
1

PARAMETRIC ANALYSIS OF ANTARES RE-ENTRY GUIDANCE ALGORITHMS USING ADVANCED
TEST GENERATION AND DATA ANALYSIS

Karen Gundy-Burlet1, Johann Schumann2, Tim Menzies3, and Tony Barrett4

1NASA-Ames Research Center, Moffett Field, CA, 94035, Karen.Gundy-Burlet@nasa.gov
2RIACS/USRA, NASA-Ames Research Center, Moffet Field, CA 94035, Johann.M.Schumann@nasa.gov

3Lane CS & EE, West Virginia University, tim@menzies.us
4Jet Propulsion Laboratory, Pasadena, CA 91109, barrett@jpl.nasa.gov

ABSTRACT

Large complex aerospace systems are generally validated
in regions local to anticipated operating points rather than
through characterization of the entire feasible operational
envelope of the system. This is due to the large parameter
space, and complex, highly coupled nonlinear nature of
the different systems that contribute to the performance
of the aerospace system. We have addressed the fac-
tors deterring such an analysis by applying a combina-
tion of technologies to the area of flight envelop assess-
ment. We utilize n-factor (2,3) combinatorial parameter
variations to limit the number of cases, but still explore
important interactions in the parameter space in a sys-
tematic fashion. The data generated is automatically an-
alyzed through a combination of unsupervised learning
using a Bayesian multivariate clustering technique (Au-
toBayes) and supervised learning of critical parameter
ranges using the machine-learning tool TAR3, a treat-
ment learner. Covariance analysis with scatter plots and
likelihood contours are used to visualize correlations be-
tween simulation parameters and simulation results, a
task that requires tool support, especially for large and
complex models. We present results of simulation exper-
iments for skip re-entry return scenarios.

1. INTRODUCTION

The any-time lunar return requirement for the Constella-
tion Orion capsule drives algorithm development of skip
re-entry guidance algorithms as well as hardware items
such as configuration and sizing of the reaction control
system. A skip re-entry maneuver involves an initial
aero-braking maneuver and then a skip out of the earth’s
atmosphere. At apogee of the skip maneuver, control is
applied such that the capsule de-orbits and descends to a
targeted landing zone. For a successful landing, a signifi-
cant number of requirements must be met (e.g, acceptable
G-loads, fuel consumption, and on-target landing).

The performance of the capsule depends on a large num-
ber of parameters and a major task is to establish safe
ranges for those parameters. Exhaustive exploration of
all parameter combinations is infeasible for such a com-
plex system, so, traditionally, parameters are randomly
sampled from a defined distribution for a statistically sig-
nificant number of runs (traditional Monte Carlo testing).
Vast amounts of data can be generated that way, and man-
ual inspection of this data is usually confined to gross fea-
tures of the solution (such as absolute compliance with
requirements). Anomalous or unexpected data can easily
be overlooked.

The creation of these practical and functional models is
a resource-intensive activity, especially in terms of hu-
man intelligence. Researchers have recognized that “de-
signers must be able to examine various design alterna-
tives quickly and easily among myriad and diverse con-
figuration possibilities” (1). The number of configuration
possibilities within a model, such as the re-entry system
described above, can be dauntingly large. A model with
only 20 binary choices already has 220 > 1, 000, 000 pos-
sible configurations, far beyond the capability of human
comprehension.

Worse yet, when the models can be executed early in
the development life cycle, analysts face another prob-
lem. For example, software engineering for space sys-
tems is rarely a green field design. Often, pre-existing
physics models are available. Therefore, early in the life
cycle, system prototypes can interact with physics mod-
els to develop usage policies for the software. Given the
ready availability of super-computers, and even inexpen-
sive LINUX clusters, analysts may have to analyze giga-
bytes of data generated automatically from simulators.

Accordingly, since 2000 (2), we have explored sampling
those configurations at random, running the resulting
model, scoring the output with some oracle, then using
data mining techniques to find the configuration options
that most improve model output, Here, we try a new
combination of methods and tools to study the configu-

2

ration parameters on a software controller for spacecraft
re-entry:

• An n-factor combinatorial test vector generation al-
gorithm to target tests toward regions of the param-
eter space where interactions among parameters are
key to performance (Section 3).

