
Comparing Design and Code Metrics for Software Quality
Prediction

Yue Jiang, Bojan Cukic, Tim Menzies, Nick Bartlow
The Lane Department of Computer Science and Electrical Engineering

West Virginia University
Morgantown, WV26506-6109

{yue, cukic, bartlow}@csee.wvu.edu; tim@menzies.us

ABSTRACT
The prediction of fault-prone modules continues to attract interest
due to the significant impact it has on software quality assurance.
One of the most important goals of such techniques is to accurately
predict the modules where faults are likely to hide as early as possi-
ble in the development lifecycle. Design, code, and most recently,
requirements metrics have been successfully used for predicting
fault-prone modules. The goal of this paper is to compare the per-
formance of predictive models which use design-level metrics with
those that use code-level metrics and those that use both. We ana-
lyze thirteen datasets from NASA Metrics Data Program which of-
fer design as well as code metrics. Using a range of modeling tech-
niques and statistical significance tests, we confirmed that models
built from code metrics typically outperform design metrics based
models. However, both types of models prove to be useful as they
can be constructed in different project phases. Code-based models
can be used to increase the performance of design-level models and,
thus, increase the efficiency of assigning verification and validation
activities late in the development lifecycle. We also conclude that
models that utilize a combination of design and code level metrics
outperform models which use either one or the other metric set.

Categories and Subject Descriptors
D.2.7 [Software Engineering]: metrics—quality, performance

General Terms
Design, Experimentation, Performance

Keywords
Design metrics, Code metrics, Fault-proneness prediction, Machine
learning

1. INTRODUCTION
Over the pasts several years, the ability of software quality mod-

els to accurately predict in which software modules faults hide has
not improved significantly. Menzies et. al. call this the “ceiling ef-
fect.” [18]. Despite much work, the current generation of models is

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PROMISE’08, May 12–13, 2008, Leipzig, Germany.
Copyright 2008 ACM 978-1-60558-036-4/08/05 ...$5.00.

not finding new information in the data sets available in PROMISE
and NASA MDP repositories. Therefore, we hypothesize that fu-
ture research into fault prediction should change its focus from de-
signing better modeling algorithms towards improving (a) the in-
formation content of the training data, or (b) the model evaluation
functions which would inject additional knowledge regarding con-
text in which software is used into the modeling process.

This paper explores option (a). Recently, we have had success
with augmenting static code measures with features extracted from
requirements documents via lightweight text parsing. Figure 1 shows
the partial results from [17]. The dashed lines show the models
built only from requirement metrics and module metrics; the solid
line shows the model built from the combination (innerjoin) of the
requirement and module metrics. When modeling was applied to
features extracted from both code and requirements, we observed
a remarkable improvement in the probability of correctly detect-
ing fault-prone modules (pd) while reducing the probability that a
fault-free module is wrongly classified as fault-prone (pf).

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Comparison of ROC curves of CM1_r

PF

PD

req
mod
innerjoin

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Comparison of ROC curves of PC1_r

PF

PD

req
mod
innerjoin

(a) (b)

Figure 1: ROC curves for (a) CM1 and (b) PC1 data sets af-
ter a 10x10 way cross validation. The ideal spot on these ROC
curves is top left; i.e. no false alarms and perfect detection
({pd, pf} = {1, 0}). The dashed lines show {pd, pf} results
when fault prediction models used features mined from re-
quirements text, or features mined from module measures (in
isolation). The solid lines show the results of models which used
these two kinds of features in combination. From [17].

While those results were promising, the conclusions were based
on a limited sample size. We could only find requirements metrics
for 3 defect data sets available in PROMISE repository. The same
is not true for design metrics. This paper reports results from the
13 PROMISE data sets where design-level and static code metrics
are available. In this paper, after describing our data sets, we show
results from learning defect predictors from

1. Static code metrics only;

2. Design metrics only;

3. A combination of both static code metrics and design level
metrics.

We find that 1) models built from design metrics and static code
metrics are useful as they are built in successive phases of the de-
velopment life cycle; 2) models built from code metrics typically
outperform design metric based models; 3) combining design and
code attributes yields better detectors than design or code metrics in
isolation. The improvement is not as dramatic as in case of require-
ment metrics but the general thesis is endorsed: defect detectors
can be improved by increasing the information content of the train-
ing set. We therefore recommend that in future, researchers explore
the effects of combining the attributes from multiple phases of the
development life cycle.

The remainder of the work is broken down as follows. Section 2
describes the NASA MDP data sets and metrics used in the study.
Section 3 outlines the experimental design in terms of the chosen
modeling techniques and selected evaluation methods. Section 4
presents the experimental results and discusses their implications.
Section 5 provides a background of related work, and Section 6
concludes with a summary and future work.

2. METRICS DESCRIPTION

2.1 NASA MDP metrics
The datasets used in this study come from the NASA Metrics

Data Program (MDP) data repository [3]. Thirteen projects shown
in Table 1 are used in this study. Same data sets are available
through the PROMISE repository too.

