
Combining Complementary
Formal Verification Strategies to

Improve Performance and
Accuracy

David Owen

June 15, 2007

2

Overview
 Four Key Ideas

 A Typical Formal Verification Strategy
 Complementary Verification Capability
 Complementary Performance
 Performance of Combined Strategy

 Introduction
 Related Work
 Motivating Examples
 Case Study
 Conclusion

3

A Typical Formal Verification
Strategy

Software

Abstract Model of
Software Design

Correctness
Properties

Automated
Verification

Tool

Manual or
Automatic
Translation

Communicating finite-state
machines, Statecharts, etc.

Generic properties, assertions,
temporal logic properties Configuration settings,

strategies for decreasing
time, memory required

Properties proved, property violations, paths
to property violations (counterexamples)

4

Complementary Verification
Capability

Three verification strategies:
 1. Random search
 2. Symbolic model checking
 3. Explicit-state model checking

Sets of fault-seeded software
models for which each strategy
could detect a property violation

Remaining software models, which
contain no property violations

Overlap = opportunity
to combine strategies

5

Complementary Performance

Software models
in which all tools
easily detect a
property violation

Software models in which
some tools easily detect a
property violation, but it’s
impossible for other tools

Software models
for which it’s hard
or impossible for
any tool to detect
a property violation

Nearly all models not easily checked
by all tools are easy for at least one tool

6

Performance of Combined Strategy

SPIN, 3 Modes

SPIN, 1 Mode

Combined Strategy
Medians

Strategy combining multiple tools is faster and often
requires less memory than single-tool alternative strategies

7

Overview (2)
 Three Key Results
 Introduction

 Background
 Combining Complementary Verification Strategies
 Previous Work
 Contributions

 Related Work
 Motivating Examples
 Case Study
 Conclusion

8

Background

 Increasingly complex software, increasingly critical
applications

 Powerful but costly verification methods
 Cost in user effort and verification expertise, domain

knowledge
 Cost in time and memory required to run automated tools

 Many different strategies for decreasing these costs
 Strategies for decreasing modeling effort
 Strategies for more efficient verification

9

Combining Complementary
Verification Strategies
 Alternative strategies have different strengths

 How to choose the right strategy? (Cobleigh et.al.)
 Here we propose to combine complementary strategies

 Benefits of combining strategies
 Performance

 Strategies can be cascaded—try a quick, efficient method first; try
resource-hungry methods later

 Accuracy
 Different strategies have complementary verification capabilities
 Expose hidden assumptions, improve understanding of individual

strategies
 Increase confidence in verification results

 Ease of use
 Less burden on user to choose between strategies
 Less burden on user to understand idiosyncrasies of individual

strategies

10

Previous Work

 Random search for
debugging formal models
 Consistent results when run

to saturation
 Efficient detection of property

violations

Lurch vs. SPIN
Model Checker
(leader election
protocol model)

Saturation: unique results
at first but soon same
results over and over

11

Contributions
 Specific

 Effective verification strategy for SCR software specifications
 Exploiting complementary capability and performance of

verification tools integrated with SCR Toolset
 General

 Justification for future work to develop multiple-tool verification
strategies for other types of formal models

 Additional contributions
 Lurch random search tool for debugging formal models
 Automatic translation from SCR to Lurch
 Lessons learned in use of individual verification tools
 How to get accurate results using SPIN and NuSMV model

checkers on SCR specifications

12

Overview (3)

 Three Key Results
 Introduction
 Related Work

 Testability
 Verification
 Random Search

 Motivating Examples
 Case Study
 Conclusion

13

Testability
 Definitions

 The degree to which a program facilitates the establishment of
test criteria and performance of tests (IEEE Glossary of Software
Engineering Terminology)

 The probability a program will fail under test, if it contains at least
one fault (Voas and Miller, Bertolino and Stringini)

 Reachability: for a more testable program, fewer tests exercise
more behavior (Menzies and Cukic)

 Testability in the context of random search
 Saturation – quick rise to a high plateau

 Testability in the context of alternative testing strategies
 Testability is relative to testing strategy
 A given program will be most testable by a combination of

complementary strategies

14

Verification
 Formal methods

 Powerful but costly in user effort, expertise
 Model Checking

 Easier to use (although still difficult), but costly in time and memory
requirements

 Complete Strategies for Improving Scalability
 BDDs (SMV), partial order reduction (SPIN), state compression

