
Combining Complementary
Formal Verification Strategies to

Improve Performance and
Accuracy

David Owen

June 15, 2007

2

Overview
 Four Key Ideas

 A Typical Formal Verification Strategy
 Complementary Verification Capability
 Complementary Performance
 Performance of Combined Strategy

 Introduction
 Related Work
 Motivating Examples
 Case Study
 Conclusion

3

A Typical Formal Verification
Strategy

Software

Abstract Model of
Software Design

Correctness
Properties

Automated
Verification

Tool

Manual or
Automatic
Translation

Communicating finite-state
machines, Statecharts, etc.

Generic properties, assertions,
temporal logic properties Configuration settings,

strategies for decreasing
time, memory required

Properties proved, property violations, paths
to property violations (counterexamples)

4

Complementary Verification
Capability

Three verification strategies:
 1. Random search
 2. Symbolic model checking
 3. Explicit-state model checking

Sets of fault-seeded software
models for which each strategy
could detect a property violation

Remaining software models, which
contain no property violations

Overlap = opportunity
to combine strategies

5

Complementary Performance

Software models
in which all tools
easily detect a
property violation

Software models in which
some tools easily detect a
property violation, but it’s
impossible for other tools

Software models
for which it’s hard
or impossible for
any tool to detect
a property violation

Nearly all models not easily checked
by all tools are easy for at least one tool

6

Performance of Combined Strategy

SPIN, 3 Modes

SPIN, 1 Mode

Combined Strategy
Medians

Strategy combining multiple tools is faster and often
requires less memory than single-tool alternative strategies

7

Overview (2)
 Three Key Results
 Introduction

 Background
 Combining Complementary Verification Strategies
 Previous Work
 Contributions

 Related Work
 Motivating Examples
 Case Study
 Conclusion

8

Background

 Increasingly complex software, increasingly critical
applications

 Powerful but costly verification methods
 Cost in user effort and verification expertise, domain

knowledge
 Cost in time and memory required to run automated tools

 Many different strategies for decreasing these costs
 Strategies for decreasing modeling effort
 Strategies for more efficient verification

9

Combining Complementary
Verification Strategies
 Alternative strategies have different strengths

 How to choose the right strategy? (Cobleigh et.al.)
 Here we propose to combine complementary strategies

 Benefits of combining strategies
 Performance

 Strategies can be cascaded—try a quick, efficient method first; try
resource-hungry methods later

 Accuracy
 Different strategies have complementary verification capabilities
 Expose hidden assumptions, improve understanding of individual

strategies
 Increase confidence in verification results

 Ease of use
 Less burden on user to choose between strategies
 Less burden on user to understand idiosyncrasies of individual

strategies

10

Previous Work

 Random search for
debugging formal models
 Consistent results when run

to saturation
 Efficient detection of property

violations

Lurch vs. SPIN
Model Checker
(leader election
protocol model)

Saturation: unique results
at first but soon same
results over and over

11

Contributions
 Specific

 Effective verification strategy for SCR software specifications
 Exploiting complementary capability and performance of

verification tools integrated with SCR Toolset
 General

 Justification for future work to develop multiple-tool verification
strategies for other types of formal models

 Additional contributions
 Lurch random search tool for debugging formal models
 Automatic translation from SCR to Lurch
 Lessons learned in use of individual verification tools
 How to get accurate results using SPIN and NuSMV model

checkers on SCR specifications

12

Overview (3)

 Three Key Results
 Introduction
 Related Work

 Testability
 Verification
 Random Search

 Motivating Examples
 Case Study
 Conclusion

13

Testability
 Definitions

 The degree to which a program facilitates the establishment of
test criteria and performance of tests (IEEE Glossary of Software
Engineering Terminology)

 The probability a program will fail under test, if it contains at least
one fault (Voas and Miller, Bertolino and Stringini)

 Reachability: for a more testable program, fewer tests exercise
more behavior (Menzies and Cukic)

 Testability in the context of random search
 Saturation – quick rise to a high plateau

 Testability in the context of alternative testing strategies
 Testability is relative to testing strategy
 A given program will be most testable by a combination of

complementary strategies

14

Verification
 Formal methods

 Powerful but costly in user effort, expertise
 Model Checking

 Easier to use (although still difficult), but costly in time and memory
requirements

 Complete Strategies for Improving Scalability
 BDDs (SMV), partial order reduction (SPIN), state compression

