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Abstract An over-zealous machine learner can automatically generate large, intricate,
theories which can be hard to understand. However, such intricate learning is not necessary
in domains that lack complex relationships. A much simpler learner can suffice in domains
with narrow funnels; i.e. where most domain variables are controlled by a very small subset.
Such a learner is TAR2: a weighted-class minimal contrast-set association rule learner that
utilizes confidence-based pruning, but not support-based pruning. TAR2 learns treatments;
i.e. constraints that can change an agent’s environment. Treatments take two forms. Controller
treatments hold the smallest number of conjunctions that most improve the current state of the
system. Monitor treatments hold the smallest number of conjunctions that best detect future
faulty system behavior. Such treatments tell an agent what to do (apply the controller) and
what to watch for (the monitor conditions) within the current environment. Because TAR2
generates very small theories, our experience has been that users prefer its tiny treatments.
The success of such a simple learner suggests that many domains lack complex relationships.

Keywords TAR2 · Treatment learning · Contrast set learning

1 Introduction

“Don’t tell me where I am, tell me where to go.”
- a (very busy) user

Machine learners generate theories. People read theories. What kind of learners generate
the kind of theories that people want to read?

T. Menzies (B)
Lane Department of Computer Science, West Virginia University, Morgantown WV, USA
e-mail: tim@menzies.us

Y. Hu
Department of Electrical & Computer Engineering, University of British Columbia,
Vancouver BC, Canada
e-mail: hy2004@gmail.com

123



212 T. Menzies, Y. Hu

If the reader is a busy person, then they might not need, or be able to use, complex theories.
Rather, such a busy person might instead just want to know the least they need to do to achieve
the most benefits.It therefore follows that machine learning for busy people should not strive
for (e.g.,) elaborate theories or (e.g.,) increasing the expressive power of the language of the
theory. Rather, a better goal might be to find the smallest theory with the most impact.

For example, Figs. 1 and 2 contrasts two theories learnt from the same data set using the
TAR2 system discussed here and the C4.5 decision tree learner (Quinlan 1992). In Fig. 1,
C4.5 has learnt a elaborate description of different kinds of houses in Boston. This description
is quite large- its details are barely legible and we’ve had to compress the image in order to
squeeze it onto one page. An automatic process could quickly parse this tree and use it to
automatically make a classification. However, having worked with domain experts for many
years, we assert that Fig. 1 contains a daunting amount of detail for human readers.

Figure 2 shows’ TAR2’s minimal description of the differences between house types. This
description is far shorter than Fig. 1 and hence can quickly be explained to a domain expert.
Fig. 2 describes these differences between house types in terms of treatments; i.e., a constraint
on controllable variable that changes the class distribution. The controller treatment (shown in
the middle of Fig. 2) is TAR2’s comments on what might most improve the current situation.
This current baseline situation is shown left-hand-side of Fig. 2: the 506 housing examples
contain 29% “high” quality houses. TAR2’s controller treatment asserts that if we focus on
houses with seven to nine rooms in suburbs with parent/teacher ratios of 12.6–15.9, then we
will find 38 houses, 97% of which will be of high quality (and 97%!29%).

Similarly, the monitor treatment shown right-hand-side of Fig. 2. describes what could
most degrade the current baseline situation. This monitor treatment asserts that the worst
thing we could do in the current situation would be to focus on houses where the air has
nitrous oxides levels between 0.6 and 1.9 in suburbs where the living standard is between
17.16 and 39.0. The monitor treatment warns that if that worst-case policy is followed, then
no “high” quality houses will be found. Indeed, it predicts that in that worst-case scenario,
98% of the houses found will be “low” quality.

Our experience with business users is that they prefer find TAR2’s simpler theories. C4.5’s
theory contains more details but TAR2’s theory gives succinct advice on how to change the
current situation. As one user put it “decision trees just tell you where you are, treatments
tell you what to do”.

