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Abstract. Most process models calibrate their internal settings using local data.
Collecting this data is expensive, tedious, and often an incomplete process. Is it
possible to make accurate process decisions without historical data? Variability
in model output arises from (a) uncertainty in model inputs and (b) uncertainty in
the internal parameters that control the conversion of inputs to outputs. We find
that, for USC family process models such as COCOMO and COQUALMO, we
can control model outputs by using an AI search engine to adjust the controllable
project choices without requiring local tuning. For example, in ten case studies,
we show that the estimates generated in this manner are very similar to those pro-
duced by traditional methods (local calibration). Our conclusion is that, (a) while
local tuning is always the preferred option, there exist some process models for
which local tuning is optional; and (b) when building a process model, we should
design it such that it is possible to use it without tuning.
Word length: 6525 words (4875 words of text + 7 figures at 250 words per figure).

1 Introduction

Process models have many purposes including estimating project parameters or con-
ducting what-if queries to find better ways to organize a project. Standard practice is to
calibrate these models using local tuning data. It can be quite difficult to access such
data. For example, after 26 years of trying, we have only collected less than 200 sample
projects for the COCOMO database. Also, even after two years of effort we were only
able to add 7 records to a NASA-wide software cost metrics repository [31].
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at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the
National Aeronautics and Space Administration. Reference herein to any specific commercial
product, process, or service by trade name, trademark, manufacturer, or otherwise, does not
constitute or imply its endorsement by the United States Government or the Jet Propulsion
Laboratory, California Institute of Technology.



There are many reasons for this “data drought” including data not being collected
or the business sensitivity associated with the data, as well as differences in how the
metrics are defined, collected and archived. For years, we have struggled with the data
drought problem and have recommended elaborate feature subset selection methods
to prune uninformative data [14, 32]. Here, we take a radically different approach and
explore the value of models that have not been tuned.

Process models can be viewed as a set of constraints between inputs and output. In
this view, tuning a model using local data constrains the model to reduce the variance
in the model output. It is useful to distinguish two classes of variables, both of which
are illustrated in the following simplified COCOMO model:

effort = a · LOCb+pmat · acap (1)

Here, a, b are tuning parameters that control the linear and exponential effects (respec-
tively) on model output. These tuning parameters are adjusted using historical data.
On the other hand, pmat (process maturity) and acap (analyst capability) are project
choices that are adjusted by managers. Project choices are typically model inputs while
tuning parameters typically control calculations internal to the model. Both classes of
variables introduce variance into the estimates:

– Tuning variance: variability in the tuning variables due to training data that is in-
complete or noisy;

– Project variance: variability in the project choices due to, say, uncertainty about
the process maturity of the sub-contractors.

Much research has explored tuning variance reduction (e.g., [8, 11, 18, 24, 26]). In this
paper, we take a different approach and ask if estimation variance can be controlled by
reducing only project variance. Our tool in this study is SEESAW, an AI search engine
that conducts large scale what-if queries over software process models. SEEWAW con-
strains project choices, but not the tuning variance in its search for options that reduce
effort, defects, threats, and development time estimates. The main result of this paper is
that, at least for COCOMO/COQUALMO:

The range of estimate errors seen after constraining the project choices (but not
the tuning variables) is almost identical to the range seen after constraining
just the tuning variables.

From a business perspective, this result means that certain process models can be used
for decision making in one of two ways:

1. Either constrain the tuning variance using historical data;
2. Or constrain the project choices using an AI search engine like SEESAW.

Note that this second method avoids a lengthy and expensive data collection phase
prior to decision making. This result is of tremendous practical benefit since it is often
very difficult to find relevant data within a single organization to precisely tune all the
internal parameters inside a process model.

Prior reports on our AI search methods [30, 31] were based on limited case studies;
here we report ten new case studies showing that our main effect holds in a wide range
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of cases. Also, those prior reports failed to check the validity of their results. The ten
case studies discussed below show that the distribution of SEESAWS’s estimates ap-
proximate those seen with conventional methods, despite being generated from a large
space of possible tunings. This validity check greatly increases our confidence in the
SEESAW method.

The rest of this paper describes how we arrived at our main result. After a discussion
of related work, we review the models used in this study and the AI search engine
that finds useful constraints to project choices. This is followed by a description of an
experiment that compares the range of errors seen after constraining just the project
choices (using SEESAW) or just the tuning variables (using linear regression). In our
future work, we explore the implications of this work for software process modeling: if
there exists a set of process models for which tuning is optional then, where possible,
we should favor the usage of such models.