These data sets offer module metrics that describe 13 diverse
NASA projects. Projects JM1 and KC1 offer 24 total attributes;
MC1 and PC5 have 42 total attributes, while the remaining 9 data
sets have 43 module metrics. All 13 data sets contain a module_id
and two error-related attributes: error_count and error_density.
We removed module_id and error_density attributes prior to
modeling. The error_count attribute is converted into a boolean
attribute called DEFECT . If the error_count attribute is greater
than or equal to 1, then the value of DEFECT is TRUE, other-
wise it is FALSE. DEFECT becomes the predicted variable.
After removing and replacing these attributes, JM1 and KC1 have
21 attributes that can be used as predictor variables, MC1 and PC5
have 39, the other datasets have 40.

The module metrics shown in Table 2 have been extracted by us-
ing McCabe IQ 7.1, a reverse engineering tool that derives software
quality metrics from code, visualize flowgraphs and generate report
documents [2].

It is not unusual to derive design metrics from code. Reverse en-
gineering of quality measures has been used in many studies [10,
9, 6, 5, 28, 29]. McCabe IQ 7.1 is a reverse engineering tool that
calculates metrics from flowgraphs. We divide the available mod-
ule metrics into three groups: design, code, and other metrics
(Table 2).

The design metrics are extracted from design phase artifacts, de-
sign diagrams such as flowgraphs (data flow graphs and control
flow graphs) and UML diagrams. For example, Ohlsson and Al-
berg extract design metrics such as McCabe cyclomatic complexity
from Formal Description Language (FDL) graphs in [24]. The code
metrics are the features extracted from source code. What separates
design metrics from code metrics is the flexibility to extract them
from design diagrams before the code becomes available.

The design metrics include node_count, edge_count, and Mc-
Cabe cyclomatic complexity measures which can be extracted from
flowgraphs by using the McCabe IQ 7.1 tool. The static code
metrics, such as num_operators, num_operands, and Halstead
metrics are calculated from program statements [15]. The other
metrics are related to both the design and code. Most data sets have
4 metrics we classified as other; the exception data sets are JM1
and KC1 that have none. Additionally, we define a group called all
which includes the entire set of module metrics.

3. EXPERIMENTAL DESIGN
We use five machine learning algorithms from Weka for model-

ing fault proneness [30]. Recall that we use 13 MDP datasets, each
having three groups of metrics: design, code, and all. The pre-
dicted variable is DEFECT , that is, whether a module has been
found to contains one or more faults or not. The Receiver Operat-
ing Characteristic (ROC) curve is used to measure the performance
of binary decision models. In total, our experiments resulted in
1, 950 performance curves (13 data sets * 3 metric groups * 5 ma-
chine learners * 10 runs). For each ROC curve, the Area Under the
Curve (AUC) is calculated using the Trapezoid rule. To visualize
the results, we use boxplots to show statistics for the 10 AUCs from
each dataset and metric group and machine learner experiment. We
compare the performance of models derived from metrics in the
design group, the code group, and all metrics group. Since we
use 5 machine learners over 13 datasets, there are 5∗13 = 65 box-
plot diagrams. Due to space limitations we are unable to show all
the boxplots. Therefore we chose to display only the performance
of the best models on each group of metrics for each dataset.

To further investigate whether the performance of three differ-
ent groups of metrics on each dataset result in statisticaly signifi-
cant differences, we use nonparametric statistical tests according to
Demsar’s recommendation [14]. First, we use the Friedman test to
analyze whether there is a significant difference between the best
models over the three groups of metrics and 13 data sets. Then, we
use the Wilcoxon test to conduct pairwise comparison of models
developed from different groups of metrics in each data set. Con-
sequently, we need to conduct three Wilcoxon tests for each data
set: (1) all vs. code metrics; (2) all vs. design metrics; and (3)
code vs. design metrics.

In the remainder of this section, we first briefly introduce the
five machine learners, and then we discuss ROC curves and AUCs.
Next, we describe the boxplot diagram we used to compare the per-
formance of different groups of metrics. Finally, we demonstrate
our statistical tests and corresponding hypotheses we used in this
experiment.

3.1 Machine Learners
We build predictive models using machine learners from Weka

package [23] shown in Table 3. The four learning algorithms have
been used with their default parameters while random forest is de-
veloped with 500 trees (the default is 10 trees in Weka, an insuf-
ficient number based on our prior experience). Coincidentally, the
inventor of Random Forests, L. Breidman [8], used 500 tree forests
as the default number.

Random Forest (rf) is a decision tree-based classifier demon-
strated to have good performance in software engineering studies
by Guo et al [16]. As implied from its name, it builds a “forest" of
decision trees. The trees are constructed using the following strat-
egy:

Table 1: Datasets used in this study
Data mod.# % faulty # metrics note lang.

all design code
CM1 505 16.04% 40 16 20 Spacecraft instrument C
KC1 2407 13.9% 21 4 17 storage management for receiving/processing ground data C++
KC3 458 6.3% 40 16 20 Storage management for ground data Java
KC4 125 48% 40 16 20 a ground-based subscription server Perl
PC1 1107 6.59% 40 16 20 flight software from an earth orbiting satellite C
PC3 1563 10.43% 40 16 20 Flight software for earth orbiting satellite C
PC4 1458 12.24% 40 16 20 Flight software for earth orbiting satellite C