• The TAR3 minimal contrast set learner (3); is a su-
pervised learning method that returns the minimal
deltas between desired outcomes (hitting the target)
and all the other outcomes (Section 4.1).

• EM clustering algorithms that are autogenerated by
the AUTOBAYES program synthesis tool. Clustering
is an unsupervised learning method that obtains the
most probable estimates for class frequency and the
governing parameters (Section 4.3).

It was found that the combination of methods yielded
more information than any method used in isolation. The
operation of each algorithm can be intelligently informed
and usefully constrained by using the output of the other.
Combinatorial test exposes interactions between param-
eters, TAR3 focuses the analysis on a small number of
variables while AUTOBAYES reveals structures missed
by TAR3.

The rest of this paper discusses the problem domain and
how it was analyzed with combinatorial test, TAR3 and
AUTOBAYES. We show that data mining in combination
with functional requirements can be used to determine
best parameter ranges for such tasks as landing a space-
craft skip re-entry scenario within a narrowly defined tar-
get zone.

2. PROBLEM DOMAIN

The data mining techniques discussed in this paper have
been applied to an existing spacecraft re-entry simulation.
The Advanced NASA Technology Architecture for Ex-
ploration Studies (ANTARES) code (4) was used in this
study. ANTARES contains many types of models includ-
ing environmental, propulsion, effector and Guidance
Navigation and Control (GNC) algorithms. ANTARES
is built on the Trick Simulation Environment (5), which
is an executive for assembling and running the models in
both real-time and fast-time environments.

The simulation is used to design algorithms and evalu-
ate trajectories for targeted return from various orbital in-
sertion points. Numerous parameter variations are con-
sidered in order to determine the resilience of the algo-
rithms to dispersions in mass properties, aerodynamic
properties, atmospheric properties, and insertion points.
The data mining techniques discussed here are intended
to characterize the operational envelop of the simulation
and to find the ranges of parameters that lead to the clos-
est landings to the target. The margin between the best
ranges to the failure points of each parameter can then be
determined.

Both standard Monte Carlo and three-factor combinato-
rial techniques were used in this study. The number of pa-
rameters for this series of test cases varied from 24 to 61.
For the Monte Carlo cases, one thousand cases were run,
with random values chosen for each of the input parame-
ters from their respective probability distributions. Here,
the parameter ranges are greatly expanded such that they
are likely to include failure cases. The output data en-
compass a wide range of variables that are saved at each
iteration point. Data representing key parameters such as
trajectories, mass properties and consumption, G-loads
and aerodynamic properties were extracted from the sim-
ulation for the analysis that follows. Figure 1 shows a 3D
representation of all 1000 simulated trajectories1

Figure 1. 3D representation of spacecraft re-entry trajec-
tories for 1000 simulation runs with different simulation
parameters.

3. COVERING THE OPTION SPACE

As mentioned previously, a model with 20 binary choices
has more than a million possible configurations. For the
ANTARES system it is anticipated that, in normal prac-
tice, the number of parameters to vary will greatly exceed
100, which results in an exponentially larger number of
possible configurations. Worse yet, when dealing with
simulations of physical systems, the input parameters are
often real values, making choices non-discrete and the
possible configurations infinite. So guaranteeing cover-
age of the option space is a non-trivial problem.

3.1. Approach

We have explored two approaches toward covering the
option space, a standard Monte Carlo and a 3-factor com-
binatorial technique. The standard Monte Carlo approach
is simplest. It generates parameters for a simulation run

1In this paper, colors encode the class membership as determined by
the clustering algorithm. (Section 4.3, AUTOBAYES)

3

1 1 0 1 0 0 0 1 0 0 0 1 1 1 0 1 1 1 1 0
0 1 1 0 1 1 1 0 1 1 1 0 0 0 1 0 0 0 0 1
1 0 1 1 1 0 1 1 1 0 1 1 0 1 1 1 0 1 0 0
0 0 0 0 0 1 0 0 0 1 0 0 1 0 0 0 1 0 1 1
0 1 0 1 1 0 0 0 1 0 0 0 0 1 0 0 0 1 1 1
1 0 1 0 0 0 0 1 0 1 1 1 1 0 1 1 1 0 0 0
1 1 0 1 0 1 1 1 0 0 0 0 0 0 1 1 1 1 1 1
0 0 1 1 1 1 1 1 0 1 0 1 1 1 0 0 0 0 0 0
1 1 0 0 0 0 0 0 1 0 1 1 1 1 0 1 1 1 1 0
1 0 1 1 1 1 0 1 0 1 0 0 0 0 0 0 1 1 1 0
0 1 0 1 0 0 1 1 0 0 0 1 1 0 1 1 0 0 0 1

