
0 74 0 - 74 5 9 / 0 8 / $ 2 5 . 0 0 © 2 0 0 8 I E E E March/April 2008 I E E E S O F T W A R E 3

focuss o f t w ar e qua l i t y r e qu ir em en t s

A Broad, Quantitative
Model for Making Early
Requirements Decisions

Martin S. Feather, Steven L. Cornford, and Kenneth A. Hicks,
Jet Propulsion Laboratory

James D. Kiper, Miami University

Tim Menzies, West Virginia University

By coarsely
quantifying relevant
factors, a risk-
assessment model
helps hardware and
software engineers
make trade-offs
among quality
requirements early
in development.

A
lthough detailed information is typically scarce during a project’s early phases,
developers frequently need to make key decisions about trade-offs among qual-
ity requirements. Developers in many fields—including systems, hardware, and
software engineering—routinely make such decisions on the basis of a shallow

assessment of the situation or on past experience, which might be irrelevant to the current
project. As a consequence, developers can get locked into what is ultimately an inferior de-
sign or pay a significant price to reverse such earlier decisions later in the process.

We’ve designed and deployed a model to help de-
velopers in diverse fields make better requirements
decisions in early project phases. Our model is based
on a coarse quantification of relevant factors and
how those factors interact. For each application, we
populate the model with information elicited from
relevant stakeholders during group sessions. We use
custom software to store the model and to compute
and present its information (using cogent visualiza-
tions) to assist stakeholders in their decision-making
and detailed-planning activities. Here, we describe
our model and offer examples of how we applied
our approach to study software technologies at the
Jet Propulsion Laboratory in Pasadena, California.

Domain overview
JPL developers design, build, and operate space-

craft for the US National Aeronautics and Space
Administration. Our work applies to a spacecraft

project’s early phases, in particular to the new
technologies that developers hope will successfully
mature for use on future spacecraft. These early
phases require key decisions, such as which of many
promising technologies to pursue further and which
missions to introduce them into. Developers must
also plan maturation paths for the selected tech-
nologies—from research prototypes to mission-
ready capabilities that project managers will want
to adopt.

Our work supports decision making in these
crucial early phases. Although spacecraft use many
technologies, we’re increasingly focusing our stud-
ies on software because it’s playing an increasingly
prominent role in spacecraft. Also, while our expe-
rience is with JPL’s space-mission applications, the
domain has obvious parallels in many terrestrial
technology projects. As at many organizations, for
example, JPL developers must decide

4 I E E E S O F T W A R E w w w . c o m p u t e r . o r g / s o f t w a r e

where to first apply new technology,
how to assess and trade off requirements be-
tween the new technology’s target application
and its environment, and
the costs of meeting various quality levels.

Our approach also accounts for process require-
ments—including manageability, conformity to
accepted business practices, and availability of suf-
ficiently skilled personnel—which, for large and
complex projects, are just as critical as functional
performance issues.

A risk-based requirements model
In 1998, Steven Cornford invented our defect

detection and prevention (DDP) approach to aid
hardware assurance.1 The method’s name reflects
its purpose: to help developers cost-effectively select
assurance activities (such as assembly procedures,
tests, and analyses) and thereby both prevent the in-
troduction of hardware defects and detect and cor-
rect existing ones.

DDP has since found its niche at JPL, assisting
early life-cycle decision making to guide promising
research technologies toward adoption by space-
craft projects.2 We’ve applied the approach to en-
tire research and mission portfolios to guide choices
about which research avenues to pursue and which
missions to plan.3 All our application areas use the
same DDP model, even though the nomenclature
(especially the “defects” part of DDP’s name) might
not directly apply.

Model overview
We populate a DDP model with instances of

three concepts:

Requirements: What are the functional and
quality (nonfunctional) requirements of the
project, system, or technology? How might
they factor into its development?
Risks: What might impede attaining these
requirements?
Mitigations: What can we do to reduce risks?

We assign values for each of these attributes in the
DDP model.

First, we assign each requirement a weight, or
relative importance: Weight(Requirement):float
[0,maxfloat]. Typically, we choose values from
an easy-to-remember scale, such as 0–100. By as-
signing requirements weights, we can guide trade-
off and descoping decisions when—as is often the
case—it’s not possible or economically feasible to
attain all requirements. In such cases, developers

can use the weights to easily determine which re-
quirements are most important.

Next, we assign each risk an a-priori likeli-
hood, indicating the probability of its occurrence
in the absence of mitigation: APL(Risk):float
[0,1]. We then assign each mitigation effort a cost:
Cost(Mitigation):float [0,maxfloat], as well as
a Boolean that indicates whether we’ll perform it:
Selected(Mitigation):Boolean. The cost is usually
a financial cost, but we can also consider other re-
sources, such as schedule or memory utilization.