MW1 433 6.7% 40 16 20 a zero gravity experiment related to combustion C
MC2 161 32.30% 40 16 20 a video guidance system C++
JM1 10,878 19.3% 21 4 17 a real time predictive ground system C
MC1 9466 0.64% 39 15 20 a combustion experiment of a space shuttle (C)C++
PC2 5589 0.42% 40 16 20 dynamic simulator for attitude control systems C
PC5 17,186 3.00% 39 15 20 a safety enhancement of a cockpit upgrade system C++

Table 2: Metrics used in this study
group metrics description or formula

code

PARAMETER_COUNT Number of parameters to a given module
NUM_OPERATORS:N1 The number of operators contained in a module
NUM_OPERANDS:N2 The number of operands contained in a module
NUM_UNIQUE_OPERATORS:µ1 The number of unique operators contained in a module
NUM_UNIQUE_OPERANDS:µ2 The number of unique operands contained in a module
HALSTEAD_CONTENT:µ The halstead length content of a module µ = µ1 + µ2
HALSTEAD_LENGTH:N The halstead length metric of a module N = N1 + N2

HALSTEAD_LEVEL:L The halstead level metric of a module L = (2∗µ2)
µ1∗N2

HALSTEAD_DIFFICULTY:D The halstead difficulty metric of a module D = 1
L

HALSTEAD_VOLUME:V The halstead volume metric of a module V = N ∗ log2(µ1 + µ2)
HALSTEAD_EFFORT:E The halstead effort metric of a module E = V

L
HALSTEAD_PROG_TIME: T The halstead programming time metric of a module T = E

18

HALSTEAD_ERROR_EST: B The halstead error estimate metric of a module B = E2/3

1000
NUMBER_OF_LINES Number of lines in a module
LOC_BLANK The number of blank lines in a module
LOC_CODE_AND_COMMENT:NCSLOC The number of lines which contain both code and comment in a module
LOC_COMMENTS The number of lines of comments in a module
LOC_EXECUTABLE The number of lines of executable code for a module (not blank or comment)
PERCENT_COMMENTS Percentage of the code that is comments
LOC_TOTAL The total number of lines for a given module

design

EDGE_COUNT:e Number of edges found in a given module control from one module to another
NODE_COUNT:n Number of nodes found in a given module
BRANCH_COUNT Branch count metrics
CALL_PAIRS Number of calls to other functions in a module
CONDITION_COUNT Number of conditionals in a given module
CYCLOMATIC_COMPLEXITY: v(G) The cyclomatic complexity of a module v(G) = e− n + 2
DECISION_COUNT Number of decision points in a given module
DECISION_DENSITY Condition_count/Decision_count
DESIGN_COMPLEXITY:iv(G) The design complexity of a module
DESIGN_DENSITY Design density is calculated as: iv(G)

v(G)
ESSENTIAL_COMPLEXITY:ev(G) The essential complexity of a module
ESSENTIAL_DENSITY Essential density is calculated as: (ev(G)−1)

(v(G)−1)

MAINTENANCE_SEVERITY Maintenance Severity is calculated as: ev(G)
v(G)

MODIFIED_CONDITION_COUNT The effect of a condition affect a decision outcome by varying that condition only
MULTIPLE_CONDITION_COUNT Number of multiple conditions that exist within a module
PATHOLOGICAL_COMPLEXITY A measure of the degree to which a module contains extremely unstructured constructs

others

NORMALIZED_CYLOMATIC_COMPLEXITY v(G)
NUMBER_OF _LINES

GLOBAL_DATA_COMPLEXITY:gdv(G) the ratio of cyclomatic complexity of a module’s structure to its parameter_count
GLOBAL_DATA_DENSITY Global Data density is calculated as: gdv(G)

v(G)

CYCLOMATIC_DENSITY v(G)
NCSLOC

Table 3: Machine learners used in this study
learner Abbrev.

1 Random Forest rf
2 Bagging bag
3 Logistic regression lgi
4 Boosting bst
5 Naivebayes nb

• The root node of each tree contains a bootstrap sample data
of the same size as the original data. Each tree has a different
bootstrap sample.

• At each node, a subset of variables are randomly selected
from all the input variables to split the node and the best split
is adopted.

• Each tree is grown to the largest extent possible without prun-
ing.

• When all trees in the forest are built, new instances are fitted
to all the trees and a voting process takes place. The forest
selects the classification with the most votes as the prediction
of new instance(s).

NaiveBayes (nb) “naively" assumes data independence. This as-
sumption may be considered overly simplistic in real life applica-
tion scenarios. However, in software engineering data sets it’s per-
formance is surprisingly good. Naive Bayes classifiers have been
used extensively in fault-proneness prediction, for example in [20].

Bagging (bag) stands for bootstrap aggregating. It relies on an
ensemble of different models. The training data is resampled from
the original data set. According to Witten and Frank [30], bagging
typically performs better than single method models and almost
never significantly worse.

Boosting (bst) combines multiple models by explicitly seeking
models that complement one another. First, it is similar to bag-
ging in using voting for classification or averaging for numeric pre-
diction. Like bagging, boosting combines the models of the same
type. However, boosting is iterative. “Whereas in bagging indi-
vidual models are built separately, in boosting each new model is
influenced by the performance of those built previously. Boosting
encourages new models to become experts for instances handled
incorrectly by earlier ones." [30].

Logistic regression(lgi) is a classification scheme which uses
mathematical logistic regression functions. The most popular mod-
els are generalized linear models.