2 Related Work

Equation 1 described a model containing tuning and project parameters. Related
work may be categorized according to how they treat (model, tuning, project).

– Data Mining: Using different data mining techniques, generate a range of models.
– Prediction: fix model and project and generates fixed estimates.
– Calibration: import an log of estimates and project variables, find changes to

model that best explain how project inputs lead to estimation outputs.
– Monte Carlo studies: generate estimates from one model varying the project choices.

In the field of effort estimation:

– Data mining is useful when the exact best form of the model is unknown [32].
– Prediction is used to create one point estimate for a project; e.g., COCOMO [8,

9],PRICE-S [35] and SEER-SEM [21].
– Calibration is useful for learning from historical data; e.g., see Boehm’s local cali-

bration procedure [8, p526-529] or the COSEEKMO toolkit [32].
– Monte Carlo studies are useful for conducting what-if queries across a range of

possible projects [39]. Such Monte Carlo studies are conducted by many tools in-
cluding COBRA [12], Crystal Ball [6], SCAT [27, 28], and 2CEE [7].

To the best of our knowledge, this work is the first to try controlling the project vari-
ables while leaving the tuning unconstrained. Even in the field in search-based soft-
ware engineering, we have not seen anything like this study. It is true that search-based
SE often uses non-linear search methods like simulated annealing. A recent review
of 123 search-based SE papers [41] showed that much of that work relates to testing
(e.g., SA to minimize test suites for regression testing) while only a handful of those
papers related to the kinds of early project process planning discussed here. For ex-
ample, Aguilar-Ruiz et.al. [2] and Alvarez et.al. [4] apply search-based methods for
effort estimation. One facet that distinguishes SEESAW from other methods is that we
are searching over more than just the effort models explored by the Aquilar-Ruiz &
Alvarez teams.
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Some researchers have explored estimation uncertainty using a Bayesian analysis.
For example, Pendharkar et.al. [36] demonstrate the utility of Bayes networks in effort
estimation while Fenton and Neil explore Bayes nets and defect prediction [17]. Unlike
this paper, neither of these teams links defect models to effort models. We elect to take
a non-Bayesian approach since most of the industrial and government contractors we
work with use parametric models like COCOMO.

Other researchers use Search-Based Software Engineering (SBSE) optimization
techniques and apply techniques taken from operations research and meta-heuristic
search (e.g., simulated annealing and genetic algorithms). Typically, SBSE hunts for
near optimal solutions to complex and over-constrained software engineering prob-
lems. This approach has been applied to many problems in software engineering (e.g.,
requirements engineering [20]) but most often in the field of software testing [5]. Har-
mon’s writing inspired us try simulated annealing to search the what-ifs in untuned CO-
COMO models [31]. However, we found that SEESAW ran much faster and produced
results with far less variance than simulated annealing.

The process simulation community (e.g., Raffo [38]) studies models far more elab-
orate than COCOMO or COQUALMO. For example, COCOMO & COQUALMO as-
sume linear parametric equations while other researchers explore other forms:

– discrete-event models [23, 25];
– system dynamics models [1];
– state-based models [3, 19, 29];
– rule-based programs [33];
– standard programming constructs such as those used in Little-JIL [13, 42].

These rich modeling frameworks allow the representation of detailed insights into an
organization. However, the effort required to tune them is non-trivial. For example,
Raffo spent two years tuning and validation one such model to one particular site [40].

3 Models Used in this Study

3.1 COCOMO, COQUALMO, THREAT

The background to all our work are three USC software process models:

– The COQUALMO software defect predictor [10, p254-268]. COQUALMO models
two processes (defect introduction and defect removal) for three phases (require-
ments, design, and coding).

– The COCOMO software effort and development time predictor [10, p29-57]. CO-
COMO assumes that effort is exponentially proportional to some scale factors and
linearly proportional to some effort multipliers. COCOMO estimates development
months (225 hours) and calendar months and includes all coding, debugging, and
management activities.