A DDP model’s instances have the following
relationships:

Risks relate quantitatively to requirements to
indicate how much each risk, should it occur,
will detract from each requirement’s attain-
ment. We express each such value as a propor-
tion of the requirement’s attainment that we’ll
lose if the risk occurs. For example, 0.1 means
that we’ll lose one-tenth of the requirement’s at-
tainment: Impact(Risk, Requirement):float
[0,1].
Mitigations relate quantitatively to risks to in-
dicate how much a specific mitigation will re-
duce each risk. We express each value as a pro-
portion of the mitigation’s risk reduction; for
example, 0.1 means it reduces by risk by one-
tenth: Effect(Mitigation, Risk):float [0,1].

Mitigations incur costs and reduce risks, leading
to increased requirements attainment. We calculate
this for a set of mitigations using four formulas. In
the first, we calculate a risk’s likelihood as its a-pri-
ori likelihood, diminished by the selected mitiga-
tions. For a Risk K:

Likelihood(K : Risk) = APL(K) * (M Mitigations) :
If(Selected(M), 1 – Effect(M, K), 1)

Thus, multiple mitigations’ effects on a single
risk act like a series of filters, each removing some
fraction of the risk. For example, if a risk has an a-
priori likelihood of 1.0, then two mitigations with
0.1 and 0.7 effect proportions, respectively, act as
follows: The first mitigation filters out 0.1 of the
risk’s likelihood, reducing it from 1.0 to 0.9; the
second filters out 0.7 of what remains, reducing it
from 0.9 to 0.27. (We offer a detailed description
elsewhere of how we handle mitigations that reduce
risk impacts rather than likelihoods, as well as miti-
gations that increase risks.4)

In the remaining three formulas:

We calculate a requirement’s attainment

A DDP model’s
instances have

quantitative
risk and risk-

mitigation
relationships.

 March/April 2008 I E E E S O F T W A R E 5

as its weight diminished by the risks that
affect it; as a result, multiple risks’ im-
pacts on the same requirement simply add
up. For example, for a Requirement R:

Attainment(R : Requirement) = Weight(R) * (1 – Min(1,
((K Risks) : Likelihood(K) * Impact(K, R)))

We calculate total cost as: TotalCost = (M
Mitigations) : If(Selected(M), Cost(M), 0).
We calculate total attainment: TotalAttainment
= (R Requirements) : Attainment(R).

Following a DDP study, developers determine
which mitigations to select. In most situations, the
total cost of all postulated mitigations far exceeds
the available budget (of whatever resources being
modeled), so arriving at a cost-effective mitigation
selection is crucial.

Modeling example
One of our studies concerned a GUI-based envi-

ronment for control-system prototyping. The study
examined the idea of machine-generating—from
the prototype—a standalone executable to serve as
the actual spacecraft control system, rather than re-
coding the executable from scratch.

One of our quality concerns surrounded how
this approach would affect the resultant code’s speed
when running real-time control loops. To represent

this, we created two DDP requirements: one to rep-
resent the speed requirement with few and/or slow
control loops (the “few/slow” requirement), and the
other to represent many and/or fast control loops
(the “many/fast” requirement). Among the risks we
identified was heap fragmentation, in which a data
storage area becomes increasingly divided into al-
located and unallocated fragments and eventually
requires the execution of a time-consuming defrag-
mentation algorithm to rearrange the fragments.
We identified built-in garbage collection (GC) as a
mitigation to help address this threat.

The resulting DDP formulae were as follows:

Requirements: “few/slow” – Weight(“few/
slow”) = 100, and “many/fast” – Weight(“many/
fast”) = 100
Risk: “heap frag” – APL(“heap frag”) = 1.
Mitigation: “built-in GC” – Cost(“built-in
GC”) = $10,000.
Impacts: Impact(“heap frag”, “few/slow”) = 0.1,
and Impact(“heap frag”, “many/fast”) = 0.99.
Effect: Effect(“built-in GC”, “heap frag”) =
0.9.

As figure 1 shows, we then calculated requirements
attainment with and without built-in GC.

As figure 1 shows, if the target application
needs the machine-generated software to operate
many and/or fast control loops, then developers

Likelihood(“heap frag”) = APL(“heap frag”) = 1

Attainment(“few/slow”)
= Weight(“few/slow”) * (1 – Min(1, Likelihood(“heap frag”) * Impact(“heap frag”, “few/slow”)))
= 100 * (1 – Min(1, 1 * 0.1)) = 100 * (1 – 0.1) = 100 * 0.9 = 90

Attainment(“many/fast”)
= Weight(“many/fast”) * (1 – Min(1, Likelihood(“heap frag”) * Impact(“heap frag”, “many/fast”)))
= 100 * (1 – Min(1, 1*0.99)) = 100 * (1 – 0.99) = 100*0.01 = 1

(a)

Likelihood(“heap frag”) = APL(“heap frag”) * (1 – Effect(“built-in GC”, “heap frag”))
= 1 * (1 – 0.9) = 0.1

Attainment(“few/slow”)
= Weight(“few/slow”) * (1 – Min(1, Likelihood(“heap frag”) * Impact(“heap frag”, “few/slow”)))
= 100 * (1 – Min(1, 0.1 * 0.1)) = 100 * (1 – 0.01) = 100 * 0.99 = 99

Attainment(“many/fast”)
= Weight(“many/fast”) * (1 – Min(1, Likelihood(“heap frag”) * Impact(“heap frag”, “many/fast”)))
= 100 * (1 – Min(1, 0.1 * 0.99)) = 100 * (1 – 0.099) = 100 * 0.901 = 90.1

(b)

Figure 1. Requirements
attainment with
and without built-in
garbage collection.
(a) Calculating
requirements
without built-in
GC. (b) Calculating
requirements with built-
in GC.