3.2 ROC Curves
Receiver Operating Characteristic (ROC) curves provide an in-

tuitive way to compare the classification performance of different
metrics. An ROC curve is a plot of the Probability of Detection
(pd) as a function of the Probability of False alarm (pf) across all
the possible experimental threshold settings. Many classification
algorithms allow users to define and adjust the threshold parameter
in order to generate an appropriate classifier [30]. When modeling
software quality prediction, a higher pd can be produced at the cost
of increased pf and vice versa. A typical ROC curve has a concave
shape with (0,0) as the beginning and (1,1) as the end point. Fig-
ure 2 shows three example ROC curves representing models built
using all, code, and design metric sets over the data set PC5. In
the same figure, the legend also shows which machine learning al-
gorithm was used for each curve (typically the best out of the five).

The Area Under the ROC curve, referred to as AUC, is a numeric
performance evaluation measure directly associated with an ROC
curve. It is very common to use AUC to compare the performance

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

PC5 metrics

PF

PD

all:rf
code:bag
design:bag

Figure 2: ROC curves of PC5, developed using three different
metric groups

of different classifiers. From Figure 2, we can see that the per-
formance of the best learners on three different metrics are similar
although the performance of random forest using all metrics group
is slightly better than that of bagging on code and design met-
ric groups. The values of AUCs demonstrate the same trends; The
AUCs of all, code, and design are 0.979, 0.967, and 0.956, respec-
tively and the differences among the values are small: all−code =
0.012, code− design = 0.011, all − design = 0.023.

Cross-validation is the statistical practice of partitioning a sam-
ple of data into two subsets: training and testing subset. We use 10
by 10 way cross-validation (10x10 CV) in all experiments. 90% of
data is randomly assigned to the training subset and the remaining
10% of data is used for testing. The data is randomly divided into
10 fixed bins of equal size. We leave one bin to act as test data
and the other 9 bins is used to train the learners. This procedure is
repeated 10 times.

3.3 Boxplot Diagrams
A boxplot, also known as a box and whisker diagram, graphically

depicts numerical data distributions using five first order statistics:
the smallest observation, lower quartile (Q1), median, upper quar-
tile (Q3), and the largest observation. The box is constructed based
on the interquartile range (IQR) from Q1 to Q3. The line inside the
box depicts the median which follows the central tendency. The
whiskers indicate the smallest observation and the largest observa-
tion. Figure 3 shows an example boxplot of the best learners on
the three groups of metrics on PC5 data set. The random forest
model developed using all metrics has the best performance (the
largest values of AUCs) while the performance of bagging model
from design metrics group is the worst of the three.

3.4 Statistical Significance Tests
The most popular method used to evaluate a classifier’s perfor-

mance on a data set is based on 10 by 10 ways cross-validation
(10 × 10 CV). The 10 × 10 CV results in 10 individual values of
AUC. These 10 values are usually similar to each other, given that
they come from the same population after randomization. With
only 10 values it is difficult to say whether the values follow the

all:rf code:bag design:bag

0.
96

0
0.

96
5

0.
97

0
0.

97
5

Comparison of the best learners in PC5
Ar

ea
 U

nd
er

 th
e

Cu
rv

e
(A

UC
)

Figure 3: Boxplots of PC5 data set

normal distribution (i.e., indicate that they obey the central limit
theorem). Therefore, using parametric statistical methods which
assume a normally distributed population to compare the perfor-
mance of classifiers may not be justified. A prudent approach calls
for the use of nonparametric methods. The loss of efficiency caused
by using nonparametric tests is typically marginal [13, 26].

In [14], Demsar overviewed the theoretical work on statisti-
cal tests for the comparison of multiple classifiers over multiple
data sets. He recommended the Wilcoxon signed rank test for the
comparison of two classifiers and the Friedman test with the corre-
sponding post-hoc tests when the comparison includes more than
two classifiers. The Wilcoxon signed rank test and the Friedman’s
test are nonparametric counterparts for paired t− test and analysis
of variance (ANOVA) parametric methods, respectively. Demsar
advocates these tests largely due to the fact that nonparametric pro-
cedures make less stringent demands on the data. However, two is-
sues need attention. First, nonparametric tests do not utilize all the
information available. The actual data values (in our case, for ex-
ample, AUCs) are not used in the test procedure. Instead, the signs
or ranks of the observations are used. Therefore, nonparametric
procedures will be more powerful than their parametric counter-
parts, when justifiably used. The second point is that signed rank
tests are constructed for the null hypothesis that the difference of
the performance measure is symmetrically distributed. For non-
symmetric distributions, this test can lead to a wrong conclusion.

All statistical tests conducted here utilize the routines provided in
the statistical package R [1]. Based on Demsar’s recommendation,
we use the Friedman test to evaluate whether there is a difference in
the performance amongst the models developed from the 3 groups
of metrics over the 13 data sets. Provided that the Friedman test
indicates statistically significant difference, we need pairwise com-
parisons of models to determine which model performs the best for
each data set.

Assume we are looking at two different groups of metrics in a
dataset, A and B, that we have developed models using, say, 5
modeling techniques and selected the best predictive models for A
and for B. In order to conclude whether a better model originates
from A or from B, the appropriate statistical test hypotheses are:
H0: There is no difference in the performance of the models which

use group A or group B metrics;
H1: The performance of the group A model is better than the per-
formance of group B model;
H2: The performance of the group A model is worse than the per-
formance of group B model.

