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Software Effort Estimation and Conclusion Stability
Tim Menzies, Member, IEEE, Omid Jalali, Jairus Hihn, Dan Baker, and Karen Lum

Abstract— This paper revisits the conclusion instability problem identified by Kitchenham, Foss, Myrtveit et.al.; i.e. conclusions
regarding which software effort estimation method is “best” is highly contingent on (1) the evaluation criteria and (2) the subset
of the data used in the evaluation. Using non-parametric methods (the Mann-Whitney U test), we show how to avoid conclusion
instability. This paper reports a study that ranked 158 effort estimation methods via three different evaluation criteria and hundreds
of different randomly selected subsets. The same four methods were ranked higher than the other 154 methods regardless of
which evaluation criteria or data subset was applied. Hence, we recommend non-parametric evaluation to evaluate and prune effort
estimation methods. More specifically, when learning effort estimators from COCOMO-style data, we find that manual stratification
defeats many complex algorithmic methods. However, we can do better than manual stratification by augmenting Boehm’s local
calibration method with simple linear-time row and column pruning pre-processors. We also advise against model trees, linear
regression, exponential time feature subset selection, and (unless the data is sparse) methods that average the estimates of nearest
neighbors. To the best of our knowledge, this report is the first to offer stable conclusions regarding effort estimation across such
a wide range of methods.

Index Terms— COCOMO, effort estimation, data mining, evaluation, Mann-Whitney U test, non-parametric tests.

I. INTRODUCTION

Software effort estimates are often wrong. Initial estimates
may be incorrect by a factor of four [1] or even more [2]. As
a result, the allocated funds may be inadequate to develop the
required project. In the worst case, over-running projects are
canceled, wasting the entire development effort. For example,
in 2003, NASA canceled the CLCS system after spending
hundreds of millions of dollars on software development. The
project was canceled after the initial estimate of $206 million
was increased to between $488 million and $533 million [3].
On cancellation, approximately 400 developers lost their jobs
[3].

While the need for better estimates is clear, there exists
a very large number of effort estimation methods [4], [5]
and no good criteria for selecting between them. Few studies
empirically compare all these techniques. What is more usual
are narrowly focused studies (e.g. [2], [6], [7], [8]) that test,
say, linear regression models in different environments.

Kitchenham et.al. [9], Foss et.al. [10] and Myrtveit
et.al. [11] (hereafter, KFM) have doubted the practicality of
comparatively assessing L different learners processing D
data sets. The results of such a comparison, they argue, vary
according to the sub-sample of the data being processed and
the applied evaluation criteria. Foss et.al. comment that it

. . . is futile to search for the Holy Grail: a single,
simple-to-use, universal goodness-of-fit kind of met-
ric, which can be applied with ease to compare
(different methods). [10, p993]
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Methodologically, KFM’s conclusion instability is highly
problematic. Unless we can rank methods and prune inferior
methods, we will soon be overwhelmed by a growing number
of (possibly useless) effort estimation methods. New open
source data mining toolkits are appearing with increasing fre-
quency such as the R project1, Orange2, and the WEKA [12].
Such tools tempt researchers to over-elaborate their effort
estimation tools. For example, our own COSEEKMO tool [13]
takes nearly a day to run its 158 methods. Much of that
execution is wasted since, as shown below, 154 of those
methods are superfluous.

The rest of this paper presents the ranking and pruning
results that culled 154 COSEEKMO methods. Rather than
seeking the best method, we will seek a small set of methods
that perform better than the rest. COSEEKMO contains such a
best set of four methods. Further, in a result that is a counter-
example to the KFM studies, the same set of four methods
is best in studies using three different evaluation criteria and
hundreds of different randomly selected subsets.

We explain our differences from the KFM study as follows.
The root cause of conclusion instability is a very small number
of estimates with very large errors. If these outliers fall into
some of the subsets, then those subsets will have dramatically
different performance results; i.e. will exhibit conclusion in-
stability. Non-parametric statistics such as the U test proposed
by Mann and Whitney [14] mitigate the outlier problem. The
U test uses ranks, not precise numeric values. For example,
if treatment A generates N1 = 5 values {5,7,2,0,4} and
treatment B generates N2 = 6 values {4,8,2,3,6,7}, then these
sort as follows:

Samples A A B B A B A B A B B
Values 0 2 2 3 4 4 5 6 7 7 8

On ranking, averages are used when values are the same:

Samples A A B B A B A B A B B
Values 0 2 2 3 4 4 5 6 7 7 8
Ranks 1 2.5 2.5 4 5.5 5.5 7 8 9.5 9.5 11

1http://www.r-project.org/
2http://www.ailab.si/orange/
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Note that, when ranked in this manner, the largest value (8 in
this case) gets the same rank even if it was ten to a hundred
times larger. That is, such rank tests are less susceptible
to large outliers. Hence, we can make stable conclusions
regarding the best COSEEKMO methods.

The rest of this paper is structured as follows. First, we
demonstrate the conclusion instability problem, which we
explain in terms of large outliers. Next, we justify the use
of the U test and present an example of its use. This will be
followed by a description of the data and methods used in our
study.

The conclusion from our study will be that non-parametric
assessment of effort estimation models does not completely
resolve the conclusion instability problem. As predicted by
KFM, we do not find a single “best” estimation method that
works for all data sets. However, it significantly reduces the
conclusion instability problem to the point where it is possible
to categorically reject many estimation methods. For example,
our study finds four methods that are always better than 154
others, regardless of (a) which data subset was used or (b) what
evaluation criteria was applied.

To the best of our knowledge, this paper is the first report
of stable conclusions in effort estimation.