– The THREAT predictor for project effort & schedule overrun [10, p284-291]. The
THREAT model contains a large set of two-dimensional tables like Figure 1 repre-
senting pairs of variable settings that are problematic. For example, using the rely
vs sced table, the THREAT model would raise an alert if our tool decides to build
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a system with high rely (required reliability) and low sced (schedule available to
the development).

rely= rely= rely= rely= rely=
very low nominal high very
low high

sced= very low 0 0 0 1 2
sced= low 0 0 0 0 1
sced= nominal 0 0 0 0 0
sced= high 0 0 0 0 0
sced= very high 0 0 0 0 0

Fig. 1. An example risk table

From our perspective, these models have several useful features:

– Unlike other models such as PRICE-S [35], SLIM [37], or SEER-SEM [21], the
COCOMO family of models is fully described in the literature. Also, at least for
the effort model, there exist baseline results [15].

– We work extensively with governemnt agencies writing software. Amongst those
agencies, these models are frequently used to generate and justify budgets.

– The space of possible tunings within COCOMO & COQUALMO is well defined
(see below). Hence, it is possible to explore the space of possible tunings.

– Even allowing for full variance in the tuning parameters, the estimation variance
of COCOMO can be reduced via intelligent selection of input variables. We would
consider switching to other models if it could be shown that the variance of these
other models could be controlled just as easily.

Figure 2 shows the project choices within COCOMO / COQUALMO / THREAT.
The last two columns of this figure show the results of a Delphi panel session at the Jet
Propulsion Laboratory where the COCOMO variables were separated into:

– the tactical variables that can be changed within the space of one project;
– the strategic variables that require higher-level institutional change (and so may

take longer to change).

For example, the panel declared that pmat (process maturity) is hard to change within
the space of a single JPL project. Note that these definitions of strategic and tactical
choices are not hard-wired into our system. If a user disagrees with our definitions of
strategic/tactical, they can change a simple configuration file.

3.2 Example Projects

Figure 3 summarizes four NASA case studies using the project choices of Figure 2:

– “OSP” is the GNC (guidance, navigation, and control) component of NASA’s 1990s
Orbital Space Plane;
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strategic? tactical?
scale prec: have we done this before? 3
factors flex: development flexibility 3
(exponentially resl: any risk resolution activities? 3
decrease team: team cohesion 3
effort) pmat: process maturity 3
upper acap: analyst capability 3
(linearly pcap: programmer capability 3
decrease pcon: programmer continuity 3
effort) aexp: analyst experience 3

pexp: programmer experience 3
ltex: language and tool experience 3
tool: tool use 3
site: multiple site development 3

sced: length of schedule 3
lower rely: required reliability
(linearly data: secondary memory storage requirements 3
increase cplx: program complexity 3
effort) ruse: software reuse 3

docu: documentation requirements 3
time: runtime pressure
stor: main memory requirements 3

pvol: platform volatility
COQUALMO auto: automated analysis 3 3
defect removal execTest: execution-based testing tools 3 3
methods peer: peer reviews 3 3

Fig. 2. The variables of COCOMO, COQUALMO, and the THREAT model.

– “OSP2” is a later version of OSP;
– “Flight” and “ground” show typical ranges of NASA’s Jet Propulsion Laboratory.

Inside our model, project choices typically range from 1 to 5 where “3” is the nomi-
nal value that offers no change to the default estimate. Some of the project choices in
Figure 3 are known precisely (see all the choices with single values). But many of the
features in Figure 3 do not have precise values (see all the features that range from some
low to high value).

Sometimes the ranges of choices are very narrow (e.g., the process maturity of JPL
ground software is between 2 and 3), and sometimes the ranges are very broad. Fig-
ure 3 does not mention all the features listed in Figure 2 inputs. For example, our defect
predictor has inputs for use of automated analysis, peer reviews, and execution-based
testing tools. During SEESAW’s search, for all project choices not mentioned in Fig-
ure 3, values are picked at random from the full range of Figure 2.