Figure 2. A 2-factor combinatorial test suite for 20 binary
parameters

by randomly selecting from user defined probability dis-
tributions, such as Gaussian or uniform. The main draw-
back from this approach is a lack of any coverage guar-
antee, resulting in a need to run a large number of simu-
lations to attain a given level of user confidence. Unlike
the standard Monte Carlo approach, the combinatorial ap-
proach makes a coverage guarantee while attempting to
perform a minimal number of simulations. In the case of
an n-factor combinatorial, the guarantee is that any set-
ting of any n discrete parameters appears in at least one
of the simulations. For instance, a 2-factor combinato-
rial test suite for 20 binary parameters is shown in Fig-
ure 2. Note that there are only 11 tests, much less than
the million tests needed to exhaustively cover every com-
bination. The 3-factor case only increases the number of
tests to 26, still minuscule when compared to a million.

While the number of tests performed using the com-
binatorial approach is minuscule compared to exhaus-
tive testing, anecdotal evidence suggests that this small
number of tests is enough to catch most coding errors
(6; 7; 8). The underlying premise behind the combinato-
rial approach can be captured in the following four state-
ments.

• The simplest bugs in a program are triggered by a
single input parameter.

• The next simplest bugs are triggered by an interac-
tion of two input parameters.

• Progressively more obscure bugs involve interac-
tions between more parameters.

• Exhaustive testing involves trying all combinations
of all inputs.

So errors can be grouped into families depending on how
many parameters need specific settings to exercise the er-
ror. The n-factor combinatorial approach guarantees that
all errors involving the specific setting of n or fewer pa-
rameters will be exercised by at least one test. Applying
an n-factor combinatorial approach to testing ANTARES
involved characterizing each real-valued parameter as a
partition of discrete ranges. When turning a computed
test into a simulation run, each range is replaced by a
real value chosen from a uniform distribution across that
range. The result is a multidimensional space of simula-
tion runs that projects down to a uniform distribution on

Problem Sizes Number of Tests Time
34 9 � 1 sec

313 19 � 1 sec
415 × 317 × 229 35 < 1 sec
41 × 339 × 235 29 < 1 sec

1020 216 1 sec
31000 48 22 sec

Table 1. Performance of test suite generator on 2-factor
combinatorial problems

any plane of input parameters, which facilitates visualiza-
tion like that shown in Figure 5.

3.2. Implementation

To generate 2-factor combinatorial test suites there are a
number of algorithms in the literature (9). Our algorithm
is a generalization of IPO (10) to facilitate generating n-
factor combinatorial test suites in addition to a number of
features that a real world test suite generator would need
(11). These features include the ability to explicitly in-
clude particular combinations, explicitly exclude partic-
ular combinations, require n-factor combinatorial cover-
age of specific subsets of parameters, and tie the existence
of particular parameters to the setting of another parame-
ter.

The resulting algorithm is 1041 lines of documented Java
code with an example output that appears in Figure 2.
Even with these extra capabilities the algorithm generates
test suites that are comparable to those generated by the
more restricted systems in the literature. As shown in
Table 1 the code generates quality solutions very rapidly
on a 400MHz Windows laptop. In the problem sizes, the
XY syntax means that there are Y X-valued parameters.

4. DATA ANALYSIS TOOLS & METHODS

4.1. TAR3

Multi-Dimensional Optimization. BORE, short for
best or rest, takes instances scored on multiple utilities as
input and classifies each of them “best” or “rest”. BORE
maps the instance outputs into a hypercube, which has
one dimension for each utility.

BORE normalizes instances scored on N dimensions
into “zero” for “worst”, and “one” for “best”. The corner
of the hypercube at 1, 1, . . . is the apex of the cube and
represents the desired goal for the system. All the exam-
ples are scored by their normalized Euclidean distance to
the apex.

4

For this study, outputs were scored on one dimension-
distance to the desired target. Future studies will exploit
more of BORE’s facilities and will score outputs on other
dimensions such as average standard deviation on attitude
control, minimum use of propellant, minimal maximum
G-force, etc.