TAR2’s succinct theories will miss the complex interrelations that C4.5 might find. We
have reasons to believe that many domains lack complex relationship. Many domains exhibit
a curious narrow funnel effect; i.e., a small number of critical variables control the remaining
variables within a system (the metaphor being that all processing runs down the same narrow
funnel (Menzies et al. 1999). The concept of narrow funnels has been reported in many
domains under a variety of names including:

– Master-variables in scheduling (Crawford and Baker 1994);
– Prime-implicants in model-based diagnosis (Rymon 1994) or machine learning Rymon

1993, or fault-tree analysis (Lutz and Woodhouse 1999).
– Backbones in satisfiability (Parkes 1999; Singer et al. 2000);
– the dominance filtering used in Pareto optimization of designs (Josephson et al. 1998);
– Minimal environments in the ATMS (DeKleer 1986);
– The base controversial assumptions of HT4 (Menzies and Compton 1997).
– The small feature subset selection effect (Kohavi and John 1997) and the related 1R effect

(Holte 1993)
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Fig. 1 A learnt decision tree from 506 cases in HOUSING example set from the UC Irvine repository. Classes
(right-hand-side), top-to-bottom, are “high”,“medhigh”, “medlow”, and “low” This indicates median value of
owner-occupied homes in $1000’s
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Fig. 2 Treatments learnt in the same domain as Fig. 1. This dataset has the class distribution shown in the
bottom table, left-hand-side. KEY: LSTAT= lower status of the population; NOX= nitric oxides concentration
(parts per 10 million); PTRATIO= pupil-teacher ratio by town; RM= average number of rooms per dwelling;
KEY: low; medlow; medhigh; high

Whatever the name, the core intuition in all these terms is the same: what happens in the
total space of a system can be controlled by a small critical region.

We have argued previously that narrow funnels are very common (Menzies and Cukic
2000b; Menzies et al. 2000; Menzies and Cukic 2000a; Menzies and Singh 2001). For systems
with narrow funnels, the space of options within a large space reduces to just the range of
a few variables within the narrow funnel. In such a reduced space, variables assignments
outside the funnel are highly correlated to assignments within the funnel. Machine learning
in such domains is very simple: an adequate theory need only comment on assignments to
the variables that are highly correlated to funnel assignments.

This paper uses the TAR2 system to check the merits of assuming narrow funnels for the
purposes of machine learning. TAR2’s distinguishing feature is that it performs very well,
yet it is seems overly simplistic. The algorithm outputs only two rules: the best smallest con-
troller and the best smallest monitor. If domains contain complex relationships, then these
two small associations will be useless. The algorithm’s runtimes are exponential on the size
of the treatments. Hence, the algorithm makes the following “small treatment assumption”;
i.e., adequate treatments can be built from small treatments. If the small treatment assump-
tion fails, then TAR2’s exponential runtimes will make it impractically slow. Also, the algo-
rithm relies on a confidence1 measure which prunes the space of possible associations. The
confidence1 measure we describe below has no special merit: it was merely the first one we
could think of. Further, our initial implementation worked without algorithmic or memory
management optimizations. Our only explanation for the surprising success of this simplistic
implementation is that the small treatment assumption holds for the domains we studied.

The rest of this article discusses TAR2. After an introductory example and a discussion
of related work, the TAR2 algorithm is presented. This is followed by examples and eva-
luations and an analysis of the general applicability of our approach. Our prior work has
only offered high-level descriptions of treatment learning (e.g. (Menzies and Hu 2003)). The
contribution of this paper is a detailed discussion of the implementation and generality of
treatment learning. In expanding on those details, we show numerous empirical results that
have not previously been published. These studies are described in sufficient detail that if
another author believed they had a better summarization method than treatment learning,
then comparative studies could be conducted.
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Just enough learning (of association rules) 215

2 Related work

If domains lack complex relationships, then it is possible that adequate theories can be learnt
from small subsets of the available attributes. Various researchers have reported that this is
indeed the case. For example Holte wrote a machine learner that was deliberately restricted
to learning theories using a single attribute. Surprisingly, Holte found that learners that use
many attributes such as C4.5 perform only moderately better this 1R algorithm (Holte 1993).
Nevertheless, TAR2 does not use the 1R technique since our results show that best treatments
may require more than one attribute.

In other work, Kohavi and John wrapped their learners in a pre-processor that used a
heuristic search to grow subsets from size 1. At each step in the growth, a learner was called
to find the accuracy of the theory learned from the current subset. Subset growth was stopped
when the addition of new attributes did not improve the accuracy. As shown in Table 1,
spectacular reductions in the number of the attributes can be achieved, with only minimal
lose of accuracy (Kohavi and John 1997). Nevertheless, TAR2 does not use this technique
since relevant feature selection with wrappers can be prohibitively slow since each step of
the heuristic search requires a call to the learning algorithm. If TAR2 isn’t 1R or wrappers,
what is it? This rest of this section expands on the following definition. TAR2 is a weighted-
class minimal contrast-set association rule learner that uses confidence measures but not
support-based pruning.