First, using the 95% confidence interval, we test whether the
models that emerged from two groups of metrics have the same
performance. The p-value greater than 0.05 in this case indicates
no difference in the performance of group A and B models. In
such a case, further tests of hypotheses H1 and H2 are not neces-
sary since H0 is the correct one. Otherwise, we test H1. If the
p-value of H1 is less than 0.05, then H1 is accepted. Otherwise, if
H1 is rejected H2 will be tested. After conducting these three hy-
pothesis tests, the relationship in the performance of group A and
B models will be clear on the given data set: if H0: A=B, if H1:
A>B, if H2: A<B.

4. EXPERIMENTAL RESULTS
In this section, we present the results of our experiments, includ-

ing the boxplot diagrams and the results from statistical tests.

4.1 Boxplot Diagrams
Figures 4 and 5 show the boxplot diagrams of the twelve NASA

datasets. The boxplots for the PC5 data set have been shown in Fig-
ure 3). From these boxplots, we can observe the following trends:

• The performance of models which utilize all metrics appears
to be better than the performance of models built from code
or design metric groups.

• In 11 out of the 12 data sets, the performance of models
which utilize code metrics is generally better than the perfor-
mance of models built from design metrics. The exception
is KC4 data set.

4.2 Statistical Test
As mentioned, in accordance with the recommendations from

[14], we first use the Friedman test to test whether there is a dif-
ference in the performance amongst the 3 groups of metrics over
the entire base of 13 NASA data sets. The result of the Friedman’s
test gave us the p−value of 0.00003604 (< 0.05), which strongly
indicates there is statistically significant difference in the perfor-
mance of models build from the three groups of metrics.

We then used the Wilcoxon test to conduct pairwise comparisons
on the models developed from different metric groups within each
data set. Table 4 shows the test results. All decisions are made at
the 95% confidence level, implying that a p − value < 0.05 con-
firms the corresponding hypothesis. The second column compares
models built from all and code metric groups, the third column
compares all and design metric groups, while the fourth column
provides comparison between code and design metric group mod-
els. The rightmost column provides the outcome of the comparison.

Table 4 shows the test results from the 39 Wilcoxon nonparamet-
ric test (3 metric groups x 13 datasets), thus providing statistical ba-
sis for the analysis of the boxplot diagrams. The analysis indicates
the following outcomes, all valid at the 95% confidence level:

• In 7 datasets, the performance of models built from the all
metrics group does dot differ significantly from models built
from code metrics group. In the remaining 6 datasets, the all
metrics group enables models which perform significantly
better than those built from the code metrics group.

a:rf c:rf d:bag

0.
60

0.
65

0.
70

0.
75

0.
80

cm1
Ar

ea
 U

nd
er

 th
e

Cu
rv

e
(A

UC
)

a:rf c:log d:nb

0.
60

0.
65

0.
70

0.
75

0.
80

mc2

Ar
ea

 U
nd

er
 th

e
Cu

rv
e

(A
UC

)

a:log c:rf d:bag

0.
60

0.
65

0.
70

0.
75

0.
80

kc4

Ar
ea

 U
nd

er
 th

e
Cu

rv
e

(A
UC

)

a:rf c:rf d:log

0.
60

0.
65

0.
70

0.
75

0.
80

kc1

Ar
ea

 U
nd

er
 th

e
Cu

rv
e

(A
UC

)

a:nb c:nb d:nb

0.
60

0.
65

0.
70

0.
75

0.
80

kc3

Ar
ea

 U
nd

er
 th

e
Cu

rv
e

(A
UC

)

a:rf c:rf d:log

0.
60

0.
65

0.
70

0.
75

0.
80

jm1

Ar
ea

 U
nd

er
 th

e
Cu

rv
e

(A
UC

)

Figure 4: Boxplots of the six data sets

• In all 13 datasets, the performance of models built from the
all metrics group is better than the performance of models
built from the design metrics group.

• In 12 out of 13 data sets, the performance of code based
models is better than the performance of the design met-
rics based models. Only in KC4 data set is the predictive
performance of design metrics based model better than the
performance of code metrics based model.

Table 4: The results of the Wilcoxon test.
Hypotheses and p_values

dataset all_code all_design code_design trend

cm1 H1 H1 H1 all>code>design0.000977 0.000977 0.000977

kc1 H0 H1 H1 all=code>design0.232422 0.000977 0.000977

kc3 H0 H1 H1 all=code>design0.556641 0.000977 0.000977

kc4 H1 H1 H2 all>design>code0.000977 0.006836 0.000977

mc1 H0 H1 H1 all=code>design0.556641 0.000977 0.000977

mc2 H0 H1 H1 all=code>design0.695312 0.000977 0.000977

mw1 H1 H1 H1 all>code>design0.013672 0.000977 0.000977

jm1 H1 H1 H1 all>code>design0.000977 0.000977 0.000977

pc1 H0 H1 H1 all=code>design0.105469 0.000977 0.000977

pc2 H0 H1 H1 all=code>design0.921875 0.000977 0.000977

pc3 H0 H1 H1 all=code>design0.083984 0.000977 0.000977

pc4 H1 H1 H1 all>code>design0.000977 0.000977 0.000977

pc5 H1 H1 H1 all>code>design0.000977 0.000977 0.000977

In addition to the Wilcoxon test, we conducted the Mann-Whitney
test too. The Mann-Whitney test agrees with the Wilcoxon test in
all but 1 of the 39 cases: In PC2, the Mann-Whitney test concludes
that all > code while the Wilcoxon has all = code. However, this

