid) WHEN
(tNumPReads < MaxPINError - 1)

(tNumCReads < MaxCardError - 1)

@T(mGate

@(mCardInput)

\ Proceed

ReEnterCard ReEnterPIN

@F(mPINValid) WHEN

@F(mCardValid) WHEN (tNumPReads = MaxPINError - 1)
meCaravaili

(tNumCReads = MaxCardError - 1)

@C(mOverride) Override

Based on prose requirements from others’ work comparing high
process maturity vs. formal methods for effectiveness in producing
reliable software

SCR specification derived from requirements document as an example
of a high-quality formal requirements specification

Checks user card and PIN number, grants access to a restricted area

Generating Fault-Seeded
Specifications

e 10 mutation operators chosen based on Offutt et.al.
and Andrews et.al.

3 taken directly from Offutt’s set of 5 (judged sufficient for
Fortran programs)

3 more based on remaining 2 from Offutt
4 operators designed to be more SCR-specific

e 323 fault-seeded specifications used in experiments
229 with one mutation, 94 with two mutations

Included 45 generated manually for preliminary
experiments (tools’ performance on these very similar to
performance on those generated automatically)

90 found to be equivalent mutants

Experimental Results

e For 122 specifications in
which Lurch, SMV and
SPIN detected property
violations, running SMV
saves 6 minutes.

For 82 specifications in
which Lurch and SPIN
detected property viol-
ations, running Lurch saves
41 minutes.

For 19 specifications in which SMV

Lurch (204)

(Nu)SMV (141)

SPIN (233)

All (323)

Equivalent Mutants

and SPIN detected property violations, running SMV

saves 201 minutes (3.5 hours).

Experimental Results (2)

e Complementary performance (time requirements)

For 122 specifications with property violations detected by
all tools, fastest required
less than 1 s and slowest
required less than 20 s

For 107 specifications
impossible for 1 or more
tools, fastest tool
required less than 100 s

Only 4 specifications
required over 500 s for
best tool

] T UL | T L

Minimum Time Required for any Tool (s)

Maximum Time Required for any Tool (s)

Experimental Results (3)

e Complementary performance (memory requirements)

For 122 specifications with property violations detected by
all tools, best required less

than 5 MB and worst T
required less than 125 MB [

For 103 specifications
impossible for 1 or more
tools, best tool required
less than 50 MB

Just 8 specifications
required about 500 MB
for best tool

Minimum Memory Required for any Tool (MB)

100 1000

Maximum Memory Required for any Tool (MB)

Comparing Subsets of
Specifications

e Subsets based on Salsa results

Specifications for which Salsa proved fewer user-specified
assertions were easier for Lurch, much easier for SPIN

Specifications for which Salsa proved fewer generic properties
were harder for Lurch

Specifications for which Salsa results matched results on the
original were easier for Lurch, but harder for SPIN

e Subsets based on mutation operators
CRP (constant repl.) harder for all tools

EVR (enum type value repl.) + ROR (relational op. repl.) harder
for all tools

For each tool, a different operator (or pair of operators) was most
difficult

Two-mutation specifications more difficult for NuSMV but easier
for SPIN and Lurch

Proposed Combination Strategy

Run Lurch
to Saturation

Run SMV

Fault : Fault
Detected Stop: Fault Detected Stop: Fault

Single Tool Complete Strategy

Remove Assenions Run SPIN with
Proved by SMV Default Settings

Baseline Complete Strategy

L Stop: Fault Remove d_step from
Detected : SPIN Model

A J

Remove Assertions
Proved by Salsa

Run SPIN with Settings
for Complete Run

Run SPIN with Settings
for Complete Run

All Assertions .
Proved Stop: Correct
Fault

Detected Stop: Fault

Fault

Detected Stop: Fault

Stop: Correct

Proposed Combination Strategy (3)

1 I 1 1 1 I 1 1 1 I 1 I 1 I
—— Baseline Complete Strategy (SPIN, MA, no d_step)

- --©— Single Tool Complete Strategy (SPIN, 3 configurations)
--A-~ Combined Strategy (all tools)

SPIN, with settings for
full verification run on I
model without d_step —_;

100 |

Combined Strategy
(SMV, Salsa, Lurch,
SPIN in 3 modes)

)
<
=
o
=
[0)
p=

Medians

SPIN, 3 Modes: with default
settings, with settings for full /?
verification run, with settings

for full run on model without

d_step

Overview (6)

e Three Key Results

e Introduction

e Related Work

e Motivating Examples
e Case Study

e Conclusion
Conceptual Model of Verification Challenges
Open Research Questions
Summary

Conceptual Model of Verification
Challenges

/

B

|

Verification Space
(Performance Issues)

a2 I

Validation Space
(Accuracy Issues)

CSpecificatiorﬁ/

/77 1T N\

Multiple Translators <&
(Different Levels of Abstraction)

~

Start with a specification (i.e.,
some software artifact and
_— definition of correctness)

Information from specification
_— moves through a validation
space via translation

\/// i \\\/

Accuracy Issues

Verification
Strategy

In verification space, check that
part of specification representing
behavior is consistent with part

Verificatio
nj Strategy

(Complementary Strategies for Improving Scalability)

] [Veriﬁcatio

Strategy

.n}‘/

representing correctness

Performance Issues

Open Research Questions

e |If verification tools cannot provide 100% confidence in their
results...

Because of hidden assumptions
Incompleteness
Accuracy issues in translation

e \What level of confidence can verification tools provide?

How can we quantify and compare the level of confidence provided
by individual verification methods?

How can we measure confidence for a combination of methods?
e Would conclusions from our case study be confirmed by
additional similar experiments?
On other SCR models, within the framework of the SCR Toolset?
On other software artifacts, in other verification frameworks?

To what degree can our assessment of individual tools be
generalized to verification of other models, in other frameworks,
etc.?

Open Research Questions (2)

e Why do the verification strategies we considered work the way
they do?
Are there measurable attributes of input models that could be used
to predict the performance of the different verification strategies?
Can we learn from these kinds of experiments how verification
algorithms could be modified to improve their effectiveness?

If tools’ performance is very sensitive to minor changes in the input
model, might it also be very sensitive to minor changes in the
verification algorithm?

e \What is the best role for incomplete random search in automated
verification?
|s there any way to measure how much confidence of correctness is

provided by a random search run in which no property violation is
detected?

Can saturation tell us anything about the size and structure of the
unexplored portion of the model?

Could the performance of random search be used to predict the
performance of other verification strategies?

Summary

e Software verification offers significant benefits but with
significant costs

Validation cost

Expertise in modeling languages and system to be verified,
domain knowledge

Verification cost
Expertise in verification methods, computational resources

e Strategies for decreasing these costs can be
combined to create a strategy that is more accurate
and more efficient

Choose the right tool at the right time? No, Use all the
tools all the time

Multiple translation strategies give insight into accuracy
issues, facilitate validation

Multiple verification strategies check each other’s results, can
be cascaded to improve performance