3.3 Defining the Space of Possible Tunings

Many of our project choices have a linear relationship to the output. Such linear rela-
tions form the line y = mx + b with slope “m” passing through point x = 3, y = 1;
i.e., at the nominal value of “3”, there are no changes to the effort estimate. Such a line
has a y-intercept of b = 1− 3m. Substituting this value of b into y = mx + b yields:

estimate = m(x− 3) + 1
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float fixed
project variable low high variable setting

prec 1 2 data 3
OSP flex 2 5 pvol 2

resl 1 3 rely 5
team 2 3 pcap 3
pmat 1 4 plex 3
stor 3 5 site 3
ruse 2 4
docu 2 4
acap 2 3
pcon 2 3
apex 2 3
ltex 2 4
tool 2 3
sced 1 3
cplx 5 6
KSLOC 75 125
prec 3 5 flex 3

OSP2 pmat 4 5 resl 4
docu 3 4 team 3
ltex 2 5 time 3
sced 2 4 stor 3
KSLOC 75 125 data 4

pvol 3
ruse 4
rely 5
acap 4
pcap 3
pcon 3
apex 4
plex 4
tool 5
cplx 4
site 6

float fixed
project variable low high variable setting

rely 3 5 tool 2
data 2 3 sced 3

flight cplx 3 6
time 3 4
stor 3 4
acap 3 5
apex 2 5
pcap 3 5
plex 1 4
ltex 1 4
pmat 2 3
KSLOC 7 418
rely 1 4 tool 2
data 2 3 sced 3

ground cplx 1 4
time 3 4
stor 3 4
acap 3 5
apex 2 5
pcap 3 5
plex 1 4
ltex 1 4
pmat 2 3
KSLOC 11 392

Fig. 3. Four case studies.

Over the history of the COCOMO project, it has been observed that all the linear pa-
rameters that increase/decrease effort have the following slopes:

increasing effort decreasing effort

0.073 ≤ m ≤ 0.21 −0.178 ≤ m ≤ −0.078
(2)

Similarly, the linear relations in the COQUALMO defect model linear relationships
fall within very narrow slopes:

phase increasing defects decreasing defects

requirements 0 ≤ m ≤ 0.112 −0.183 ≤ m ≤ −0.035
design 0 ≤ m ≤ 0.14 −0.208 ≤ m ≤ −0.048
coding 0 ≤ m ≤ 0.14 −0.19 ≤ m ≤ −0.053

(3)

Like COCOMO, COQUALMO also includes scale factors that affect the estimates ex-
ponentially. These scale factors hinge about the origin and have the following slopes:

phase defect removal

requirements 0.08 ≤ m ≤ 0.14
design 0.1 ≤ m ≤ 0.156
coding 0.11 ≤ m ≤ 0.176

(4)
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Clearly, it is possible to sample the space of all known COCOMO / COQUALMO
tunings by picking random m values from Equation 2, Equation 3, and Equation 4.

To sample across the space of THREAT tunings, another mechanism is required. Ta-
bles like Figure 1 can be represented as an exponentially decaying function that peaks in
one corner of the risk table at a value between two to four. Since this model is heuristic
in nature, the exact height of the peak is not certain. When we perform tuning samplings
over THREAT, we vary the height of the peak by a random factor 0.5 ≤ x ≤ 1 if the
peak is four, and 0.5 ≤ x ≤ 1.5 if the peak is two.

4 Searching over Tuning Variables with Local Calibration

This paper compares estimates generated in two ways. This section describes local cal-
ibration (LC), the standard regression procedure used by the COCOMO community.
Later, we will compare LC’s results with those from SEESAW.

LC assumes that a matrix Di,j holds:

– The natural log of the LOC (lines of code) estimates;
– The natural log of the actual efforts for each project j;
– The natural logarithm of the cost drivers (the scale factors and effort multipliers) at

locations 1 ≤ i ≤ 15 (for COCOMO 81) or 1 ≤ i ≤ 22 (for COCOMO-II).

With those assumptions, Boehm [8] shows that for COCOMO 81, the following calcu-
lation yields estimates for “a” and “b” that minimize the sum of the squares of residual
errors:

EAFi =
∑N

j
Di,j

a0 = t

a1 =
∑t

i
KLOCi

a2 =
∑t

i
(KLOCi)

2

d0 =
∑t

i
(actuali − EAFi)

d1 =
∑t

i
((actuali − EAFi) ∗ KLOCi)

b = (a0d1 − a1d0)/(a0a2 − a2
1)

a3 = (a2d0 − a1d1)/(a0a2 − a2
1)

a = ea3


(5)

In the case of COCOMO-I [8] these a, b values are used in the following equation to
generate effort estimates. In this equation, EMi are the effort multipliers from Figure 2:

effort = a ·KSLOCb ·
15∏
i

EMi

What is not widely appreciated is the size of the variance in the (a, b) values. The left-
hand-side of Figure 4 shows the COCOMO-I (a, b) values learned by Baker [7] after,
300 times, extracting 10 projects at random from COCOMO data sets, then applying
Equation 5 to the remaining data. The data sets used in this study contained 93 projects,
so LC was applied to 93−10

93 = 89% of the data. A pre-experimental intuition was that
we were using enough of the data to yield stable (a, b) values. As can be clearly seen
by the wide variance on the (a, b) values in Figure 4, this was not the case.