II. THE CONCLUSION INSTABILITY PROBLEM

A. Symptoms of Instability

KFM caution that, historically, ranking estimation methods
has been done quite poorly. Based on an analysis of two (non-
COCOMO) data sets as well as simulations over artificially
generated data set, Foss et.al. and Myrtveit et.al. concluded
that numerous commonly used methods such as the mean
MRE3 are unreliable measures of estimation effectiveness.
Also, the conclusions reached from these standard measures
can vary wildly depending on which subset of the data is being
used for testing [11].

Figure 1 demonstrates conclusion instability. It shows two
experimental runs. In each run, 30 times, effort estimate
models were built for our 19 subsets using two methods. Each
time, an effort model was built from a randomly selected 90%
of the data. Results are expressed in terms of the difference in
mean MRE between the two subsets; e.g. in Run #1, method1
had a much larger mean MRE than method2.

After Run #1, the results endorse method2 since that method
either (a) did better (lower errors) as method1 or (b) had
similar performance to method1. However, that conclusion is
not stable. Observe in Run #2 that:

• The improvements of method2 over method1 disappeared
in subsets 1,2,3,7, and 11.

• Worse, in subsets 1,2, and 11 method1 performed dra-
matically better than method2.

The deviations seen in 30 repeats of the above procedure
were quite large: within each data set, the standard deviation
on the MREs were {median, max} = {150%, 649%} [13].
Port (personal communication) has proposed a bootstrapping
method to determine the true performance distributions of

3MRE = magnitude of relative error = abs(actual−predicted)/actual.
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Fig. 1. Results of 2 different runs of COSEEKMO comparing two methods
using mean MRE values. Points on the Y-axis show the difference in mean
relative error (MRE) between method1 and method2. Lower values endorse
method2 since, when such values occur, method2 has a lower error than
method1.

COSEEKMO’s methods. That method would require 102 to
103 re-samples and, given COSEEKMO’s current runtimes, it
would take 102 to 103 days to terminate.

One troubling result from the Figure 1 study is that the
number of training examples was not connected to the size of
standard deviation. A pre-experimental intuition was that the
smaller the training set, the worse the prediction instability. On
the contrary, we found small and large instability (i.e. MRE
standard deviation) for both small and large training sets [13].
That is, instability cannot be tamed by further data collection.
Rather, the data must be processed and analyzed in some better
fashion (e.g. U test described below).

These large instabilities explain the contradictory results in
the effort estimation literature. Jorgensen reviews fifteen stud-
ies that compare model-based to expert-based estimation. Five
of those studies found in favor of expert-based methods; five
found no difference; and five found in favor of model-based
estimation [4]. Such diverse conclusions are to be expected if
models exhibit large instabilities in their performance.

B. Diagnosing the Cause

The thin line of Figure 2 is drawn by sorting the relative
error4 (RE) seen in four of the subsets studied in Figure 1.
Observe that while most of the actual RE values are nearly
zero, an infrequent number (on the right hand side) are
extremely large (up to 8000 in the second plot). Such large
spikes in RE result when the predicted values are much larger
than the actual values and result from (1) noise in the data
or (2) a training set that learns an overly steep exponential
function for the effort model.

The size of the spikes in Figure 2 are remarkable. Research
papers typically report RE values in the range 0 ≤ RE ≤ 3
[13]. Such values are completely dwarfed by errors in the
range of 8000 such as those seen in the second plot of Figure 2

4RE = (predicted− actual)/actual
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Fig. 2. Relative errors seen in COSEEKMO’s experiments on four data sets.
Thin lines show the actual values. Thick lines show a Gaussian distribution
that uses mean and standard deviation of the actual values. From top to
bottom, the plots are of: (top) NASA ground systems; NASA software written
around 1975; NASA embedded software (i.e. software developed within tight
hardware, software, and operational constraints); (bottom) some FORTRAN-
based software systems.

(hence, most of the thin lines in Figure 2 are flat). These very
large, but infrequent, outliers explain conclusion instability:

• Large outliers can make mean calculations highly mis-
leading. A single large outlier can make the mean value
far removed from the median5.

5Median: the value below which 50% of the values fall.

• For data sets with only a small number of outliers
(e.g. Figure 2), the conclusions reached from different
subsets can be very different, depending on the absence
or presence of the infrequent outliers.

Figure 2 also illustrates how poorly standard methods assess
the performance of effort estimation data. Demsar [15] offers
a definition of standard methods in data mining. In his study
of four years of proceedings from the International Confer-
ence on Machine Learning, Demsar found that the standard
method of comparative assessment were t-tests over some form
of repeated sub-sampling such as cross-validation, separate
subsets, or randomized re-sampling. Such t-tests assume that
the distributions being studied are Gaussian and, as shown
by the thick line of Figure 2, effort estimation results can
be highly non-Gaussian. These thick lines show a Gaussian
cumulative distribution function computed from the means and
standard deviations of the actual RE values (the thin lines). For
example, the Gaussian approximation to the actual values of

{1.1, 1.3, 1.5, 1.7, 2.1, 2.3, 2.7, 800}

has a mean of 101.6 and a standard deviation of 282.2. Observe
how poorly such Gaussian distributions represent the actual RE
values:

• There exists orders of magnitude differences between the
actual plots (the thin lines) and the Gaussian approxima-
tions (the thick lines).

• The Gaussian goes negative while none of our effort
estimation methods assume that it takes less than no time
to build software.

C. Fixing Instability

The problem of comparatively assessing L learners run on
multiple sub-samples of D data sets has been extensively
studied in the data mining community. T-tests that assume
Gaussian distributions are strongly deprecated. For exam-
ple, Demsar [15] argues that non-Gaussian populations are
common enough to require a methodological change in data
mining.

After reviewing a wide range of comparisons methods6,
Demsar advocates the use of the 1945 Wilcoxon [16] signed-
rank test that compares the ranks for the positive and negative
differences (ignoring the signs). Writing five years earlier,
Kitchenham et.al. [9] comment that the Wilcoxon test has its
limitations. Demsar’s report offers the same conclusion, noting
that the Wilcoxon test requires that the sample sizes are the
same. To fix this problem, Demsar augments Wilcoxon with
the Friedman test.