For each run i of the simulator, the n outputs Xi are nor-
malized to the range 0 . . . 1 as follows:

Ni = Xi−min(X)
max(X)−min(X)

The Euclidean distance of {N1, N2, ...} to the ideal po-
sition of {N1 = 1, N2 = 2, ...} is then computed and
normalized to the range 0..1 as follows:

Wi = 1−
√

N2
1 + N2

2 + ...√
n

where higher Wi (0 ≤ Wi ≤ 1) correspond to better
runs. This means that the Wi can only be improved by
increasing all of the utilities. To determine the “best” and
“rest” values, all the Wi scores were sorted according to
a given threshold BEST. The top BEST% are then classi-
fied as “best” and the remainder as “rest”.

Treatment Learning with TAR3. Once BORE has clas-
sified the data into best and rest, a data miner is used
to find input settings that select for the better outputs.
This study uses the TAR3 data miner since this learn-
ing method returns the smallest theories that most effect
the output. This means that TAR3 tries to determine a
minimal set of model parameters, which have the most
influence on the behavior of the simulation system.

TAR3 inputs a set of training examples E. Each example
maps a set of attribute ranges to some class symbol; i.e.,
{Ri, Rj , . . . → C}. The class symbols C1, C2, . . . are
stamped with some utility score that ranks the classes;
i.e., {U1 < U2 < . . . < UC}. With E, these classes
occur at frequencies F1, F2, . . . , FC where

∑
Fi = 1.

A “treatment” T of size M is a conjunction of attribute
ranges {R1∧R2 . . .∧RM}. Some subset of e ⊆ E is con-
sistent with the treatment. In that subset, the classes oc-
cur at frequencies f1, f2, . . . , fC . TAR3 seeks the small-
est treatment T which induces the biggest changes in
the weighted sum of the utilities times frequencies of the
classes. Formally, this is called the lift of a treatment:

lift =
∑

C UCfC∑
C UCFC

Classes in treatment learning get a score UC and the
learner uses this to assess the class frequencies resulting
from applying a treatment (i.e., applying constraints to
the inputs). In normal operation, a treatment learner does
controller learning that finds a treatment, which selects
for better classes and reject worse classes By reversing
the scoring function, treatment learning can also select

for the worse classes and reject the better classes. This
mode is called monitor learning since it finds the thing
we should most watch for.

Formally, treatment learning is a weighted-class mini-
mal contrast-set association rule learner. The treatments
are associations that occur with preferred classes. These
treatments serve to contrast undesirable situations with
desirable situation where more of the outcomes are fa-
vorable. Treatment learning is different to other contrast
set learners like STUCCO (12) since those other learners
don’t focus on minimal theories.

Conceptually, a treatment learner explores all possible
subsets of the attribute ranges looking for good treat-
ments. Such a search is infeasible in practice so the
art of treatment learning is quickly pruning unpromis-
ing attribute ranges. This study uses the TAR3 treatment
learner (13) that uses stochastic search to find its treat-
ments.

4.2. TAR3: Results

When applied to our spacecraft re-entry simulator,
BORE/TAR3 works as follows. Firstly, BORE gener-
ates a baseline distribution where the simulation outputs
are divided into two categories: 25% are classified as best
(closest to the target region) while the others were rest
(the remaining 75% of the examples). The first row in
Table 2 shows the initial setting; the worth of this sce-
nario is defined to be one.

Tr worth Constraint best rest
– 1.0 – 25% 75%
1 1.46 0 ≤ c ≤ 0.34 ∧ 82% 18%

0.68 ≤ f < 1.0
2 1.43 0.67 ≤ c < 1.0 ∧ 79% 21%

0 ≤ f < 0.34
3 1.15 0.85 ≤ c < 0.98 ∧ 44% 56%

0.67 ≤ f < 1.0

Table 2. TAR3 treatments

TAR3 then seeks the minimal delta between best and
rest. Several candidate deltas are generated and scored
according to their normalized worth with respect to the
baseline. The top three deltas as produced by TAR3 are
shown in Table 2. Each treatment consists of a conjunc-
tion of linear constraints on the input variables. For in-
puts adhering to the constraints of the treatment, their
effect is calculated. In this case, a restriction of the in-
put variables c and f (two of 24 simulation parameters)
to the shown ranges causes substantial improvement over
the initial setting, as the “best” and “rest” values, which
BORE produces, show. The relative improvement is in-
dicated by the worth of the treatment.