The right-hand-side of Figure 4 shows the magnitude of the relative error (or MRE)
values seen in Baker’s study (MRE is a standard measure in the effort estimation field as
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Fig. 4. Results of applying LC numerous times to 90% of the NASA93 data sets (available from
http://promisedata.org/data). Left-hand-side shows computed (a, b) values. Right-
hand-side shows MREs generated in 20 repeats over the NASA93 data set.

follows: MRE = abs(actual−predicted)
actual ). In the sequel, we will refer to Baker’s results

as MRE1.
Some of the MRE1 errors are very large (up to nearly 500%) suggesting that LC

was incomplete or that the variance in the (a, b) calculations have significant impact on
the estimation. Note that this right-hand-side figure is not without precedent in the esti-
mation literature: it is a well-established result that initial development effort estimates
may be incorrect by a factor of four [8] or even more [24].

Elsewhere we have been partially successful in reducing estimation variance of Fig-
ure 4 using feature subset selection (FSS) [14, 32] or more data collection. Unfortu-
nately, FSS reduces but does not eliminate the a, b variance. Also, further data col-
lection is possible, but only at great organizational expense. Since we failed to generate
precise tunings that yield exact estimates, we considered a change in our research goals.
Perhaps, we argued, it was time to explore the space of possible tunings. This line of
thinking led to the SEESAW search engine.

5 Searching over Project Choices with SEESAW

SEESAW seeks the smallest set of project choices that minimizes a score function that
combines COCOMO’s effort Ef and time Ti predictions; the COQUALMO defect De
predictions; and the THREAT Th prediction. SEESAW normalizes these scores 0..100
then seeks ways to minimize the following combination of the normalized scores:√

Ef2 + Ti2 + Th2 + De2 (6)

(This is the Euclidean distance to minimum values for effort, time, threats, and defects.)
Figure 5 shows SEESAW’s pseudo-code. Before exploring the low-level details of

the algorithm (as done below), we first remark about the main purpose of the code.
While SEESAW staggers over the space of possible tunings (see Equations 2, 3, and 4)
and project choices (as defined by Figure 3), it only constrains project choices (and not
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1 function run (AllRanges, ProjectConstraints) {
2 OutScore = -1
3 P = 0.95
4 Out = combine(AllRanges, ProjectConstraints)
5 Options = all Out choices with ranges low < high
6 while Options {
7 X = any member of Options, picked at random
8 {Low, High} = low, high ranges of X
9 LowScore = score(X, Low)

10 HighScore = score(X, High)
11 if LowScore < HighScore
12 then Maybe = Low; MaybeScore = LowScore
13 else Maybe = High; MaybeScore = HighScore
14 fi
15 if MaybeScore < OutScore or P < rand()
16 then delete all ranges of X except Maybe from Out
17 delete X from Options
18 OutScore = MaybeScore
19 fi
20 }
21 return backSelect(Out)
22 }
23 function score(X, Value) {
24 Temp = copy(Out) ;; don’t mess up the Out global
25 from Temp, remove all ranges of X except Value
26 run monte carlo on Temp for 100 simulations, scoring each run using Equation 3.
27 return median score of the 100
28 }

Fig. 5. Pseudocode for SEESAW.

tuning variables). In this sense, SEESAW is the opposite of LC in that the latter makes
no comment on the project choices. Rather, LC just proposes constraints to two tuning
variables.

SEESAW is an adaption of Kautz & Selman’s MaxWalkSat local search proce-
dure [22]. Each solution is scored via a Monte Carlo procedure (see score in Fig-
ure 5), and SEESAW seeks to minimize that score (since, for our models, it is some
combination of defects, development effort, development time, and threats).

SEESAW first combines the ranges for all the COCOMO project choices with the
known project constraints of Figure 3. These constraints range from Low to High
values. If a case study does not mention a project choice, then there are no constraints
on that choice, and the combine function (line 4) returns the entire range of that choice.
Otherwise, combine returns only the values from Low to High.