a:bst c:bst d:bst

0.
70

0.
75

0.
80

0.
85

mw1

Ar
ea

 U
nd

er
 th

e
Cu

rv
e

(A
UC

)

a:rf c:rf d:bst

0.
70

0.
75

0.
80

0.
85

pc3

Ar
ea

 U
nd

er
 th

e
Cu

rv
e

(A
UC

)

a:nb c:bst d:nb

0.
70

0.
75

0.
80

0.
85

pc2

Ar
ea

 U
nd

er
 th

e
Cu

rv
e

(A
UC

)

a:rf c:rf d:rf

0.
6

0.
7

0.
8

0.
9

1.
0

pc1

Ar
ea

 U
nd

er
 th

e
Cu

rv
e

(A
UC

)

a:rf c:rf d:log

0.
6

0.
7

0.
8

0.
9

1.
0

pc4

Ar
ea

 U
nd

er
 th

e
Cu

rv
e

(A
UC

)

a:rf c:rf d:bag

0.
6

0.
7

0.
8

0.
9

1.
0

mc1

Ar
ea

 U
nd

er
 th

e
Cu

rv
e

(A
UC

)

Figure 5: Boxplots of the six data sets

discrepancy is minor and it does not impact the overall trend of the
experiment.

4.3 Discussion
To our knowledge, this is the first time the performance of pre-

dictive models of quality built from code, design and the combi-
nation of these two types of software metrics has been rigorously
compared. It is rare that a data set contains such a rich set of met-
rics which enables this type of analysis. Having 13 such data sets
makes this study highly relevant. The results seem to indicate that
the precision of predictive fault-proneness models increases if met-
rics are collected later in the development life cycle. Further, the
availability of both the design-level and code-level metrics typi-
cally supports further increase in the performance of software qual-
ity models. These results do not come without caveats.

We decided to build only five models for each metric group within
each project data set. Based on our experience, the selected ma-
chine learning algorithms typically provide the best models. How-
ever, given a data set outside NASA MDP or a new type of met-
rics, it would not be impossible for a different modeling algorithm
to emerge as the best choice. Referring back to Figures 4 and 5,
amongst the five modeling algorithms, none performs best across
all the data sets and the three metrics groups. For instance, in Fig-
ure 4, looking only at all metrics group, we see that Random Forest
is behind the best predictive model in CM1, MC2, and KC1 data
sets. But it is outperformed by NaiveBayes and Boosting in KC3
and MW1 respectively. Taking a slightly different approach, we
may wish to match an algorithm to a particular data set with the
hopes that it will perform best in all three metrics. Referring back
to Figure 5, we see this is the case in PC1 (Random Forest), but
fails to hold in the remaining data sets. It is important to note how-
ever, in some cases such as PC3 and PC4 the lack of a consensus
winner across all three metrics groups may only be due to a very
small increase in performance by one modeling technique (note the

tight distributions in the boxplots). Taking these considerations into
play, one would have to carefully evaluate how to best approach a
new (unsupervised) data set both in terms of the use of metrics
groups and the modeling algorithm selection.

Additionally, an interesting phenomenon is that the performance
of predictive models built from NASA MDP data sets is influenced
more by the characteristics of different group of metrics than by us-
ing the different types of learning algorithms. That said, we do not
currently know specifically which metric groups make an overall
class of metrics (code, design, etc.) more important than another
class.

5. RELATED WORK
One of the earliest studies of design metrics was conducted by

Ohlsson and Alberg [24]. They predicted fault-prone modules prior
to coding in Telephone Switches system of 130 modules at Erics-
son Telecom AB [24]. Their design metrics are derived from graphs
where functions and subroutines in a module are represented by one
or more graphs. These graphs are called Formal Description Lan-
guage (FDL) graphs and they generate a set of direct and indirect
metrics based on the measures of complexity. The examples of di-
rect metrics are the number of branches, the number of graphs in
modules, the number of possible connections in a graph, and the
number of paths from input to the output signals etc. The indi-
rect metrics are the metrics calculated from the direct metrics using
a mathematical formula, such as McCabe cyclomatic complexity,
etc.

The suite of object oriented (OO) metrics, referred as CK met-
rics, has been first proposed by Chidamber and Kemerer [12].
They proposed six CK design metrics including Weight Method Per
Class (WMC), Number of Children (NOC), Depth of Inheritance
Tree (DIT), Coupling Between Object class (CBO), Response For
a Class (RFC), and Lack of Cohesion in Methods (LCOM). Basili
et. al. [7] were among the first to validate these CK metrics us-
ing 8 C++ systems developed by students. They demonstrated the
usefulness of CK metrics over code metrics. In 1998, Chidamber,
Darcy and Kemerer explored the relationship between the CK met-
rics to productivity, rework effort or design effort separately [11].
They show that CK metrics have better explanatory power than tra-
ditional code metrics based on three economic variables.