TAR2 learns treatments and the general form of a treatment is:

R1 i f Attr1 = range1 ∧ Attr2 = range2 ∧ ...

then good = more ∧ bad = less

R2 i f Attr1 = range1 ∧ Attr2 = range2 ∧ ...

then good = less ∧ bad = more

where R1 is the controller rule; R2 is the monitor rule; good and bad are sets of classes that
the agent likes and dislikes respectively; and more and less are the frequency of these classes,
compared against the current situation, which we call the baseline. The nature of these output
rules distinguishes TAR2 from many other learning strategies.

Association rule learning Classifiers like C4.5 and CART learn rules with a single attribute
pair on the right-hand side; e.g., class= goodHouse. Association rule learners like APRIORI
(Agrawal and Srikant 1994) and TAR2 generate rules containing multiple attribute pairs on
both the left-hand-side and the right-hand-side of the rules. That is, classifiers have a small
number of pre-defined targets (the classes) while, for association rule learners, the target is
less constrained.

Table 1 Feature subset selection using wrappers, hill-climbing, and ID3 (i.e., C4.5 with pruning disabled).
The ! Accuracy figure is the difference in the accuracies of the theories found by ID3 the be f ore and a f ter
attributes. From (Kohavi and John 1997).

Number of attributes

Before: 10 13 15 180 22 8 25 36 6 6 6

After: 2 2 2 11 2 1 3 12 1 1 2

Reduction: 80% 84% 87% 94% 90% 87% 88% 67% 83% 83% 67%

!accuracy: 0% 6% 5% 4% 2% 1% 0.5% 0% -25% 6% 7%
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General association rule learners like APRIORI input a set of D transactions of items I
and return associations between items of the form L H S ⇒ RH S where L H S ⊂ I and
RH S ⊂ I and L H S ∩ RH S = ∅. A common restriction with classifiers is that they assume
the entire example set can fit into RAM. Learners like APRIORI are designed for data sets
that need not reside in main memory. For example, Agrawal and Srikant report experiments
with association rule learning using very large data sets with 10,000,000 examples and size
843MB (Agrawal and Srikant 1994). However, just like Webb (Webb 2000), TAR2 makes
the “memory-is-cheap assumption”; i.e., TAR2 loads all it’s examples into RAM.

Specialized association rule learners like CBA (Liu et al. 1998) and TAR2 impose restric-
tions on the right-hand-side. For example, TAR2’s right-hand-sides show a prediction of the
change in the class distribution if the constraint in the left-hand-side were applied. The CBA
learner finds class association rules; i.e. association rules where the conclusion is restricted
to one classification class attribute. That is, CBA acts like a classifier, but can process larger
datasets that (e.g.,) C4.5. TAR2 restricts the right-hand-side attributes to just those containing
criteria assessment.

Weighted-learning Standard classifier algorithms such as C4.5 (Quinlan 1992) or CART
(Breiman et al. 1984) have no concept of class weighting. That is, these systems have no notion
of a good or bad class. Such learners therefore can’t filter their learnt theories to emphasize
the location of the good classes or bad classes. Association rule learners such as MINWAL
(Cai et al. 1998), TARZAN (Menzies and Sinsel 2000) and TAR2 explore weighted learning
in which some items are given a higher priority weighting than others. Such weights can
focus the learning onto issues that are of particular interest to some audience. For example
TARZAN (Menzies and Sinsel 2000) swung through the decision trees generated by C4.5
(Quinlan 1992) and 10-way cross-validation. TARZAN returned the smallest treatments that
occurred in most of the ensemble that increased the percentage of branches leading to some
preferred highly weighted classes and decreased the percentage of branches leading to lower
weighted class. TAR2 was an experiment with applying TARZAN’s tree pruning strategies
directly to the C4.5 example sets. The resulting system is simpler, fast to execute, and does
not require calling a learner such as C4.5 as a sub-routine.