One test not studied by Demsar is Mann and Whitney’s
1947 modification [14] to Wilcoxon rank-sum test (proposed
along with his signed-rank test). We prefer this test since:

• The Mann-Whitney U test does not require that the
sample sizes are the same. So, in a single U test, learner
L1 can be compared to all its rivals.

6Paired t-tests with and without the use of geometric means of the relative
ratios; binomial tests with the Bonferroni correction; paired t-tests; ANOVA;
Wilcoxon; Friedman
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The sum and median of A’s ranks is

sumA = 1 + 2.5 + 5.5 + 7 + 9.5 = 25.5
medianA = 5.5

and the sum and median of B’s ranks is

sumB = 2.5 + 4 + 5.5 + 8 + 9.5 + 11 = 40.5
medianB = 6.75

The U statistic is calculated from Ux = sumx − (N1(N2 + 1))/2:

UA = 25.5− 5 ∗ 6/2 = 10.5
UB = 40.5− 6 ∗ 7/2 = 19.5

These can be converted to a Z-curve using:

µ = (N1N2)/2 = 516.4

σ =

√
N1N2(N1+N2+1)

12
= 5.477

ZA = (UA − µ)/σ = −0.82
ZB = (UB − µ)/σ = 0.82

(Note that ZA and ZB have the same absolute value. In all case, these
will be the same, with opposite signs.)
If abs(Z) < 1.96 then the samples A and B have the same median
rankings (at the 95% significance level). In this case, we add one to both
tiesA & tiesB . Otherwise, their median values can be compared, using
some domain knowledge. In this work, lower values are better since we
are comparing errors. Hence:

• If medianA < medianB add 1 to both winsA & lossesB .
• Else if medianA > medianB add 1 to both lossesA & winsB .
• Else, add 1 to both tiesA & tiesB .

Fig. 3. An example of the Mann-Whitney U test.

• The U test does not require any post-processing (such
as the Friedman test) to conclude if the median rank
of one population (say, the L1 results) is greater than,
equal to, or less than the median rank of another (say,
the L2, L3, .., Lx results).

Figure 3 shows the U test for the two treatments A and
B discussed in the introduction. The test concludes that
these treatments are not statistically different (at the 95%
significance level). As defined in Figure 3, this test counts
the wins, ties, and losses for A and B (where A and B are
single or groups of methods). Since we seek methods that can
be rejected, the value of interest to us is how often methods
lose.

III. EXPERIMENTS

A. Data

This paper is based on 19 subsets from two sources.
COC817 comes from Boehm’s 1981 text on effort estimation.
NASA938 comes from a study funded by the Space Station
Freedom Program. NASA93 contains data from six different
NASA centers including the Jet Propulsion Laboratory. For
details on this data, see the appendix. In terms of conclusion
instability across data subsets, the important feature to note
is that our data comes from two sources with demonstrably
different properties. In 20 repeats of 90% sampling of the data,
the coefficients learned by linear regression for NASA93 were
found to have a much larger variation than COC81 [17].

7See ”coc81” at http://promisedata.org/repository.
8See ”nasa93” at http://promisedata.org/repository.

The data available to this study was in the COCOMO-
I format [1] that dictates the set of possible features. An
alternative is the case-based reasoning (CBR) approach used
by Shepperd [18] and others [19]. CBR accepts data with any
set of features. COCOMO-I was chosen since we could not
access a large enough set of CBR-style data sets with arbitrary
sets of features. Also, unlike other effort estimators such as
PRICE-S [20], SLIM [21], or SEER-SEM [22], COCOMO
is a public domain model with published data and baseline
results [23].

In 2000, Boehm et.al. updated the COCOMO-I model [24].
After the update, numerous features remained the same:

• Effort is assumed to be exponential on model size.
• Boehm et.al. recommends a procedure called local cali-

bration (described below) for tuning generic COCOMO
to a local situation.

• Boehm et.al. advises that effort estimates can be improved
via manual stratification (described later); i.e. use domain
knowledge to select relevant past data.

At the 2005 COCOMO forum, there were some discussions
about relaxing the security restrictions around the COCOMO-
II data set. To date, those discussions have not progressed.
Since other researchers do not have access to COCOMO-II,
this paper will only report results from COCOMO-I.

B. Experimental Procedure

Each of the 19 subsets of COC81 and NASA93 were
expressed as a table of data P ∗ F . The table stored project
information in P rows and each row included the actual de-
velopment effort. In the 19 subsets of COC81 and NASA93
used in the study, 20 ≤ P ≤ 93. The upper bound of this
range (P = 93) is the largest data set’s size. The lower bound
of this range (P = 20) was selected based on experiments
described elsewhere [13]. For details on these data sets, see
the appendix.

The table also has F columns containing the project fea-
tures {f1, f2, ...}. The features used in this study come from
Boehm’s COCOMO-I work (described in the appendix) and
include items such as lines of code (KLOC), schedule pressure
(sced), analyst capability (acap), etc.

To build an effort model, the rows of each table were divided
at random into a Train and Test set (and |Train|+ |Test| =
P ). COSEEKMO’s different methods are then applied to the
Train set to generate a model. This model was then used
on the Test set. In order to compare this study with our
work [13], we use the same Test set size as the COSEEKMO
study; i.e. |Test| = 10.

Effort models were assessed via three evaluation criteria:
• AR: absolute residual; abs(actual − predicted);
• MRE: magnitude of relative error; abs(predicted−actual)

actual ;
• MER: magnitude of error relative to estimate;

abs(actual−predicted)
predicted ;

Note that, according to conclusion instability, there should be
instability in how methods are ranked by AR, MER, and MRE.