In the case where a choice is fixed to a single value, then Low = High. Since
there is no decision to be made for this choice, SEESAW ignores it. The algorithm
explores only those choices with a range of Options where Low < High (line 5). In
each iteration of the algorithm, it is possible that one acceptable value for a choice X
will be discovered. If so, the range for X is reduced to that single value, and the choice
is not examined again (line 17).

SEESAW prunes the final recommendations (line 21). This function removes the
N selections added last that do not significantly change the final score (t-tests, 95%
confidence). This culls any final irrelevancies in the selections.

10



The score function shown at the bottom of Figure 5 calls COCOMO / COQUALMO
/ THREAT models 100 times, each time selecting:

– Random values for the project choices (from the Options set);
– Random values for the tuning variables (as described in Equations 2, 3, and 4).

The median value of the Equation 6 values seen in these runs is the score for those
project choices. As SEESAW executes, the ranges in Options are removed and replaced
by single values (lines 16-17), thus constraining the space of possible simulations.

SEESAW was designed after observing experimentally that the most interesting
ranges in Options are generally the minimum and maximum values. The reason for
this is simple: All the functions in COCOMO / COQUALMO / THREAT are mono-
tonic, causing the most dramatic effects to occur at the extreme ends of the ranges. In
fact, SEESAW takes its name from the way earlier versions of this algorithm tended to
seesaw between extreme values. We have conducted experiments with other approaches
that allow intermediate values. On comparison with the simulated annealing method
used in a prior publications [31], we found that seesawing between {Low, High} val-
ues was adequate for our purposes.

SEESAW is a stochastic algorithm: the selection of the next choice to explore is
completely random (line 7). We use this stochastic approach since much research from
the 1990s showed the benefit of such search methods. Not only can stochastic algo-
rithms solve non-linear problems and escape from local minima/maxima, but they can
also find solutions faster than complete search, and for larger problems [34]. For ex-
ample, we have implemented a deterministic version of SEESAW that replaces the ran-
dom selection of one choice in line 7 with a search through all choice for the best
{Low, High} value. That algorithm ran much slower (runtimes were 12 times greater)
with nearly identical results to those of the stochastic search. Crawford and Baker [16]
offer one explanation for the strange success of stochastic search. For models where
the solutions are a small part of the total space, a complete search wastes much time
exploring uninformative areas of the problem. A stochastic search, on the other hand,
does not get stuck in such uninformative areas.

6 Experiments

In terms of trusting SEESAW, the key question is how much SEESAW”S estimates
differ from those generated by conventional methods such as LC. To implement that
comparison, we followed the procedure shown on the right-hand-side of Figure 6.

1. Two kinds of control policies were explored; i.e., the strategic and tactical choices
marked in Figure 2.

2. Five kinds of projects were created; i.e., the four projects from Figure 3 and one
using an imaginary project whose project choices included the entire range of all
COCOMO variables.

3. For these 2*5=10 case studies, we ran SEESAW to find the constraints that led to
minimum effort, threats, defects, and development time.

4. From each of the 10 sets of constraints, we generated projects consistent with those
constraints.
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Fig. 6. Experimental design.

5. Estimates were then added to the above randomly generated projects. Each estimate
was the median value seen in 1000 simulations of SEESAW’s score function
(see line 23 of Figure 5). That is, these estimates were generated from constrained
project choices but unconstrained tuning variables.

6. SEESAW’s predicted effort estimates were then compared to those generated by
conventional means; i.e., LC learning on NASA93, then applied to the projects
generated from the constraints found by SEESAW.

7. The delta in SEESAW’s and LC’s estimates was computed using ∆ = abs(SEESAW−LC)
SEESAW .

8. Steps 4, 5, 6, and 7 were repeated 20 times to generate the set “MRE2”.

Figure 7 shows the sorted MRE2 values for 10 sets of projects (one line for each
project). The median deltas ∆ seen in these ten cases studies runs were

∆ =
abs(SEESAW − LC)

SEESAW
= {20, 20, 21, 22, 23, 23, 23, 23, 24, 24, 26}%

We explain the small median delta as follows: the project choices found by SEESAW
forced this process model into a narrow space of behaviors. In this narrow space, the
impact of the tuning variance becomes unimportant.
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Fig. 7. MRE2 results for Figure 6, for ten case studies (one study per line). The MRE1 results
(left-hand-side) come from Figure 1.