Contrast sets Instead of finding rules that describe the current situation, association rule
learners like STUCCO (Bay and Pazzani 1999) finds rules that differ meaningfully in their
distribution across groups. For example, in STUCCO, an analyst could ask "what are the dif-
ferences between people with Ph.D. and bachelor degrees?". TAR2’s variant on the STUCCO
strategy is to combine contrast sets with weighted classes with minimality. That is, TAR2
treatments can be viewed as the smallest possible contrast sets that distinguish situations with
numerous highly-weighted classes from situations that contain more lowly-weighted classes.

Support-based pruning In the terminology of APRIORI, an association rule has support
s if s% of the D contains X ∧ Y ; i.e., s = |X∧Y |

|D| (where |X ∧ Y | denotes the number of
examples containing both X and Y ). The confidence c of an association rule is the percent of
transactions containing X which also contain Y ; i.e., c = |X∧Y |

|X | .
Many association rule learners use support-based pruning i.e. when searching for rules

with high confidence, sets of items Ii , . . . Ik are only be examined if all its subsets are above
some minimum support value. Note that support-based pruning is not the same as weighted-
class learning since the former assesses a rule according to the amount of evidence in the
input data set while the latter assesses a rule according the amount of emphasis a user has
placed on the class associated with that rule.

Support-based pruning is impossible in weighted association rule learning since with
weighted items, it is not always true that subsets of interesting items (i.e., where the weights
are high) are also interesting (Cai et al. 1998). Another reason to reject support-based pruning
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Just enough learning (of association rules) 217

is that it can force the learner to miss features that apply to a small, but interesting subset of
the examples (Wang et al. 2001).

Confidence-based pruning Without support-based pruning, association rule learners rely
on confidence-based pruning to reject all rules that fall below a minimal threshold of adequate
confidence. TAR2 uses confidence1 pruning.

3 Confidence1 pruning

TAR2 targets the attribute ranges that “nudge” a system away from undesired behavior and
towards desired behavior. TAR2’s score for each range is the confidence1 measure. This
value is high if a range occurs frequently in desired situations and infrequently in undesired
situations. That is, if we were to impose this range as a constraint, then it would tend to
"nudge" the system into better behavior.

To find confidence1, we assume that we can access $class; i.e., some numeric value
assigned to class. The class with the highest value is the best class. The lesser classes are
the set of all classes, less the best class.

In the following description, some attribute A has a specific setting A.R; i.e., some member
of the range of A is assigned to A. Let O[C]A.R be the number of occurrences of some attribute
range in some class C ; i.e.,

O[C]A.R = |A.R ∧ class = C ∧ D|
Here, D is the set of training examples.

To generate confidence1, we compare the relative frequencies of an attribute range in
different classes. This comparison is weighted by the difference in the scores of the classes,
and normalized by the total frequency count of the attribute range; i.e.,

∑
C∈lesser

(
($best − $C) ∗ (O[best]A.R − O[C]A.R)

)

|A.R ∧ D|
For example, from the golf playing example of Table 2, let us assume that the classes have
been scored as follows: "lots"=8, "some"=4, "none"=2; i.e., "lots" is the best class. The range
outlook=overcast appears four, zero, and zero times when playing "lots", "some", and "none"
golf (respectively). The confidence1 of outlook=overcast is therefore:

((8 − 2) ∗ (4 − 0)) + ((8 − 4) ∗ (4 − 0))

4 + 0 + 0
= 10

Figure 3 shows the range of confidence1 seen in Table 2. The confidence1 ranges shown
in black are outstandingly high; i.e., these are the values which generate the best control
treatments. TAR2 forms its treatments by exploring subsets of the ranges with outstandingly
high confidence1 values.

0
1
2
3

-5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10

Fig. 3 Frequency of confidence1 generated from Table 2. Assumes that numeric ranges have been divided
into three bands. Outstandingly high confidence1 values shown are in black. Y -axis is the number of ranges
that have a particular confidence1 value
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Table 2 A log of some golf-playing behavior

Items Criteria

Outlook Temp(◦F) Humidity Windy? Class

Sunny 85 86 False None

Sunny 80 90 True None

Sunny 72 95 False None

Rain 65 70 True None

Rain 71 96 True None

Rain 70 96 False Some

Rain 68 80 False Some

Rain 75 80 False Some

Sunny 69 70 False Lots

Sunny 75 70 True Lots

Overcast 83 88 False Lots

Overcast 64 65 True Lots

Overcast 72 90 True Lots

Overcast 81 75 False Lots

4 Inside TAR2

TAR2 generates controller and monitor treatments. Monitors are generated using in same
manner as generating controllers. However, before the monitor is generated, the scoring
function for the criteria is reversed so TAR2 now seeks attribute ranges that nudge a system
into worse behavior. The rest of this section discusses how to generate controllers.