For the sake of statistical validity, the above procedure was
repeated 20 times for each of the 19 subsets of COC81 and
NASA93. Each time, a different seed was used to generate
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method = name row pruning column pruning learner
a = LC 8 8 LC = Boehm’s local calibration
b = COCOMIN + LC 4automatic O(P 2) 8 local calibration
c = COCOMIN + LOCOMO + LC 4automatic O(P 2) 4automatic O(F ·log(F ) + F ) local calibration
d = LOCOMO + LC 8 4automatic O(F ·log(F ) + F ) local calibration
e = Manual Stratification + LC 4manual 8 local calibration
f = M5pW + M5p 8 4Kohavi’s WRAPPER [25] calling M5p [26], O(2F ) model trees
g = LOCALW + LC 8 4Chen’s WRAPPER [13] calling LC, O(2F ) local calibration
h = LsrW + LSR 8 4Kohavi’s WRAPPER [25] calling LSR, O(2F ) linear regression
i = NEAREST 4automatic O(P 2) 8 mean effort of nearest neighbors

Fig. 4. Eight effort estimation methods explored in this paper. F is the number of features (columns) and P is the number of projects (rows).

the Train and Test sets. Recall that our data came from
two different sources (Boehm’s 1981 work and NASA in
the 1990s). Hence, according to conclusion instability, there
should be instability in the conclusions reached from the
data from different sources or across the different randomly
selected Train and Test sets.

C. 158 Methods

COSEEKMO’s 158 methods combine:
• Some learners such as standard linear regression, local

calibration, and model trees.
• Various pre-processors that may prune rows or columns.
• Various nearest neighbor algorithms that can be used

either as learners or as pre-processors to other learners.
Note that only some of the learners use pre-processors.

In all, COSEEKMO’s methods combine 15 learners without
a pre-processor and 8 learners with 8 pre-processors; i.e.
15 + 8 ∗ 8 = 79 combinations in total.

COSEEKMO’s methods input project features described
using the symbolic range very low to extra high. Some of
the methods map the symbolic range to numerics 1..6. Other
methods map the symbolic range into a set of effort multipliers
and scale factors developed by Boehm and are shown in the
appendix (Figure 9). Previously, we have queried the utility of
these effort multipliers and scale factors [13]. COSEEKMO
hence executes its 79 methods twice: once using Boehm’s
values, then once again using perturbations of those values.
Hence, in all, COSEEKMO contains 2 ∗ 79 = 158 methods.

There is insufficient space in this paper to describe the
158 methods (for full details, see [27]). Such a complete
description would be pointless since, as shown below, most
of them are beaten by a very small number of preferred
methods. For example, our previous concerns regarding the
effort multipliers and scale factors proved unfounded (and so
at least half the runtime of COSEEKMO is wasted).

D. Brief Notes on 8 Methods

This paper focuses on the eight methods
(a, b, c, d, ef, g, h, i) of Figure 4. Four of these, (a, b, c, d),
are our preferred methods while the other four comment on
premises of some prior publications [28].

One way to categorize Figure 4 is by their relationship
to accepted practice (as defined in the COCOMO texts [1],
[24]). Methods (a, e) are endorsed as best practice in the
COCOMO community. The others are our attempts to do better

than current established practice using e.g. intricate learning
schemes or intelligent data pre-processors.

Method f is an example of a more intricate learning
schemes. Standard linear regression assumes that the data can
be fitted to a single model. On the other hand, the model trees
used in f [26] permit the generation of multiple models (as
well as a decision tree for selecting the appropriate model).

As to intelligent data pre-processors, COSEEKMO’s pre-
processors prune irrelevant projects and features. After prun-
ing, the learner executes on a new table P ′ ∗ F ′ where
P ′ ⊆ P and F ′ ⊆ F . Pruning is useful since project data
collected in one context may not be relevant to another.
Kitchenham et.al. [29] take great care to document this effect.
In a systematic review comparing estimates generated using
historical data within the same company or imported from
another, Kitchenham et.al. found no case where it was better
to use data from other sites. Indeed, sometimes, importing such
data yielded significantly worse estimates. Similar projects
have less variation and so can be easier to calibrate: Chulani
et.al. [23] & Shepperd and Schofield [30] report that row
pruning improves estimation accuracy.

Row pruning can be manual or automatic. In manual
row pruning (also called “stratification” in the COCOMO
literature [24]), an analyst applies their domain knowledge
to select project data that is similar to the new project to be
estimated. Unlike other methods, the manual stratification used
here uses different subsets to create Train sets.

• In every case except for the manual stratification, Train
and Test sets are created from the same subsets of
NASA93 or COC81.

• In manual stratification, the Test set is created in the
same manner from the subsets. However, the Train set
is created from the projects drawn from the NASA93 or
COC81 and not their subsets.

Automatic row pruning uses algorithmic techniques to select
a subset of the projects (rows). NEAREST and LOCOMO [27]
are automatic and use nearest neighbor methods on the Train
set to find the k most relevant projects to generate predictions
for the projects in the Test set. The core of both automatic
algorithms is a distance measure that must compare all pairs of
projects. Hence, these automatics methods take time O(P 2).
Both NEAREST and LOCOMO learn an appropriate k from
the Train set and the k with the lowest error is used when
processing the Test set. NEAREST averages the effort associ-
ated with the k nearest neighbors while LOCOMO passes the
k nearest neighbors to Boehm’s local calibration (LC) method.

Column pruners fall into two groups:
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• WRAPPER and LOCALW are very thorough search
algorithms that explore subsets of the features, in no set
order. This search takes time O(2F ).

• COCOMIN [31] is far less thorough. COCOMIN is a
near linear-time pre-processor that selects the features on
some heuristic criteria and does not explore all subsets
of the features. It runs in O(F ·log(F )) for the sort and
O(F ) time for the exploration of selected features.