 Incomplete Strategies
 Bounded model checking (SMV), lossy state compression, random

search
 Use of model checking terminated early

 More powerful testing tools (which scale to, e.g., source code)
inspired by ideas from Model Checking

 Many strategies for improving scalability—many different
strengths and weaknesses

15

Random Search
 Randomized algorithms

 Simplicity, robustness, efficiency,
effectiveness

 But not repeatable, not guaranteed to
find the best solution

 Problem structures (theoretically) favorable to random search
 Because of a phase transition

 Worst-case problem instances a small subset of all instances
 Because of funnels

 A small subset of key variables largely determine the behavior of everything
else

 Random search used to debug protocol models (West)
 Surprisingly successful
 Faults (much) less complex than the systems they reside in?

16

Overview (4)

 Three Key Results
 Introduction
 Related Work
 Motivating Examples

 Inconsistent Results (3 Examples)
 Performance Variations (4 Examples)

 Case Study
 Conclusion

17

Inconsistent Results
(from alternative verification tools)

 Cadence SMV and NuSMV
 NuSMV missed error detected by Cadence

SMV
 Automatic translator output fine for Cadence

SMV, but not right (although syntactically
correct) for NuSMV

 SPIN and Lurch
 SPIN (complete tool) missed error detected

by Lurch (incomplete tool)
 Translator to SPIN used invalid d_step

 SPIN and Salsa
 SPIN reported violation of property proved

true by Salsa
 NATURE constraint in SCR model ignored

by translator to SPIN

No indication
NuSMV or SPIN
had been used
incorrectly on
these models

18

Performance Variations
 SPIN and Lurch on fault-seeded SCR specifications

 Lurch more quickly detected errors in 34 of 38 fault-seeded
versions

 Lurch: 3.74 s; SPIN: 43.3 s (avg for 34)
 Combined strategy: 46.5 s; SPIN: 82.4 s (avg for 38)

 NuSMV and Lurch on fault-seeded versions of
(large) RSML model
 Lurch more quickly detected errors in 42 of 44 fault-seeded

versions
 Lurch: 251 s; NuSMV: 7920 s (avg for 42)
 Combined strategy: 1100 s; NuSMV: 8200 s (avg for 44)

19

Performance Variations (2)
 Two (slightly) different versions of the dining philosophers problem

 SPIN finds deadlock much faster in the normal version
 NuSMV finds deadlock much faster in the no-loop version

 Scalable multi-process leader election protocol
 Model seeded with two faults
 SPIN very fast at detecting property violation on instances with an even

number of processes, but very slow on instances with an odd number
 Lurch fast (but

incomplete) on
all instances

20

Overview (5)
 Three Key Results
 Introduction
 Related Work
 Motivating Examples
 Case Study

 Verification Tools
 PACS SCR Specification
 Generating Fault-Seeded Specifications
 Experimental Results
 Comparing Subsets of Specifications
 Proposed Combination Strategy

 Conclusion

21

Verification Tools
 SCR Toolset Consistency Checker

 Can check syntax, generic properties
 Salsa Invariant Checker

 Can prove user-specified and generic properties, but
unproven properties may or may not be true

 Cadence SMV and NuSMV Symbolic Model
Checkers
 Can detect property violations, but only for single-

state assertions
 SPIN Explicit-State Model Checker

 Can detect violations of single and two-state
assertions, but requires most time and memory

 Lurch Random Search Tool
 Can detect violations of single and two-state

assertions, but not complete
 Translator from SPIN (Promela), produced by SCR

Toolset, to Lurch

Automatic
translators in
SCR Toolset

22

PACS SCR Specification

 Based on prose requirements from others’ work comparing high
process maturity vs. formal methods for effectiveness in producing
reliable software

 SCR specification derived from requirements document as an example
of a high-quality formal requirements specification

 Checks user card and PIN number, grants access to a restricted area

23

Generating Fault-Seeded
Specifications

 10 mutation operators chosen based on Offutt et.al.
and Andrews et.al.
 3 taken directly from Offutt’s set of 5 (judged sufficient for

Fortran programs)
 3 more based on remaining 2 from Offutt
 4 operators designed to be more SCR-specific

 323 fault-seeded specifications used in experiments
 229 with one mutation, 94 with two mutations
 Included 45 generated manually for preliminary

experiments (tools’ performance on these very similar to
performance on those generated automatically)

 90 found to be equivalent mutants

24

Experimental Results

 For 122 specifications in
which Lurch, SMV and
SPIN detected property
violations, running SMV
saves 6 minutes.