The TAR2 algorithm is shown in Fig. 4. The frequency function counts the frequency
of examples falling into different criteria. Using this function, a baseline class distribution
is collected from D (this is used later to contrast different treatments) and copied to a temp
variable (this is used to store the best distribution seen so far). The compare function
compares two frequencies to generate reports like (e.g.,) 43% less "lots" and 5% less "some"
and 167% more "none". When these percentages are greater than 100%, then the treatment
selects from a greater percentage of some class (compared to the baseline).

The discretize function divides the numeric ranges seen in the examples into bands
number of groups. TAR2 was originally designed using a very simple discretization policy;
i.e., TAR2 sorts the known values and divides into bandswith (roughly) the same cardinality.
It was anticipated that this policy would be too simplistic and would have to be improved.
However, our empirical results (see below) were so encouraging that we were never motivated
to do so.

Once a treatment is found, it is applied to the example set to create a treated example
set; i.e., all the examples that don’t contradict the proposed treatment (see line 8). A "good"
treatment includes most of the examples that have the best criteria (e.g. in the golf example
of Table 2, best= playing "lots" of golf). The skewparameter is used at line 10 to reject "bad"
treatments; i.e., those that don’t contain enough of the best criteria. For example, at skew=5,
at least 20% of the best criteria must appear in the treatment.
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Fig. 4 The TAR2 algorithm

TAR2 explores subsets of the ranges found in a set of examples D (see line 7). Subset
exploration is constrained to just the ranges with an outstandingly large confidence1 score
(see line 5). Even with this restriction, there are still an exponential number of such subsets.
Hence, to be practical, TAR2 must seek the minimal possible number of control actions and
monitors. Accordingly, the user of TAR2 constrains its learning to rule conditions of size N ,
where N is small (see line 7). Often, effective treatments can be found using N ≤ 4 which
suggests that narrow funnels existed in the datasets used for our case studies.

5 Examples and experiments

5.1 Examples

The output of TAR2 describes constraints which, if applied to the dataset, may reject certain
examples. For example, the controllerG treatment of Fig. 5 contains the constraint
outlook = overcast . If we reject all items in the golf dataset that contradicts this constraint,
then our golfers now play "lots", "some", and "none" golf in 100%, 0%, and 0% (respectively)
of the constrained dataset (as shown in the middle histogram of Fig. 6).

The monitor rule monitorG of Fig. 5 was generated in a similar manner; but with
the scoring system reversed; i.e, "lots"=2, "some"=4, "none"=8. In this case, "none" is the
“best” class and TAR2 will find a treatment that selects for less golf behavior; i.e. 90 ≤
humidity < 97. After applying this constraint , the class distribution changes to the right-
hand-side histogram of Fig. 6.
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controllerG
if outlook=overcast
then (230% more "lots" and no "some"

and no "none").

monitorG
if 90 <= humidity < 97
then (43% less "lots" and 5% less "some"

and 167% more "none").

Fig. 5 Control and monitor rules found from Table 2. To control outlook, unscrupulous owners of golf courses
could (e.g.,) bribe radio announces to lie about the weather report
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ure 4)
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Fig. 6 Percentage of classes seen in different situations. The left-hand-side histogram is a report of the
class frequencies seen in Table 2. The middle and right-hand-side histograms were generated by applying the
treatments of Fig. 5. KEY: none; some; lots
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Fig. 7 Iris

5.2 Experiments

This section discusses experiments with TAR2 where the leaner was assessed via two
methods:

Xvals: Standard N-way cross-validation studies.
Simulations: Simulations showing how well TAR2’s treatments can control or monitor
some model.