Note that:

5

• The deltas with the highest worth have the greatest
percentage of best examples.

• The top two treatments have very similar worths,
and the third much less so.

• The top two treatments comment on different ex-
tremes of the variables c, f .

• Only very few of the 24 variables in the simulation
appear in the treatments.

Of these effects, the last is most important. TAR3 is a fo-
cus tool that tells an analysts “of all the things you might
think about, these few variables are all you should be
considering”.

4.3. AutoBayes

A well-known method to find structure in large sets
of data is to perform clustering. Clustering is an un-
supervised learning method that tries to estimate class
membership matrix and class parameters, only given
the data. A variety of algorithms can be used, for
example, the EM-algorithm (14). A number of EM-
implementations is available (e.g., Autoclass (15), EM-
MIX (16), or MCLUST (17)) and could be used for this
problem.

However, in order to refine the statistical model (e.g.,
by incorporating other probability distributions for cer-
tain variables or to introduce domain knowledge), the
EM-algorithm needs to be modified substantially for
each problem variant, making experimentation a time-
consuming and error-prone undertaking. Thus, we are
using AUTOBAYES tool to produce customized variants
of the EM-algorithm.

AUTOBAYES (18) is a fully automatic program synthesis
system that generates efficient and documented C/C++
code from abstract statistical model specifications. De-
veloped at NASA Ames, AUTOBAYES is implemented in
approximately 90,000 lines of documented SWI Prolog
code. From the outside, it looks similar to a compiler for
a very high-level programming language: it takes an ab-
stract problem specification in the form of a (Bayesian)
statistical model and translates it into executable C/C++
code that processes the data or, in our case, can be called
from Matlab.

On the inside, however, it works quite different:
AUTOBAYES first derives a customized algorithm skele-
ton implementing the model and then transforms it into
optimized C/C++ code. The input specification is trans-
lated into a Bayesian Network (19), which is a compact
internal representation of the statistical model. Then,
the program synthesis system uses a schema based ap-
proach to translate the statistical problem into smaller
problems and then, after symbolically solving subprob-
lems, to transform the instantiated customized algorithm
into efficient code. This task is heavily supported by a
domain-specific schema library, an elaborate symbolic

model mog as ’Multivar. Mix of Gaussians’;

const int D as ’number of variables’
const int N as ’number of data points’
const int C as ’number of classes’

with 1 < C; with C << N;

double phi(1..C) as ’class probabilities’
with 1 = sum(_i := 1..C, phi(_i));

double mu(1..D, 1..C), sigma(1..D, 1..C);

output int c(1..N) as ’latent variable’;
c(_) ˜ discrete(phi);

data double x(1..D, 1..N);
x(_i,_j) ˜ gauss(mu(_i,c(_j)),sigma(_i,c(_j)));

max pr(x|{phi, mu, sigma}) wrt {phi, mu, sigma};
Figure 3. AutoBayes specification for mixture model

subsystem, and an efficient rewriting engine. After op-
timization C or C++ code is generated for various plat-
forms (e.g., embedded systems, Matlab, Simulink, or Oc-
tave). For our experiment, we used AutoBayes to gener-
ate code that can be called from Matlab as a MEX func-
tion.

Figure 4. Landing spots for one set of simulation runs.
Colors indicate class membership.

The basic statistical model used for this study describes
the properties of the data in a fully declarative fashion:
for each problem variable of interest (i.e., observation
or parameter), properties and dependencies are specified
via probability distributions and constraints. Figure 3
shows how our clustering, a Gaussian mixture model
with diagonal covariance matrices can be represented in
AUTOBAYES’s specification language. The model as-
sumes that the data consists of N points in D dimen-
sions such that each point belongs to one of C classes;
the first few lines of the specification just declare these
symbolic constants and specify the constraints on them.
Each point x(1..C, j) (where .. corresponds to
Matlab’s subrange operator :, and i, j are index vari-
ables) is drawn independently from a univariate Gaus-
sian with mean mu(i,c(j)) and standard deviation
sigma(i,c(j)). The unknown distribution param-

6

eters can be different for each class and each dimension;
hence, we declare them as matrices. The unknown as-
signment of the points to the distributions (i.e., classes)
is represented by the latent variable c; since we are in-
terested in the classification results as well (and not only
the distribution parameters), c is declared as output. c
is distributed as a discrete distribution with the relative
class frequencies given by the also unknown vector phi.
Since each point must belong to a class, the sum of the
probabilities must be equal to one. Finally, we specify
the goal inference task, maximizing the conditional prob-
ability pr(x|{phi, mu, sigma}) with respect to the
parameters of interest, phi, mu, and sigma. This means
that we are interested in a maximum likelihood estimate
(MLE) of the model parameters.