 For 82 specifications in
which Lurch and SPIN
detected property viol-
ations, running Lurch saves
41 minutes.

 For 19 specifications in which SMV
and SPIN detected property violations, running SMV
saves 201 minutes (3.5 hours).

25

Experimental Results (2)
 Complementary performance (time requirements)

 For 122 specifications with property violations detected by
all tools, fastest required
less than 1 s and slowest
required less than 20 s

 For 107 specifications
impossible for 1 or more
tools, fastest tool
required less than 100 s

 Only 4 specifications
required over 500 s for
best tool

26

Experimental Results (3)
 Complementary performance (memory requirements)

 For 122 specifications with property violations detected by
all tools, best required less
than 5 MB and worst
required less than 125 MB

 For 103 specifications
impossible for 1 or more
tools, best tool required
less than 50 MB

 Just 8 specifications
required about 500 MB
for best tool

27

Comparing Subsets of
Specifications
 Subsets based on Salsa results

 Specifications for which Salsa proved fewer user-specified
assertions were easier for Lurch, much easier for SPIN

 Specifications for which Salsa proved fewer generic properties
were harder for Lurch

 Specifications for which Salsa results matched results on the
original were easier for Lurch, but harder for SPIN

 Subsets based on mutation operators
 CRP (constant repl.) harder for all tools
 EVR (enum type value repl.) + ROR (relational op. repl.) harder

for all tools
 For each tool, a different operator (or pair of operators) was most

difficult
 Two-mutation specifications more difficult for NuSMV but easier

for SPIN and Lurch

28

Proposed Combination Strategy

29

Proposed Combination Strategy (3)

SPIN, 3 Modes: with default
settings, with settings for full
verification run, with settings
for full run on model without
d_step

SPIN, with settings for
full verification run on
model without d_step

Combined Strategy
(SMV, Salsa, Lurch,
SPIN in 3 modes)

Medians

30

Overview (6)

 Three Key Results
 Introduction
 Related Work
 Motivating Examples
 Case Study
 Conclusion

 Conceptual Model of Verification Challenges
 Open Research Questions
 Summary

31

Conceptual Model of Verification
Challenges

Start with a specification (i.e.,
some software artifact and
definition of correctness)

Information from specification
moves through a validation
space via translation

In verification space, check that
part of specification representing
behavior is consistent with part
representing correctness

Accuracy Issues

Performance Issues

32

Open Research Questions
 If verification tools cannot provide 100% confidence in their

results...
 Because of hidden assumptions
 Incompleteness
 Accuracy issues in translation

 What level of confidence can verification tools provide?
 How can we quantify and compare the level of confidence provided

by individual verification methods?
 How can we measure confidence for a combination of methods?

 Would conclusions from our case study be confirmed by
additional similar experiments?
 On other SCR models, within the framework of the SCR Toolset?
 On other software artifacts, in other verification frameworks?
 To what degree can our assessment of individual tools be

generalized to verification of other models, in other frameworks,
etc.?

33

Open Research Questions (2)
 Why do the verification strategies we considered work the way

they do?
 Are there measurable attributes of input models that could be used

to predict the performance of the different verification strategies?
 Can we learn from these kinds of experiments how verification

algorithms could be modified to improve their effectiveness?
 If tools’ performance is very sensitive to minor changes in the input

model, might it also be very sensitive to minor changes in the
verification algorithm?

 What is the best role for incomplete random search in automated
verification?
 Is there any way to measure how much confidence of correctness is

provided by a random search run in which no property violation is
detected?

 Can saturation tell us anything about the size and structure of the
unexplored portion of the model?

 Could the performance of random search be used to predict the
performance of other verification strategies?

34

Summary
 Software verification offers significant benefits but with

significant costs
 Validation cost

 Expertise in modeling languages and system to be verified,
domain knowledge

 Verification cost
 Expertise in verification methods, computational resources

 Strategies for decreasing these costs can be
combined to create a strategy that is more accurate
and more efficient
 Choose the right tool at the right time? No, Use all the

tools all the time
 Multiple translation strategies give insight into accuracy

issues, facilitate validation
 Multiple verification strategies check each other’s results, can

be cascaded to improve performance