Each method may use a column or row pruner or, as with
(a, i), no pruning at all. In methods (f, h), the notation M5pW
and LsrW denotes a WRAPPER that uses M5p or LSR as its
target learner (respectively).

For more details on these eight methods, see the appendix.

IV. RESULTS

Figures 5, 6, and 7 show results from 20 repeats of:
• Dividing some subset into Train and Test sets;
• Learning an effort model from the Train set using

COSEEKMO’s 158 methods;
• Applying that model to the Test set;
• Collecting performance statistics from the Test set using

AR, MER, or MRE;
• Ranking the performance results from different methods

using Mann-Whitney U test.
In these results, conclusion instability due to changing eval-
uation criteria can be detected by comparing results across
Figure 5, Figure 6, and Figure 7. Also, conclusion instability
due to changing subsets can be detected by comparing results
across different subsets generated by changing the random
seed controlling Train and Test set generation (i.e. the three
runs of Figure 5 that used different random seeds).

A single glance shows our main result: the plots are very
similar. Specifically, the (a, b, c, d) results fall very close to
y = 0 losses. The significance of this result is discussed below.

Each mark on these plots shows the number of times a
method loses in seven COC81 subsets (left plots) and twelve
NASA93 subsets (right plots). The x-axis shows results from
the methods (a, b, c, d, e, f, g, h, i) described in Figure 4.

In these plots, methods that generate lower losses are better.
For example, the top-left plot of Figure 5 shows results for
ranking methods applied to COC81 using AR. In that plot,
all of methods (a, d) results from the seven COCO81 subsets
can be seen at y = losses ≈ 0. That is, in that plot, these two
methods never lose against the other 158 methods.

In a result consistent with the KFM findings, there are
some instabilities in our results. For example, the exemplary
performance of methods (a, d) in the top-left plot of Figure 5
does not repeat in other plots. For example in the NASA93
MRE and MER results shown in Figure 6 and Figure 7, method
b loses much less than methods (a, d).

However, in terms of number of losses generated by meth-
ods (a, b, c, d, e, f, g, h), the following two results holds across
all evaluation criteria and all subsets:

1) One member of method (a, b, c, d) always performs bet-
ter (loses least) than all members of methods (e, f, g, h).
Also, all members of methods (e, f, g, h) perform better
than i.

Results using random seed1:
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Results using random seed2:
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Results using random seed3:
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Fig. 5. U tests using AR and repeated three times with different random
seeds.

2) Compared to 158 methods, one member of (a, b, c, d)
always loses at some rate very close to zero.

As observed by KFM, there is no single universal best
method. Nevertheless, out of 158 methods, there are 154
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Fig. 6. U tests using MRE.
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Fig. 7. U tests using MER.

clearly inferior methods. Hence, we recommend ranking meth-
ods (a, b, c, d) on all the available historical data, then applying
the best ranked method to estimate new projects.

The superiority of (a, b, c, d) is a strong endorsement
of Boehm’s 1981 estimation research. These four methods
are based around Boehm’s preferred method for calibrating
generic COCOMO models to local data. Method a is Boehm’s
local calibration (or LC) procedure (defined in the appendix).
Methods b and d augment LC with pre-processors performing
simple column or row pruning (and method c combines both
b and d). Methods (a, b, c, d) endorse three of Boehm’s 1981
assumptions about effort estimation:

Boehm’81 assumption 1:
Effort can be modeled as a single function that is
exponential on lines of code . . .

Boehm’81 assumption 2:
. . . and linearly proportional to the product of a set
of effort multipliers;

Boehm’81 assumption 3:
The effort multipliers influence the effort by a set of
pre-defined constants that can be taken from Boehm’s
textbook [1].

Our results endorse some of Boehm’s estimation modeling
work, but not all of it. Method e is manual stratification, a com-
monly recommended method in the COCOMO literature. This
method performs surprisingly well and often out-performs
many intricate automatic methods. However, as shown above,
method e is always inferior to more than one of (a, b, c, d).
Hence, contrary to the COCOMO literature, we recommend
replacing manual stratification with automatic methods.

Our results argue that there is little added value in methods
(f, g, h). This is a useful result since these methods contain
some of our slowest algorithms. For example, the WRAPPER
column selection method used in (f, g, h) is an elaborate
heuristic search through, potentially, all combinations of the
columns.

The failure of model trees in method f is also interesting.
If the model trees of method f had out-performed (a, b, c, d),
that would have suggested that effort is a multi-parametric
phenomenon where, e.g. over some critical size of software,
different effects emerge. This proved not to be the case,
endorsing Boehm’s assumption that effort can be modeled as
a single parametric log-linear equation.

Of all the methods in Figure 4, (a, b, c, d) perform the
best and i performs the worst. One distinguishing feature
of method i is the assumptions it makes about the domain.
The NEAREST neighbor method i is assumption-less since
it makes none of the Boehm’81 assumptions listed above.
But, while assumption-less, NEAREST is not assumption-free.
NEAREST uses a simple n-dimensional Euclidean distance
to find similar projects. Wilson & Martinez caution that this
measure is inappropriate for sparse data sets [32]. Such sparse
data sets arise when many of the values of project features
are unavailable. Shepperd & Schofield argue that their case-
based reasoning methods, like NEAREST procedure used in
method i, are better suited to sparse data domains where
precise numeric values are not available on all factors [30].
All our data sets are non-sparse. Hence, it is not surprising
that method i performs poorly on our data.

V. EXTERNAL VALIDITY

The case was made above that our conclusions are valid
across different evaluation criteria and samplings. However, no
empirical evaluation is bias free. Some biases remain including
additional evaluation bias, sampling bias, a paradigm bias, a
modeling bias, and a bias in our selection of methods.