But there is a problem with this claim that a delta ∆ value of 20 to 26 is a “small
delta.” Any claim that that X% is “small” is spurious unless we have some other study
that says “in conventional estimation, it is uncommon to see variance smaller than this.”
Accordingly, we return to the Baker’s LC results. Figure 7 displays the Baker results
(MRE1: left-hand-side) and the delta ∆ values generated above (MRE2: right-hand-
side). A visual inspection shows that the MREs generated via local calibration (MRE1)
are mostly the same size as the the differences seen between LC’s and SEESAW’s
predictions (MRE2). Indeed, in a small number of cases, the MRE1 values are much
larger values (see the spike, right-hand-side of the MRE1 distribution).

For the sake of completeness, we performed a statistical difference test on the MRE1
and MRE2 distributions:

– Since we are comparing distributions, paired tests were deemed inappropriate.
– Since Figure 4 and Figure 7 have a small number of large outliers, tests that make

a Gaussian assumption were also deemed inappropriate.
– Therefore, we compared Figure 4 (right-hand-side) with the ten distributions of

Figure 7 using Mann-Whitney tests. At the 99% confidence level, the distributions
were indistinguishable in five out of ten of our experiments.

This test confirms our visual impression: the MRE1 distributions (obtained by con-
trolling the tuning variables) are not always greatly different to MRE2 distributions
(obtained without controlling the tuning variables).

These results do not say that SEESAW produces the same estimates as LC. Clearly,
SEESAW’s Monte Carlo approach to estimation does introduce some “jitter” into the
estimates. The question is, is that jitter significantly large? We would argue that it is not
significantly large. As mentioned above, the constraints on the project choices learned
by SEESAW have forced these models into a narrow space of behaviors. In that narrow
space, the impact of the tuning variance becomes unimportant:

– Figure 7 shows visually that that the jitter associated with SEESAW (MRE2) is
close to, and sometimes smaller than, the jitter produced by merely changing the
training sample by 10% (MRE1).
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– Our Mann-Whitney tests confirm this visual impression.

We conclude that the estimates generated after constraining project choices (using SEE-
SAW) are no more varied than the estimates generated after constraining tuning vari-
ables (using LC).

7 Conclusion

In prior studies with the COCOMO / COQUALMO / THREAT models, we have shown
that an AI search engine can find a minimal set of constraints to project choices that
reduce estimates for project effort, defects, time, and threats [30, 31]. Those results
were based on limited case studies and failed to check the validity of the estimates.

In this report, we showed in ten case studies that the deltas between ranges of esti-
mates generated by SEESAW (without constraining the tuning variables) form a similar
distribution to those found by traditional estimation methods (that constrain the tuning
variables). In fact, in half our experiments, there was no statistically significant delta
between the two distributions. From a technical perspective, this means that if estima-
tion variance arises from a tuning variance T and project variance P , then there exists
process models such as COCOMO / COQUALMO where P � T ; i.e., project choices
dominate tuning options.

When P � T , the estimates found by constraining project choices will be close to
estimates found via tuning on historical data. For such models, tuning is optional and
decision making need not wait for detailed local data collection.

8 Future Work

This work could lead to a “Goldilocks” principle for process modeling:

– Very small models offer trite conclusions that are insensitive to important project
features.

– Very large models need extensive data collection to tune their internal structures.
– In between there may exist some models that are “just right”; i.e., big enough to

make interesting conclusions, but small enough such that the internal tuning vari-
ance does not dominate the variance results from input project choices.

We have presented here evidence that the COCOMO / COQUALMO / THREAT
models are “just right”; i.e., their variance can be reduced by constraining the project
choices while leaving the tuning variables unconstrained.

We make no claim that all process models are “just right” and, hence, can be con-
trolled by SEESAW. Indeed, we suspect that many process models may not be near
the right size. However (and this is the main point of this paper), what kind of pro-
cess model should be used? We would argue, that for data-starved domains, we should
deliberately select for “just right” process models.

Based on the above, the future direction of this research is clear: for data-starved
domains, derive better design principles for process models. Our intuition is that this
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will be a search problem and that tools like SEESAW will not only be useful for search-
ing a fixed model, but also for finding revisions to current models in order to make them
“just right”.
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