5.2.1 Xval studies

Figures 7 to 11 show TAR2 executing over some samples from the UC Irvine repository
(http://www.ics.uci.edu/~mlearn/). These figures display the effects of the treatment closest to the
average improvement seen in a 10-way cross-validation study. Each figure show the class
distributions as percentages and the domain classes are shown in a legend. In the legend, the
heuristic worth assigned to each class is, top-to-bottom, worst-to-best.
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Fig. 11 Car: reversing the class scoring

In Fig. 7, TAR2 was told that the worth of each type of flower was (in increasing order)
setosa, virginica, then v.color. TAR2 then learnt that 3.7 ≤ petallength < 4.8 would select
for the flower with highest worth (i.e., v.color).

Similarly, in Fig. 8, TAR2 learnt a selector that favored high quality cars. By restricting
engine size to 68 ≤ displacement < 101 and 46 ≤ horsePower < 78, the ratio of
high quality cars increased from 26 to 70%. Further, the low and medium low cars have
disappeared.
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Fig. 12 COCOMO key: very high risk; high risk; medium risk; low risk
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Fig. 13 Circuit. X -axis denotes number of bulbs glowing in the circuit

In Fig. 9, TAR2 learnt a specialized feature extractor for finding pictures mixed in with
text, horizontal lines, vertical lines, and graphics. According to TAR2, a height between 34
and 86, and a mean number of white-black transitions between 3.9 and 9.5 will locate text
blocks, and nothing else.

In the car domain of Fig. 10, most of the classes are non-best. The average best controller
seen in the 10-way cross-validation for the car domain was buying=low and safety=high.
While this controller increases the frequency of very good cars from 4% to 38%, this controller
still leaves us with 31% unacceptable cars. While this controller is weak, the monitor obtained
by reversing the class scoring is very strong. Fig. 11 shows that monitor: if we select two
person cars with low safety, then 100% of the cars are unacceptable. That is, when the best
class occurs rarely in the dataset, TAR2 may be better at finding methods to degrade a system,
rather than improve it.

5.2.2 Simulation studies

Another way to assess TAR2 is to test how well it can control some model. To perform such an
assessment, we (i) generated data sets from some model; (ii) applied TAR2 to find treatments
from those data set; (iii) imposed those treatments as constraints on the model; (iv) ran the
model a second time; (v) compared the outputs of the second run to the predictions made by
TAR2.

In our first two simulations studies, a baseline class distribution was used by TAR2 to
generate a best controller and a prediction of how this best controller would change the class
distribution. We call the predicted distribution the treated distribution. The actual distribution
was the class distribution seen after the best controller was imposed on the model and the
model executed again. In Figs. 12 and 13, the treated distribution matches the result distri-
bution almost exactly; i.e., TAR2 accurately predicted the effects of the controller treatment.
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Fig. 14 Results from the satellite domain. The dots below the line show the initial output of the model: note
the very large spread in the costs and benefits. The dots above the line show the final outputs of the model
after five iterations of TAR2 learning

Figure 12 was generated from a model of software project risk. This risk model was
implemented as part of the COCOMO project. The goal of the COCOMO project is to build
an open-source software cost estimation model (Abts et al. 1998). Internally, the model
contains a matrix of parameters that should be tuned to a particular software organization.
Using COCOMO-II, the Madachy risk model can assess the risk of a software cost over-run
(Madachy 1997). For machine learning purposes, the goal of using the Madachy model is
to find a change to a description of a software project that reduces the likelihood of a poor
risk software project Menzies and Sinsel 2000; Menzies and Hu 2001b. In the experiment
shown in Fig. 12, the model was executed 30,000 times using randomly selected inputs. When
the treatments learnt from TAR2 treatments were imposed on model inputs, and the model
was executed again, all the high risk projects were removed, the percentage of medium risk
projects was significantly reduced, and the percentage of low risk projects was tripled.