Additional evaluation bias: We have shown stability across
three evaluation criteria: AR, MER, and MRE. This does
not mean that we have shown stability across all possible
evaluation biases. It is certainly possible that biases other
than those explored here will offer different rankings to
our estimation methods. For example, this study does not
explore PRED(30)9 since Shepperd (personal communication)
depreciates it and neither Foss et.al. [10] or Myrtveit et.al. [11]
advocate its use. However, at the very least, we have shown
that the problem of ranking estimation methods may not be
as difficult as suggested by KFM (at least, for non-sparse data
in the COCOMO format).

9PRED(N) is the percent of the MRE less than N%.
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Sampling bias: Our model-based estimation methods use
data and so are only useful in organizations that maintain
historical data on their projects. Such data collection is
rare in organizations with low process maturity. However, it
is common elsewhere; e.g. amongst government contractors
whose contract descriptions include process auditing require-
ments. For example, it is common practice at NASA and the
United States Department of Defense to require a model-
based estimate at each project milestone. Such models are
used to generate estimates or to double-check an expert-based
estimate.

Another source of sampling bias was already mentioned
above; our data sets are non-sparse and sparse data sets may
be more suitable for nearest neighbor tools.

Yet another source of bias is that some of the data used
here comes from NASA and NASA works in a particularly
unique market niche. Nevertheless, we argue that results
from NASA are relevant to the general software engineering
industry. NASA makes extensive use of contractors. These
contractors service many other industries. These contractors
are contractually obliged (ISO-9001) to demonstrate their
understanding and usage of current industrial best practices.
For these reasons, other noted researchers such as Basili,
Zelbowitz, et.al. [33] have argued that conclusions from NASA
data are relevant to the general software engineering industry.

Biases in the paradigm: The paper explores model-based
methods (e.g. COCOMIN, LOCOMO, LC) and not expert-
based methods. Model-based methods use some algorithm
to summarize old data and make predictions about new
projects. Expert-based methods use human expertise (possibly
augmented with process guidelines or checklists) to generate
predictions. Jorgensen [4] argues that most industrial effort
estimation is expert-based and lists 12 best practices for such
effort-based estimation. The comparative evaluation of model-
based vs. expert-based methods must be left for future work.
Before we can compare any effort estimation methods (be they
model-based or expert-based) we must first demonstrate that
any two methods can be comparatively assessed. For more on
expert-based methods, see [4], [23], [30], [34].

Biases in the model: This study uses COCOMO data sets
since these were the only public domain data we could
access. Nevertheless, the techniques described here can easily
be generalized to other models. For example, here we use
COSEEKMO to select best parametric methods in the CO-
COMO format [1], [24] but it could just as easily be used
to assess other model-based tools like PRICE-S [20], SEER-
SEM [22], or SLIM [21]. However, it should be noted that in
the above study, 154 out of 158 methods were demonstrably
inferior. If those percentages carry over to a study of SEER-
SEM vs. PRICE-S vs. SLIM, then we would predict that it
will yield similar performances.

Biases in the selection of methods: Another source of bias
in this study is the set of methods explored by this study.
We can make no claim that Figure 4 or COSEEKMO’s other
150 methods represents the space of possible effort estimation
methods. Indeed, when we review the space of known methods
(see Figure 1 in [11]), it is clear that COSEEKMO covers only
a small part of that total space.

Instead of claiming that (a, b, c, d) are “best”, we really
should say that (a, b, c, d) are the best we have seen so
far after four years of trying many alternatives. The reader
may know of other effort estimation methods they believe
we should try. Alternatively, the reader may have a design
or an implementation of a new kind of effort estimator. In
either case, before it can be shown that an existing or new
method is better than those shown in Figure 4, we first need a
demonstration that there exists statistical tests that distinguish
between methods. This paper offers such a demonstration.

VI. CONCLUSION

Our goal was the rejection of sub-optimum effort estimation
methods. If this goal is not possible, then an effort estimation
workbench can grow to unmanageable proportions. For exam-
ple, the 158 methods of COSEEKMO take nearly a day to
run. Much of that execution is wasted since, as shown above,
154 of those methods are superfluous.

Previous studies have doubted the practicality of selecting
the “best” estimation method. For example, Myrtveit. et.al.
concluded that

. . . the conclusions on “which model is best” to a
large extent will depend on the (evaluation crite-
ria) chosen. This is a serious problem because, at
present, we have no theoretical foundation to prefer,
say, (mean) MRE to (mean) MER or (mean) AR . . .
[11, p390]

Our alternate conclusion is that the means of any measure is
counter-indicated by the presence of large outliers. The effect
of large outliers can be mitigated by the use of non-parametric
ranked statistics that compare medians (the U test). We have
shown above that such non-parametric methods do not suffer
from KFM’s conclusion instability. Also, our results suggest
that there is no need to decide between (e.g.) MRE, MER, or
AR since they can all report that the same set of four methods
is “best”.

Further, we have shown above that Myrtveit et.al. are quite
correct when they report

. . . for most of the (evaluation criteria), the results
are not sufficiently reliable across the samples for
the same accuracy indicator . . .
This implies that the conclusions on “which model
is best” to some extent depend on the particular
sample at hand, even for samples drawn from the
same population. [11, p390]

For example, while we advocate four methods, none of them
are always best in all sub-samples of the data. However, our
results are far more optimistic that KFM: we have seen above
that one of these four methods is always better than the other
154 methods:

• A single linear model is adequate for the purposes of
effort estimation. All the methods that assume multiple
linear models, such as model trees (f), or no parametric
form at all, such as nearest neighbor (i), perform rela-
tively poorly.
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• Elaborate searches do not add value to effort estimation.
All the O(2F ) column pruners do worse than near-linear-
time column pruning.

• The more intricate methods such as model trees do no
better than other methods.