If additional domain knowledge, e.g., priors on the mean
values of the features for each class are known, more
complicated models (e.g., maximum aposteriori esti-
mates, MAP) can be easily specified. Only a few lines
(Figure 7) with specification of the prior and an updated
maximization goal is necessary to produce a substantially
different data analysis algorithm. Note that all these mod-
els are completely declarative and do not require the user
to prescribe any algorithmic aspects of the estimation
program.

4.4. AutoBayes: Results

We have conducted several clustering experiments with
data from our simulation example. The data produced by
the simulation are actually time series data over a large
number of variables (e.g., altitude, G-force, longitude,
latitude). AUTOBAYES processed these data in order to
produce a single vector of data for each simulation run.
Data dimensions obviously include the landing position,
the sum of consumed fuel, maximal structural loads, as
well as a measure of the duration of extended time in-
tervals where the gravitational forces exceed a safe limit.
With this preprocessing, we obtained a data set with 10
dimensions. All data were normalized.

These data then were clustered using the Matlab/C code
as was generated by AUTOBAYES (790 lines of docu-
mented C code). We set the maximum number of EM-
iterations to 30, the termination error to 1.0× 10−6. The
generated data analysis algorithm determined that with 6
classes, a good separation can be achieved2.

The results of clustering, projected on the landing spot is
shown in Figure 4. Different colors indicate into which
class a specific simulation run falls. Simulation runs in
Class 1 (which comprises about 28% of the total runs)
result in a landing on target spot with very little deviation.
Thus all runs belonging to this class are displayed as a
single (enlarged) green dot For many of the other runs,

2The AUTOBAYES specification of Fig 3 does parameter estimation
for a model with a fixed number of classes. To obtain a the best number
of classes, a simple iteration and comparison with respect to the model
log-likelihood is performed.

however, strong deviations of the landing position from
the target exist.

Figure 5. Clustering results for two simulation input pa-
rameters (p1, p2).

Figure 6. Likelihood results for two simulation input pa-
rameters (p1, p2).

Figure 5 shows clustering results for two simulation in-
put parameters. Here, the cluster colors are correlated
with the mean of the distance of the cluster population to
the target center. The colors range from blue (landings
close to the target), to red (landings far from the target).
The red box on the diagram shows the region identified
by TAR3 as the best range of these two parameters, when
in fact, the best range goes from the lower left corner of
the plot to the upper right corner. If a principal compo-
nents analysis were performed, and provided as the input
to TAR3, it would more correctly report the entire blue
band as the optimal range. This enhancement will be in-
corporated into the algorithm in the future. The scatter
plot does obscure other fine detail in the plot.

Figure 6 shows contours of “likelihood” for the same two
input parameters as in Figure 5. To generate this plot,
the input domain was discretized and the likelihood of

7

success was computed for each cell. Here, Likelihood
combines the overall probability of success in the whole
population, ratio of success in the local cell, and local
cell population. Likelihood will approach one in well-
populated cells with a high ratio of success, and will ap-
proach zero if either there is poor statistical support or
a low ratio of success. If a variable is not correlated,
then the local likelihood will approach the overall ratio
of success in the complete population. Using this met-
ric, it is seen that choosing ranges of these parameters in
the upper right hand corner improves the resiliance of the
simulation to dispersions in other key parameters. This
is not immediately obvious from the scatter plot data in
Figure 5.

5. DISCUSSION

The major effect apparent in Figure 5, that TAR3 misses
an important region, is quite prominent. So is TAR3 a
sub-optimal tool for this domain?