 Incomplete Strategies
 Bounded model checking (SMV), lossy state compression, random

search
 Use of model checking terminated early

 More powerful testing tools (which scale to, e.g., source code)
inspired by ideas from Model Checking

 Many strategies for improving scalability—many different
strengths and weaknesses

15

Random Search
 Randomized algorithms

 Simplicity, robustness, efficiency,
effectiveness

 But not repeatable, not guaranteed to
find the best solution

 Problem structures (theoretically) favorable to random search
 Because of a phase transition

 Worst-case problem instances a small subset of all instances
 Because of funnels

 A small subset of key variables largely determine the behavior of everything
else

 Random search used to debug protocol models (West)
 Surprisingly successful
 Faults (much) less complex than the systems they reside in?

16

Overview (4)

 Three Key Results
 Introduction
 Related Work
 Motivating Examples

 Inconsistent Results (3 Examples)
 Performance Variations (4 Examples)

 Case Study
 Conclusion

17

Inconsistent Results
(from alternative verification tools)

 Cadence SMV and NuSMV
 NuSMV missed error detected by Cadence

SMV
 Automatic translator output fine for Cadence

SMV, but not right (although syntactically
correct) for NuSMV

 SPIN and Lurch
 SPIN (complete tool) missed error detected

by Lurch (incomplete tool)
 Translator to SPIN used invalid d_step

 SPIN and Salsa
 SPIN reported violation of property proved

true by Salsa
 NATURE constraint in SCR model ignored

by translator to SPIN

No indication
NuSMV or SPIN
had been used
incorrectly on
these models

18

Performance Variations
 SPIN and Lurch on fault-seeded SCR specifications

 Lurch more quickly detected errors in 34 of 38 fault-seeded
versions

 Lurch: 3.74 s; SPIN: 43.3 s (avg for 34)
 Combined strategy: 46.5 s; SPIN: 82.4 s (avg for 38)

 NuSMV and Lurch on fault-seeded versions of
(large) RSML model
 Lurch more quickly detected errors in 42 of 44 fault-seeded

versions
 Lurch: 251 s; NuSMV: 7920 s (avg for 42)
 Combined strategy: 1100 s; NuSMV: 8200 s (avg for 44)

19

Performance Variations (2)
 Two (slightly) different versions of the dining philosophers problem

 SPIN finds deadlock much faster in the normal version
 NuSMV finds deadlock much faster in the no-loop version

 Scalable multi-process leader election protocol
 Model seeded with two faults
 SPIN very fast at detecting property violation on instances with an even

number of processes, but very slow on instances with an odd number
 Lurch fast (but

incomplete) on
all instances

20

Overview (5)
 Three Key Results
 Introduction
 Related Work
 Motivating Examples
 Case Study

 Verification Tools
 PACS SCR Specification
 Generating Fault-Seeded Specifications
 Experimental Results
 Comparing Subsets of Specifications
 Proposed Combination Strategy

 Conclusion

21

Verification Tools
 SCR Toolset Consistency Checker

 Can check syntax, generic properties
 Salsa Invariant Checker

 Can prove user-specified and generic properties, but
unproven properties may or may not be true

 Cadence SMV and NuSMV Symbolic Model
Checkers
 Can detect property violations, but only for single-

state assertions
 SPIN Explicit-State Model Checker

 Can detect violations of single and two-state
assertions, but requires most time and memory

 Lurch Random Search Tool
 Can detect violations of single and two-state

assertions, but not complete
 Translator from SPIN (Promela), produced by SCR

Toolset, to Lurch

Automatic
translators in
SCR Toolset

22

PACS SCR Specification

 Based on prose requirements from others’ work comparing high
process maturity vs. formal methods for effectiveness in producing
reliable software

 SCR specification derived from requirements document as an example
of a high-quality formal requirements specification

 Checks user card and PIN number, grants access to a restricted area

23

Generating Fault-Seeded
Specifications

 10 mutation operators chosen based on Offutt et.al.
and Andrews et.al.
 3 taken directly from Offutt’s set of 5 (judged sufficient for

Fortran programs)
 3 more based on remaining 2 from Offutt
 4 operators designed to be more SCR-specific

 323 fault-seeded specifications used in experiments
 229 with one mutation, 94 with two mutations
 Included 45 generated manually for preliminary

experiments (tools’ performance on these very similar to
performance on those generated automatically)

 90 found to be equivalent mutants

24

Experimental Results

 For 122 specifications in
which Lurch, SMV and
SPIN detected property
violations, running SMV
saves 6 minutes.