Finally, we comment on the practical implications of this
study. There is no best estimation method. However, there
exists a very small number of most useful estimation methods.
We advise that the following methods should be tried and
the one that does best on historic data (assessed using Mann-
Whitney U test) should be used to predict new projects:

• Adopt the three Boehm’81 assumptions and use LC-based
methods.

• While some row and column pruning can be useful,
elaborate column pruning (requiring an O(2F ) search)
is not. Hence, try LC with zero or more of LOCOMO’s
row pruning or COCOMIN’s column pruning.

• If the training data is sparse, then try averaging the efforts
seen in nearest neighbors (for more details, see [30]).
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APPENDIX

A. Data Used in This Study

In this study, effort estimators were built using all or some
part of data from two sources:

COC81: 63 records in the COCOMO-I format.
Source: [1, p496-497]. Download from
http://unbox.org/wisp/trunk/cocomo/
data/coc81modeTypeLangType.csv.

NASA93: 93 NASA records in the COCOMO-I
format. Download from http://unbox.org/
wisp/trunk/cocomo/data/nasa93.csv.

Taken together, these two sets are the largest COCOMO-
style data source in the public domain (for reasons of corporate
confidentiality, access to Boehm’s COCOMO-II data set is
highly restricted). NASA93 was originally collected to create
a NASA-tuned version of COCOMO, funded by the Space
Station Freedom Program and contains data from six NASA
centers including the Jet Propulsion Laboratory. For more
details on this dataset, see [13].

Different subsets and number of subsets used (in parenthe-
sis) are:

All(2): selects all records from a particular source.
Category(2): NASA93 designation selecting the type of

project; e.g. avionics.
Center(2): NASA93 designation selecting records relating

to where the software was built.
Fg(1): NASA93 designation selecting either “f” (flight)

or “g” (ground) software.
Kind(2): COC81 designation selecting records relating to

the development platform; e.g. max is mainframe.

Lang(2): COC81 designation selecting records about dif-
ferent development languages; e.g ftn is FORTRAN.

Mode(4): designation selecting records relating to the
COCOMO-I development mode: one of semi-
detached, embedded, and organic.

Project(2): NASA93 designation selecting records relating
to the name of the project.

Year(2): is a NASA93 term that selects the development
years, grouped into units of five; e.g. 1970, 1971,
1972, 1973, 1974 are labeled “1970”.

There are more than 19 subsets overall. Some have fewer than
20 projects and hence were not used. The justification for using
20 projects or more is offered in [13].

B. Learners Used in This Study

1) Learning with Linear Regression: Linear regression as-
sumes that the data can be approximated by one linear model
that includes lines of code (KLOC) and other features f seen
in a software development project:

effort = β0 +
∑

i

βi · fi

Linear regression adjusts βi to minimize the prediction error
(the difference between predicted and actual values for the
project).

Boehm argues that effort is exponential on KLOC [1]:

effort = a ·KLOCb ·
∏

i

βi

(where a and b are domain-specific constants). Such exponen-
tial functions can be learned via linear regression after they
are converted to the following linear form:

log(effort) = log(a) + b·log(KLOC) +
∑

i

log(βi)

All our methods transform the data in this way. Hence, when
collecting performance statistics, it is necessary to unlog the
estimates.

2) Learning with Model Trees: Model trees are a general-
ization of linear regression. Instead of fitting the data to one
linear model, model trees learn multiple linear models, and a
decision tree that decides which linear model to use. Model
trees are useful when the projects form regions and different
models are appropriate for different regions. COSEEKMO
includes the M5p model tree learner defined by Quinlan [26].

3) Learning with Local Calibration: Local calibration (LC)
is a specialized form of linear regression developed by
Boehm [1, p526-529]. LC assumes project effort is exponential
on KLOC; i.e.

effort = a ·KLOCb ·
∏

i

βi

Figure 9 shows the βi values recommended by Boehm (the
names on the left hand side are defined in Figure 8). When βi

is used in the above equation, they yield estimates in months
where one month is 152 hours (and includes development and
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upper: acap: analysts capability
increase pcap: programmers capability
these to aexp: application experience
decrease modp: modern programming practices
effort tool: use of software tools

vexp: virtual machine experience
lexp: language experience

middle sced: schedule constraint
lower: data: data base size
decrease turn: turnaround time
these to virt: machine volatility
increase stor: main memory constraint
effort time: time constraint for CPU

rely: required software reliability
cplx: process complexity

Fig. 8. Features used in this study. From [1]. Most range from 1 to 6
representing “very low” to “extremely high”.

1 2 3 4 5 6
upper ACAP 1.46 1.19 1.00 0.86 0.71
(increase PCAP 1.42 1.17 1.00 0.86 0.70
these to AEXP 1.29 1.13 1.00 0.91 0.82
decrease MODP 1.2 1.10 1.00 0.91 0.82
effort) TOOL 1.24 1.10 1.00 0.91 0.83

VEXP 1.21 1.10 1.00 0.90
LEXP 1.14 1.07 1.00 0.95

middle SCED 1.23 1.08 1.00 1.04 1.10
lower DATA 0.94 1.00 1.08 1.16
(increase TURN 0.87 1.00 1.07 1.15
these to VIRT 0.87 1.00 1.15 1.30
increase STOR 1.00 1.06 1.21 1.56
effort) TIME 1.00 1.11 1.30 1.66

RELY 0.75 0.88 1.00 1.15 1.40
CPLX 0.70 0.85 1.00 1.15 1.30 1.65

Fig. 9. The COCOMO-I βi table [1]. For example, the bottom right cell is
saying that if CPLX=6, then the nominal effort is multiplied by 1.65.

management hours). To operate, LC linearizes the exponential
equation to generate

log(effort) = log(a) + b·log(KLOC) +
∑

i

log(βi)

Linear regression would try to adjust all the βi values. This
is not practical when training on a very small number of
projects. Hence, LC fixes the βi values while adjusting the
< a, b > values to minimize the prediction error. We shall
refer to LC as “standard practice” since, in the COCOMO
community at least, it is the preferred method for calibrating
standard COCOMO data [24].