We would argue not. Figure 5 was only rendered because
TAR3’s treatments concluded that that particular pair of
variables was important. Without TAR3, in the worst
case, an analyst would have to examine 242/2−24 = 264
plots. Further, if the important control effect was higher-
dimensional, then an exponentially larger number of plots
would have to be examined. In fact, the historical genesis
of TAR was when one of the authors took home for the
weekend 2,230 plots (printed 10 to a page) with the stated
aim of “flicking through them all looking for what factors
matter”. Very quickly, the cognitive overload of that task
became apparent and the plots were discarded.

Rather than declaring some method (e.g., visualizations,
AUTOBAYES, TAR3) to be “better” than another, a more
insightful question is: how to combine these tools to take
advantages of their strengths. For example, visualization
environments are exciting and motivating to use. Poten-
tially, they allow users to uncover important insights that
might be missed by a fully automatic analysis. Therefore,
we should always offer them to our users. On the other
hand, visualization environments (and AUTOBAYES) suf-
fer from the curse of dimensionality. They do not readily
scale to, say, the 24 dimensions of the flight guidance
system. Similarly, AUTOBAYES synthesizes functions,
which can exhibit slow convergence and numerical stabil-
ity problems when dealing with high-dimensional data.
TAR3 quickly prunes dimensions and defines regions of
interest where the input variables have most impact. If
used as a pre-processor to visualizations or AUTOBAYES,
then the former would have few dimensions to display
and the latter could scale to problems with higher dimen-
sions. Further, a visualization environment could aug-
ment its current displays with some distance cue to the
critical regions defined by TAR3.

Not only could TAR3 be used as a pre-processor to
AUTOBAYES, it could also be used as an AUTOBAYES
post-processor. TAR3 uses BORE and, in the lan-

const double mu_0(1..D, 1..C) as ’expected means’;
const double kappa_0(1..D, 1..C) as ’confidence’;

with 1 < kappa_0(_,_);
const double sigma_0(1..D, 1..C);
double mu(1..D, 1..C);
mu(_i,_j) ˜ gauss(mu_0(_i,_j),

sigma(_i,_j)*kappa_0(_i,_j);
...
max pr({mu, sigma, x}|phi) wrt {phi, mu, sigma};

Figure 7. Additions to AutoBayes specification for
Gaussian mixture model with priors (additional domain
knowledge)

guage of the AUTOBAYES clustering algorithm, BORE
is simple categorical binary clustering tool that decides
an example is either “best” or “rest”. If dependent vari-
ables were classified via AUTOBAYES’s subtler clus-
tering methods, then TAR3-running-after-AUTOBAYES
could find nuances missed by the current implementation.

Similarly, not only could AUTOBAYES improve TAR3’s
knowledge of the dependent variables, but AUTOBAYES
could synthesize attributes that improve TAR3’s under-
standing of the independent variables. Recall from Fig-
ure 5 that there exists a linear region of interest with
a negative slope flowing from top-left to bottom-right.
In a manner analogous to principal component analy-
sis, AUTOBAYES could synthesize new attributes (e.g.,
a straight line representing that region) and these could
augment/replace, attributes in the data sets past to TAR3.

Better yet, AUTOBAYES could be used to augment our
data miners with more elaborate domain knowledge
about variable distributions. This study assumed that the
distributions mixtures were extremely simple. However,
if additional domain knowledge exists about the specifics
of the classes, data analysis can be made more effec-
tive. For example, we might want to specify Class 1 as
the “landing on target” class, where longitude and lati-
tude of the landing spot is within narrow margins of the
designated landing area. In a Bayesian framework like
AUTOBAYES, such extra domain modeling is very sim-
ple using (conjugate) priors. Figure 7 shows the modifi-
cations (with respect to the specification in Figure 3) that
are necessary to define a conjugate prior on the mean for
each class: we know that the (unknown) mean µ is Gaus-
sian distributed around a known µ0 (“target area”) with
a known standard deviation σ0 and a confidence factor
κ0. A similar specification can be written for priors on
sigma. Although this change in the specification is only
minor, the resulting algorithm is substantially different—
another reason to use the automatic code generation tool
AUTOBAYES.

6. CONCLUSIONS

In this paper, we have explored a combination two learn-
ers (AUTOBAYES and TAR3) to explore the internal state
space of some flight guidance software with combinato-
rial test techniques. The combination of these technolo-

8

knowledge

regions of

dimensions
TAR3 AutoBayes

Visualization

User

reduced

classifications

better

synthesize new attributes

find novel
insights

interest

adds domain

Figure 8. A data mining workbench

gies revealed features that would have been invisible for
state of the practice. Further, the experiment suggests
some novel ways that these technologies could usefully
augment each other. Currently, we are working towards
automating the integrated toolkit shown in Figure 8.