Figure 13 shows TAR2 controlling a qualitative description of an electrical circuit. A
qualitative description of a circuit of 47 wires connecting nine light bulbs and 16 other
components was coded in Prolog. The model was expressed as a set of constraints; e.g.,
the sum of the voltages of components in series is the sum of the voltage drop across each
component. The goal of the circuit was to illuminate a space using the nine light bulbs.
The circuit is qualitative and qualitative mathematics is nondeterministic; e.g., sum of a
negative and a positive value is unknown. The problem with the circuit was out-of-control
nondeterminism. On backtracking, this circuit generated 35,228 different solutions to the
constraints. In many of these solutions, the circuit was unacceptably dark: only two bulbs
glowing, on average (see the top histogram of Fig. 13). The goal of the machine learning was
hence to find a minimal set of changes to the circuit to increase the illumination (Menzies
and Hu 2001a). Figure 13 shows the distribution of the frequency with which bulbs glowed
in a qualitative circuit description. The behavior of qualitative circuits is notoriously hard to
predict (Clancy and Kuipers 1997) but TAR2 found two actions on the circuit that trebled
the average number of bulbs that glowed (see the treated and actual plot of Fig. 13).

Figure 14 shows a third simulation study with TAR2. Analysts at the NASA Jet Propulsion
Laboratory debate satellite design by building a semantic network connecting design decisi-
ons to satellite requirements (Feather et al. 2000). Each edge is annotated with the numeric
cost and benefits of taking some action. Some of these nodes represent base decisions within
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the project (e.g., selection of a particular type of power supply). Each set of decisions has
an associated cost. The net can be executed by selecting actions and seeing what benefits
results. One such network included 90 possible actions; i.e., 299 ≈ 1030 combinations of
actions. Note the black line, top-left, of Fig. 14. All the dots below this line were generated
via 10,000 random selections of the decisions, and the collection of their associated costs and
benefits. All the dots above this line represent high benefit, low cost projects found by TAR2
(Feather and Menzies 2002). In this application, TAR2 was used as a knowledge acquisition
tool. After each run of TAR2, the proposed best controller was debated with the analysts.
Each run, and its associated debate, resulted in a new set of constraints for the semantic net.
The new constraints were then imposed on the model before the next run. After five runs,
TAR2 found 30 decisions (out of 99) that crucially effected the cost/benefit of the satellite.
Note that this means TAR2 also found 99−30 = 67 decisions that could be safely ignored.

For comparison purposes, a genetic algorithm (GA) was also applied to the Fig. 14 domain
(Feather and Menzies 2002). The GA also found decisions that generated high benefit, low
cost projects. However, each such GA solution commented on every possible decisions and
there was no apparent way to ascertain which of these are the most critical decisions. The
TAR2 solution was deemed superior to the GA solution by the domain experts, since the
TAR2 solution required just 30 actions rather than the 99 demanded by the GA.

Note that the Fig. 14 case study is not a counter example to our thesis that many domains
have narrow funnels. That study adopted the incremental approach for reasons of convenience.
JPL’s semantic net simulator was too slow to generate enough examples at one run. Hence,
an incremental generate-and-constrain approach was taken.

6 Generality

This section is an algorithmic assessment of TAR2. Such an algorithm assessment comments
on TAR2’s ability to scale to larger domains.

Table 3 reports TAR2 runtimes on data sets of different sizes. Figure 15 shows three studies
where the size of the treatments (N , from line 7 in Fig. 4) was held constant, and the size of
the dataset was increased. Figure 16 shows one study were the size of the dataset was held
constant and the size of the treatments was increased. Note that:

1. TAR2 can handle small to medium sized datasets. For example, the algorithm learnt
effective treatments in 23 s from a dataset containing size 250,000 examples: see the
reachness domain in Table 3.

2. TAR2 has the potential to scale to large datasets. Assuming constant treatment size,
TAR2’s runtimes are linear on dataset size: see Fig. 15.

3. However, the algorithm is exponential on treatment size: see the marked increase in the
runtimes between N = 2 and N = 3 in Fig. 15 and the log-linear plot of Fig. 16.

The exponential impact of increasing treatment size is not necessarily a reason to reject
TAR2. Firstly, if very large treatments are required, then a incremental treatment learning
approach, such as used in the satellite case study of Fig. 14, may suffice.

Secondly, recent experiments with a stochastic treatment learner, TAR3, suggest that
linear-time treatment learning may be possible. TAR3 uses the confidence1 distribution as
a probability distribution. Treatments are built at random by selecting from attribute ranges
at random according to that distribution (so attribute ranges with high confidence1 values
tend to get selected more often). Preliminary results with that method are most encouraging
(Hu 2003).
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Table 3 Runtimes for TAR2 on different domains (on a 333 MHz Windows machine with 200 MB of ram).
“UCI” denotes data sets from the machine learning repository at UC Irvine. “Here” denotes data sets taken
from this article. ‘ The text discusses experiments with 10,000 examples from the satellite domain. This table
shows a larger case study of 30,000 examples. ‘Other” denotes a data set taken from (Menzies and Hu 2002).