Predicting software fault-proneness using metrics from design
phase has received increased attention recently [25, 32, 21, 27]. In
these studies, metrics are either extracted from design documents
or by mining the source code using the above described reverse
engineering techniques. Subramanyam and Krishnan investigated
three design metrics, Weight Method Per Class (WMC), Coupling
Between Object Class (CBO), and Depth of inheritance Tree (DIT),
to predict software faults [27]. The system they study is a large
B2C e-commerce application suite developed using C++ and Java.
They showed that these design metrics are significantly related to
defects and that defects are strongly related to the language used.
Nagappan, Ball and Zeller in [21] predict component failures using
OO metrics in five Microsoft software systems. Their results show
that these metrics are suitable to predict software defects. They
also show that the predictors are only useful to predict the same or
similar projects, the suggestion also mentioned by Menzies et. al.
[19].

Recovering design from source code has been a hot topic in soft-
ware reverse engineering [10, 6, 5]. Systa [28] recovered UML
diagrams from source code using static and dynamic code analysis.
Tonella and Potrich [29] were able to extract sequence diagrams
from source code through static analysis on data flow. Briand et.

al. demonstrated recovering of sequence diagrams, conditions and
data flow from Java code by using transformation techniques [9].

Recently, Schroter, Zimmermann, and Zeller [25] applied re-
verse engineering to recover design metrics from source code to
predict fault-proneness. They used 52 ECLIPSE plug-ins and found
usage relationships between these metrics and past failures. The re-
lationship they investigate is the usage of import statements within
a single release. The past failure data represents the number of
failures for a single release. They collected the data from version
archives (like CVS) and bug tracking systems like BUGZILLA.
They built predictive models using the set of imported classes of
each file as independent variables to predict the number of failures
of the file. At file level, the average prediction accuracy of the top
5% is approximately 70%; in the package level, the average predic-
tion accuracy of the top 5% is approximately 90%. In [32], Zim-
mermann, Premraj and Zeller further investigate ECLIPSE open
source, extract object oriented metrics along with static code com-
plexity metrics and point out their effectiveness to predict fault-
proneness. Their dataset is now posted in the PROMISE [4] repos-
itory. Neuhaus, Zimmermann, Holler and Zeller examine Mozilla
code to extract the relationship of imports and function calls to pre-
dict software components’ vulnerability [22].

Although all these studies show the usefulness of design metrics
in the prediction of fault-proneness, limited attention was given to
the comparison of effectiveness of design and code metrics. To
the best of authors knowledge, the only one work which compares
the performance of design and code metrics in the prediction of
software fault content is by Zhao et al in [31]. Their findings are
similar to ours: (1)the design and code metrics are correlated with
the number of faults; (2) some improvement can be achieved if both
design metrics and code metrics are used for prediction. However,
their findings are based on the analysis of one data set. In this
paper, we use 13 NASA MDP datasets [3] and provide demonstrate
statistical significance of our findings.

6. SUMMARY
The goal of this paper has been to compare the performance of

predictive models which use design-level metrics with those that
use code-level metrics. We analyzed thirteen data sets from NASA
MDP which offer design as well as code metrics. Our experiments
indicate a general trend in MDP data sets that the performance of
models that combine design and code (all) metrics is better than
that of code metrics; and the performance of design metrics is the
most inferior amongst the three. We observed another interesting
phenomenon: the performance of predictive models vary more as
the result of using different software metrics groups than from us-
ing different modeling (machine learning) algorithms. That is, the
choice of software metrics is much more important than the choice
of the machine learning algorithms.

Using a range of modeling techniques and nonparametric statis-
tical significance tests, we confirmed that models built from code
metrics typically outperform design metric based models. How-
ever, both types of models prove to be useful, while some of the
combination of the two metrics groups (6 out of 13) results in sta-
tistically significant increase in fault prediction performance. As
design models are in principle available earlier in the development
life cycle, adding code metrics as they become available can be
used to further increase the performance of design-level models
and, thus, increase the effectiveness of assigning verification and
validation activities. We have yet to formally establish whether the
increase in performance associated with all metrics group is pri-
marily the effect of adding design metrics group, or the metrics
listed under the other category, or a mix of both. This should be

further investigated to determine the degree in which the inclusion
of other metrics is beneficial (or necessary).

The notion of feature subset selection was not formally con-
sidered in this work. Although the authors do not feel it would
have had a significant impact on the Random Forest algorithm, the
potential presence of noisy (or confounding) attributes may im-
pact the performance of other algorithms considered. Even with-
out noise, surely there is a lack of complete orthogonality between
attributes within each class of metrics resulting in potential redun-
dancy. It is further possible that there may be relationships in at-
tributes across the different classes of metrics. For instance, the at-
tributes number_of_lines which falls within the code group may
be related to the branch_count and condition_count attributes
in the design metric group. The degree in which each of these
individual attributes contributes to prediction performance can be
investigated rigorously and may yield different results if attributes
are appropriately combined or removed.

7. REFERENCES
[1] The R Project for Statistical Computing, available

http://www.r-project.org/.
[2] Do-178b and mccabe iq. available in http://www.

mccabe.com/iq_research_whitepapers.htm.
[3] Metric data program. NASA Independent Verification and

Validation facility, Available from
http://MDP.ivv.nasa.gov.