More generally, given the growing importance of model-
based reasoning in software engineering, the ability to
use data miners to find and constrain the most important
parts of our software models, should prove to be a tech-
nique of growing importance in the years to come.

REFERENCES

[1] Gray, J., Lin, Y., and Zhang, J. Automating change
evolution in model-driven engineering. IEEE Com-
puter, 39(2):51–58, February 2006.

[2] Menzies, T. and Sinsel, E. Practical large
scale what-if queries: Case studies with soft-
ware risk assessment. In Proceedings ASE 2000,
2000. Available from http://menzies.us/
pdf/00ase.pdf.

[3] Menzies, T. and Hu, Y. Data mining for very
busy people. In IEEE Computer, November
2003. Available from http://menzies.us/
pdf/03tar2.pdf.

[4] Engineering Directorate, A. and Flight Mechan-
ics Division, J. S. C. Users guide for the antares
simulation, March 2007.

[5] Vetter, K. The trick user’s guide, trick 2007.5 re-
lease, July 2007.

[6] Cohen, D., Dalal, S., Parelius, J., and Patton, G.
The combinatorial design approach to automatic

test generation. Software, IEEE, 13(5):83–88, Sep
1996.

[7] Dunietz, I. S., Ehrlich, W. K., Szablak, B. D., Mal-
lows, C. L., and Iannino, A. Applying design of
experiments to software testing: experience report.
In ICSE ’97: Proceedings of the 19th international
conference on Software engineering, pages 205–
215, 1997.

[8] Wallace, D. R. and Kuhn, D. R. Failure modes in
medical device software: an analysis of 15 years
of recall data. International Journal of Reliability,
Quality and Safety Engineering, 8(4), 2001.

[9] Mats Grindal, Jeff Offutt, S. F. A. Combination test-
ing strategies: a survey. Software Testing, Verifica-
tion and Reliability, 15(3):167–199, 2005.

[10] Tai, K. and Lie, Y. A test generation strategy for
pairwise testing. IEEE Transactions on Software
Engineering, 28(1):109–111, 2002.

[11] Czerwonka, J. Pairwise testing in real world, prac-
tical extensions to test case generators. In Pro-
ceedings of 24th Pacific Northwest Software Quality
Conference, 2006.

[12] Bay, S. and Pazzani, M. Detecting change in
categorical data: Mining contrast sets. In Pro-
ceedings of the Fifth International Conference on
Knowledge Discovery and Data Mining, 1999.
Available from http://www.ics.uci.edu/
˜pazzani/Publications/stucco.pdf.

[13] Hu, Y. Treatment learning, 2002. Masters the-
sis, Unviersity of British Columbia, Department of
Electrical and Computer Engineering. In prepera-
tion.

[14] Dempster, A. P., Laird, N. M., and Rubin, D. B.
Maximum likelihood from incomplete data via the
EM algorithm (with discussion). J. of the Royal Sta-
tistical Society series B, 39:1–38, 1977.

[15] Cheeseman, P. and Stutz, J. Bayesian classification
(AutoClass): Theory and results. In Fayyad, U. M.,
Piatetsky-Shapiro, G., Smyth, P., and Uthurusamy,
R., editors, Proc. 2nd Intl. Conf. Knowledge Discov-
ery and Data Mining, pages 153–180. AAAI Press,
1996.

[16] McLachlan, G., Peel, D., Basford, K. E., and
Adams, P. The EMMIX software for the fitting of
mixtures of normal and t-components. J. Statistical
Software, 4(2), 1999.

[17] Fraley, C. and Raftery, A. E. MCLUST: Software
for model-based clustering, density estimation, and
discriminant analysis. Technical Report 415, De-
partment of Statistics, University of Washington,
October 2002.

[18] Fischer, B. and Schumann, J. AutoBayes: A sys-
tem for generating data analysis programs from
statistical models. J. Functional Programming,
13(3):483–508, May 2003.

[19] Buntine, W. L. Operations for learning with graph-
ical models. J. AI Research, 2:159–225, 1994.