 For 82 specifications in
which Lurch and SPIN
detected property viol-
ations, running Lurch saves
41 minutes.

 For 19 specifications in which SMV
and SPIN detected property violations, running SMV
saves 201 minutes (3.5 hours).

25

Experimental Results (2)
 Complementary performance (time requirements)

 For 122 specifications with property violations detected by
all tools, fastest required
less than 1 s and slowest
required less than 20 s

 For 107 specifications
impossible for 1 or more
tools, fastest tool
required less than 100 s

 Only 4 specifications
required over 500 s for
best tool

26

Experimental Results (3)
 Complementary performance (memory requirements)

 For 122 specifications with property violations detected by
all tools, best required less
than 5 MB and worst
required less than 125 MB

 For 103 specifications
impossible for 1 or more
tools, best tool required
less than 50 MB

 Just 8 specifications
required about 500 MB
for best tool

27

Comparing Subsets of
Specifications
 Subsets based on Salsa results

 Specifications for which Salsa proved fewer user-specified
assertions were easier for Lurch, much easier for SPIN

 Specifications for which Salsa proved fewer generic properties
were harder for Lurch

 Specifications for which Salsa results matched results on the
original were easier for Lurch, but harder for SPIN

 Subsets based on mutation operators
 CRP (constant repl.) harder for all tools
 EVR (enum type value repl.) + ROR (relational op. repl.) harder

for all tools
 For each tool, a different operator (or pair of operators) was most

difficult
 Two-mutation specifications more difficult for NuSMV but easier

for SPIN and Lurch

28

Proposed Combination Strategy

29

Proposed Combination Strategy (3)

SPIN, 3 Modes: with default
settings, with settings for full
verification run, with settings
for full run on model without
d_step

SPIN, with settings for
full verification run on
model without d_step

Combined Strategy
(SMV, Salsa, Lurch,
SPIN in 3 modes)

Medians

30

Overview (6)

 Three Key Results
 Introduction
 Related Work
 Motivating Examples
 Case Study
 Conclusion

 Conceptual Model of Verification Challenges
 Open Research Questions
 Summary

31

Conceptual Model of Verification
Challenges

Start with a specification (i.e.,
some software artifact and
definition of correctness)

Information from specification
moves through a validation
space via translation

In verification space, check that
part of specification representing
behavior is consistent with part
representing correctness

Accuracy Issues

Performance Issues

32

Open Research Questions
 If verification tools cannot provide 100% confidence in their

results...
 Because of hidden assumptions
 Incompleteness
 Accuracy issues in translation

 What level of confidence can verification tools provide?
 How can we quantify and compare the level of confidence provided

by individual verification methods?
 How can we measure confidence for a combination of methods?

 Would conclusions from our case study be confirmed by
additional similar experiments?
 On other SCR models, within the framework of the SCR Toolset?
 On other software artifacts, in other verification frameworks?
 To what degree can our assessment of individual tools be

generalized to verification of other models, in other frameworks,
etc.?

33

Open Research Questions (2)
 Why do the verification strategies we considered work the way

they do?
 Are there measurable attributes of input models that could be used

to predict the performance of the different verification strategies?
 Can we learn from these kinds of experiments how verification

algorithms could be modified to improve their effectiveness?
 If tools’ performance is very sensitive to minor changes in the input

model, might it also be very sensitive to minor changes in the
verification algorithm?

 What is the best role for incomplete random search in automated
verification?
 Is there any way to measure how much confidence of correctness is

provided by a random search run in which no property violation is
detected?

 Can saturation tell us anything about the size and structure of the
unexplored portion of the model?

 Could the performance of random search be used to predict the
performance of other verification strategies?

34

Summary
 Software verification offers significant benefits but with

significant costs
 Validation cost

 Expertise in modeling languages and system to be verified,
domain knowledge

 Verification cost
 Expertise in verification methods, computational resources

 Strategies for decreasing these costs can be
combined to create a strategy that is more accurate
and more efficient
 Choose the right tool at the right time? No, Use all the

tools all the time
 Multiple translation strategies give insight into accuracy

issues, facilitate validation
 Multiple verification strategies check each other’s results, can

be cascaded to improve performance