[4] Promise data repository. available
http://promisedata.org/repository.

[5] G. Antoniol, G. Canfora, G. Casazza, A. D. Lucia, and
E. Merlo. Recovering tracebility links between code and
documentation. IEEE Transactions on Software Engineering,
28(10):970–983, 2002.

[6] G. Antoniol, G. Casazza, M. Penta, and R. Fiutem.
Object-oriented design patterns recovery. Journal of Systems
and Software, 59(2):181–196, 2001.

[7] V. R. Basili, L. C. Briand, and W. L. Melo. A validation of
object-oriented design metrics as quality indicators, 1996.

[8] L. Breiman. Random forests. Machine Learning, 45:5–32,
2001.

[9] L. Briand, Y. Labiche, and J. Leduc. Toward the reverse
engineering of uml sequence diagrams for distributed java
software. IEEE Transactions on Software Engineering,
32(9):642–663, 2006.

[10] G. CanforaHarman and M. D. Penta. New frontiers of
reverse engineering. In FOSE ’07: 2007 Future of Software
Engineering, pages 326–341, Washington, DC, USA, 2007.
IEEE Computer Society.

[11] S. R. Chidamber, D. P. Darcy, and C. F. Kemerer. Managerial
use of metrics for object-oriented software: An exploratory
analysis. IEEE Trans. Softw. Eng., 24(8):629–639, 1998.

[12] S. R. Chidamber and C. F. Kemerer. A metrics suite for
object oriented design. IEEE Trans. Softw. Eng.,
20(6):476–493, 1994.

[13] W. J. Conover. Practical Nonparametric Statistics. John
Wiley and Sons, Inc., 1999.

[14] J. Demsar. Statistical comparisons of classifiers over multiple
data sets. Journal of Machine Learning Research, 7, 2006.

[15] N. E. Fenton and S. Pfleeger. Software Metrics: A Rigorous
& Practical Approach. PWS Publishing
Company,International Thompson Press, 1997.

[16] L. Guo, Y. Ma, B. Cukic, and H. Singh. Robust prediction of
fault-proneness by random forests. In Proc. of the 15th
International Symposium on Software Relaibility
Engineering ISSRE’04, pages 417–428, 2004.

[17] Y. Jiang, B. Cukic, and T. Menzies. Fault prediction using
early lifecycle data. pages 237–246. Software Reliability,
2007. ISSRE ’07. The 18th IEEE International Symposium
on, Nov. 2007.

[18] T. Menzes, B. Turhan, A. Bener, G. Gay, B. Cukic, and
Y. Jiang. Implications of ceiling effects in defect predictors.
submitted to PROMISE 2008.

[19] T. Menzies, J. DiStefano, A. Orrego, and R. Chapman.
Assessing predictors of software defects. In Proceedings,
workshop on Predictive Software Models, Chicago, 2004.

[20] T. Menzies, J. Greenwald, and A. Frank. Data mining static
code attributes to learn defect predictors. IEEE Transactions
on Software Engineering, 33(1):2–13, January 2007.
Available from
http://menzies.us/pdf/06learnPredict.pdf.

[21] N. Nagappan, T. Ball, and A. Zeller. Mining metrics to
predict component failures. In ICSE ’06: Proceeding of the
28th international conference on Software engineering,
pages 452–461, New York, NY, USA, 2006. ACM Press.

[22] S. Neuhaus, T. Zimmermann, C. Holler, and A. Zeller.
Predicting vulnerable software components. Alexandria,
Virginia, USA, 2007. CCS’07.

[23] U. of Waikato. Weka software package. The University of
Waikato, available
http://www.cs.waikato.ac.nz/ml/weka/.

[24] N. Ohlsson and H. Alberg. Predicting fault-prone software
modules in telephone switches. IEEE Transactions on
Software Engineering, 22(12):886–894, 1996.

[25] A. Schröter, T. Zimmermann, and A. Zeller. Predicting
component failures at design time. In ISESE ’06:
Proceedings of the 2006 ACM/IEEE international
symposium on International symposium on empirical
software engineering, pages 18–27, New York, NY, USA,
2006. ACM Press.

[26] S. Siegel. Nonparametric Satistics. New York: McGraw- Hill
Book Company, Inc., 1956.

[27] R. Subramanyam and M. S. Krishnan. Empirical analysis of
ck metrics for object-oriented design complexity:
Implications for software defects. IEEE Trans. Softw. Eng.,
29(4):297–310, 2003.

[28] T. Systa. Static and dynamic reverse engineering techniques
for Java software systems. PhD thesis, 2000.

[29] P. Tonella and A. Potrich. Reverse engineering of object
oriented code. Springer-Verlag, Berlin, Heidelberg, New
York, 2005.

[30] I. H. Witten and E. Frank. Data Mining: Practical machine
learning tools and techniques. Morgan Kaufmann, Los
Altos, US, 2005.

[31] M. Zhao, C. Wohlin, N. Ohlsson, and M. Xie. A comparison
between software design and code metrics for the prediction
of software fault content. Information and Software
Technology, 40(14):801–809, 1998.

[32] T. Zimmermann, R. Premraj, and A. Zeller. Predicting
defects for eclipse. In PROMISE’07: International Workshop
on ICSE Workshops 2007, pages 9–9, May 2007.