4) Learning with Nearest Neighbor: Nearest neighbor
makes predictions using past data that is similar to a new
situation. Some distance measure is used to find the k nearest
older projects to each project in the Test set. An effort
estimate can be generated from the mean effort of the k nearest
neighbors.

The benefit of nearest neighbor algorithms is that they make
the fewest domain assumptions. That is, they can process
a broader range of the data available within projects. For
example:

• LC cannot be applied unless projects are described using
the COCOMO ontology (Figure 8).

• Linear regression and model trees are best applied to
data where most of the values for the numeric factors
are known.

The drawback of nearest neighbor algorithms is that, some-
times, the domain assumptions they ignore are important to

that domain. For example, if effort is really exponential on
KLOC, a standard nearest neighbor algorithm has no way to
exploit that.

C. Pre-Processors Used in This Study

1) Pre-processing with Row Pruning: The LOCOMO
tool [27] in COSEEKMO is a row pruner that combines a
nearest neighbor method with LC. LOCOMO prunes away all
projects except those k “nearest” to the Test set data.

To learn an appropriate value for k, LOCOMO uses the
Train set as follows:

• For each project p0 ∈ Train, LOCOMO sorts the re-
maining Train−p0 examples by their Euclidean distance
from p0.

• LOCOMO then passes the k0 examples closest to p0 to
LC. The returned < a, b > values are used to estimate
effort for p0.

• After trying all possible k0 values, 2 ≤ k0 ≤ |Train|, k
is then set to the k0 value that yielded the smallest mean
MRE10.

This calculated value k is used to estimate the effort for
projects in the Test set. For all p1 ∈ Test, the k nearest
neighbors from Train are passed to LC. The returned <
a, b > values are then used to estimate the effort for p1.

2) Pre-Processing with Column Pruning: Kirsopp &
Schofeld [35] and Chen & Menzies & Port & Boehm [28]
report that column pruning improves effort estimation. Miller’s
research [36] explains why. Column pruning (a.k.a. feature
subset selection [37] or variable subset selection [36]) reduces
the deviation of a linear model learned by minimizing least
squares error [36]. To see this, consider a linear model with
constants βi that inputs features fi to predict for y:

y = β0 + β1 · f1 + β2 · f2 + β3 · f3...

The variance of y is some function of the variances in
f1, f2, etc. If the set F contains “noise” (spurious signals
unconnected to the target variable y) then random variations in
fi can increase the uncertainty of y. Column pruning methods
decrease the number of features fi, thus increasing the stability
of the y predictions. That is, the fewer the features (columns),
the more restrained are the model predictions.

Taken to an extreme, column pruning can reduce y’s vari-
ance to zero (e.g. by pruning the above equation back to y =
β0) but increases model error (the equation y = β0 will ignore
all project data when generating estimates). Hence, intelligent
column pruners experiment with some proposed subsets F ′ ⊆
F before changing that set. COSEEKMO currently contains
three intelligent column pruners: WRAPPER, LOCALW, and
COCOMIN.

WRAPPER [25] is a standard best-first search through the
space of possible features. At worst, the WRAPPER must
search an space exponential on the number of features F ; i.e.
2F . However, a simple best-first heuristic makes WRAPPER
practical for effort estimation. At each step of the search, all

10A justifications for using the mean measure within LOCOMO is offered
at the end of the appendix.
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the current subsets are scored by passing them to a target
leaner. If a set of features does not score better than a smaller
subset, then it gets one “mark” against it. If a set has more
than STALE = 5 number of marks, it is deleted. Otherwise,
a feature is added to each current set and the algorithm
continues.

In general, a WRAPPER can use any target learner. Chen’s
LOCALW is a WRAPPER specialized for LC. Previously [13],
[28], we have explored LOCALW for effort estimation.

Theoretically, WRAPPER (and LOCALW)’s exponential
time search is more thorough, hence more useful, than simpler
methods that try fewer options. To test that theory, we will
compare WRAPPER and LOCALW to a linear-time column
pruner called COCOMIN [31].

COCOMIN is defined by the following operators:

{sorter, order, learner, scorer}

The algorithm runs in linear time over a sorted set of features,
F . This search can be ordered in one of two ways:

• A “backward elimination” process starts with all features
F and throws some away, one at a time.

• A “forward selection” process starts with one feature and
adds in the rest, one at a time.

Regardless of the search order, at some point the current
set of features F ′ ⊆ F is passed to a learner to generate
a performance score by applying the model learned on the
current features to the Train set. COCOMIN returns the
features associated with the highest score.

COCOMIN pre-sorts the features on some heuristic criteria.
Some of these criteria, such as standard deviation or entropy,
are gathered without evaluation of the target learner. Others are
gathered by evaluating the performance of the learner using
only the feature in question plus any required features, such
as KLOC for COCOMO, to calibrate the model. After the
features are ordered, each feature is considered for backward
elimination, or forward selection if chosen, in a single linear
pass through the feature space, F . The decision to keep or
discard the feature is based on an evaluation measure generated
by calibrating and evaluating the model with the training data.

Based on [31], the version of COCOMIN used in this study:
• sorted the features by the highest median MRE;
• used a backward elimination search strategy;
• learned using LC;
• scored using mean MRE.

Note that mean MRE is used internally to COCOMIN (and
LOCOMO, see above) since it is fast and simple to compute.
Once the search terminates, this paper strongly recommends
the more thorough (and hence more intricate and slower)
median non-parametric measures to assess the learned effort
estimation model.
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