Attributes Treatment Runtime

Source:domain #Examples #Continuous #Discrete #Classes Size (s)

UCI:iris 150 4 0 3 1 <1

UCI:wine 178 13 0 3 2 <1

UCI:car 1,728 0 6 4 2 <1

UCI:autompg 398 6 1 4 2 1

UCI:housing 506 13 0 4 2 1

UCI:page blocks 5,473 10 0 5 2 2

Here:circuit 35,228 0 18 10 4 4

Here:COCOMO 30,000 0 23 4 1 2

Here:satellite 30,000 0 99 9 5 86

Other:reachness 25,000 4 9 4 2 3

: 250,000 4 9 4 1 23
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Fig. 15 Increasing size of dataset and size of treatments. Datasets generated from the COCOMO model

Thirdly, if most domains don’t need large treatments, then this exponential impact will
not be seen in practice. Elsewhere (Menzies and Singh 2003), we have made an average case
mathematical analysis of the ratio of the odds of a domain narrow funnels to the odds of larger
funnels. Under a wide variety of assumptions, the same effect holds: the odds of narrower
funnels are millions of times more likely that wider funnels (Menzies and Singh 2001).
Such a statistical analysis represents an average case result and may not apply to a particular
domain. What would be useful would be some kind of assessment tool that checks if this
average case statistical result applies to a particular domain.

The confidence1 distribution can be used to test for narrow funnels. Domains that contain
such funnels would exhibit the following property: a small number of variables within the
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Fig. 16 For different treatment sizes N , Increasing size of treatments, keeping data set size constant (3 MB).
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Fig. 17 A hypothetical confidence1 frequency distribution with a large left tail that is inconsistent with narrow
funnels. Note: yet to be observed in any example set

funnel exert a disproportionately large influence on the overall behavior of the system. A test
for such variables is to check for small right tails in the confidence1 distributions. Figure 6
has such a small right tail; i.e. the bulk of the distribution lies away from the maximum value.
Distributions with a large right tail such as Fig. 17 are not consistent with narrow funnels.
Figure 18 shows the confidence1 distributions seen in eight example sets: four from the UC
Irvine repository and some of the other domains described above. Note that in all cases, the
distribution has a small right tail; i.e. a small number of variables exert a disproportionately
large influence on the overall behavior of the system. In all, we have applied TAR2 to 20
domains: the ones discussed in this paper and others not shown for space reasons. In none of
those domains have we observed a large right tail.

7 Conclusion

The minimal theories of TAR2 will be inadequate if domains contain complex relationships.
Domains with narrow funnels are not complex: the key controllers for the whole space are
merely the few variables in the funnel.

The TAR2 association rule learner is both a test and an application of funnel theory. TAR2
offers two tests for narrow funnels. Firstly, a confidence1 distribution with a small right tail is
consistent with a domain containing narrow funnels. Secondly, if a domain contains narrow
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Fig. 18 Confidence1 distributions seen in eight domains. Y -axis is the number of times a particular confidence1
was seen. Top row comes from datasets taken from the UC Irvine repository. Bottom row were generated from
other domains discussed in this article

funnels, then TAR2 should be able to generate adequate controllers and monitors for that
domain. All the domains we have seen to date have these two features.

The open issue is how many other domains lack complex relationships. Based on around
20 case studies with TAR2 (some of which were reported above), Holte’s prior work with 1R,
and the wrapper studies of Kohavi and John, we have some empirical reasons to believe that
many domains are not complex. Also, we have theoretical reasons for believing that narrow
funnels are common enough Menzies and Cukic 2000b; Menzies et al. 2000; Menzies and
Cukic 2000a; Menzies and Singh 2001 that TAR2 will often suffice.

The success of such a simple algorithm such as TAR2 suggests that it can be fruitful to first
try lightweight methods before exploring heavyweight methods. We hence advocate using
TAR2 as a preprocessor to other, more elaborate schemes.

To download and compile a treatment learner, see http://unbox.org/wisp/tags/tar/.
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