6 I E E E S O F T W A R E w w w . c o m p u t e r . o r g / s o f t w a r e

should choose built-in GC mitigation. As the figure
also shows, DDP model calculations are relatively
straightforward. The complexity arises from the
data volume and interrelatedness typical of DDP
models.

Gleaning information from DDP models
Figure 2 shows our study’s entire requirements-

risks-mitigations structure, which contains 35 re-
quirements, 100 risks, 100 mitigations, 600 im-
pacts, and 600 effects. This dauntingly convoluted
picture is typical of a DDP model’s information. To
glean decision-making information from this mo-
rass, we use a combination of

calculation, to derive useful information from
the model’s raw data; and
a cogent visualization for decision makers to
examine.

DDP formulae define how to calculate a popu-
lated model’s total cost and total requirements at-
tainment, given a set of mitigations. Our custom
DDP software performs these calculations auto-
matically; for a typical DDP model, it executes them
in less than a second on a modest laptop. Decision
makers can thereby explore different mitigation op-
tions in real time.

In addition to measuring total cost and total re-
quirements attainment, the calculations reveal

the extent to which the project is meeting indi-
vidual requirements,
how much each risk detracts from requirements
attainment (measured in terms of requirement
weights), and

each mitigation’s contribution to risk reduction
and increased requirements attainment (again,
measured in terms of requirement weights).

To help guide decision makers, we use bar
charts to display these factors. The bar chart clearly
shows which requirements the project is attaining
(and which it’s not). This helps developers select ap-
plications for the target technology and find mitiga-
tions to reduce the risks impacting key unattained
requirements.

In addition to helping decision makers under-
stand specific mitigations’ details, DDP also helps
them understand alternate mitigation selections’
overall decision space. There is a trade-off be-
tween maximizing requirements’ total attainment
(by selecting mitigations to reduce risks) and mini-
mizing total mitigation costs. The DDP software
explores this trade space, and generates a scatter
plot indicating the key measures of total cost and
total requirements attainment for a wide variety
of mitigations.

Figure 3 shows an example of this exploration,
derived from a DDP model for one of our other soft-
ware technology studies. The red line—the “Pareto
frontier”—demarks optimal attainable outcomes
(points on that frontier represent the greatest at-
tainment for the least cost). Points away from the
Pareto frontier represent suboptimal mitigation se-
lections. In this case, there are many more subop-
timal selections than the density of the black-point
cloud suggests because the heuristic search we use
explores the Pareto frontier’s neighborhood more
thoroughly than the rest of the selection space.

That a cost-benefit trade-off exists is no sur-
prise; the visualization’s value is in revealing the

Re
qu

ire
m

en
ts

Ri
sk

s
M

itg
ns

Figure 2. The example
study’s requirements-
risks-mitigations
structure. It includes
35 requirements (tiny
circles along the top)
and more than 100
risks (tiny circles in
the middle row) and
mitigations (tiny circles
along the bottom
row). The structure
also has 600 impacts
(quantitatively scored
red links) and 600
effects (quantitatively
scored green links).

 March/April 2008 I E E E S O F T W A R E 7

location of this trade-off space’s Pareto frontier.
As figure 3 shows, this specific study yielded three
insights:

We must spend at least $1,800,000 to meet any
requirements; at $2,000,000, we reach the first
significant plateau (requirements attainment of
7).
At approximately $4,000,000, we see signifi-
cant improvement (requirements attainment of
7.5).
Beyond that, additional spending offers only in-
cremental improvements.

Given such information, decision makers can
arrive at defensible decisions. Most project manag-
ers will argue the need for a larger budget, more
time, and so on. DDP information gives them—
and those reviewing their requests—the ability to
gauge how much improvement they can expect if
resources are increased.

Experience using DDP
To populate a DDP model, we use facilitated

group sessions with all key stakeholders. As partic-
ipants proffer information—such as requirements
and their relative weight—we enter it on-the-fly
into the DDP model and project the information
aggregation onto a screen that everyone can see.
Our DDP software offers several visualizations
suited to this information display.

Using our visual aid lets the group view its prog-
ress, encourages members to identify mistakes
and suggest corrections, and triggers wide-range
thinking—someone mentioning one type of re-
quirement’s risk might trigger another participant
to think of a different requirement’s analogous
risk. It also lets participants discover and resolve
disagreements among their views. For example,
if participants disagree about a risk’s impact on
a requirement, we encourage them to raise the is-
sue immediately. We often find that disagreements
stem from trying to assess a risk at too high an ab-
straction level—that is, the participant is assessing
its impact on a very general requirement. In such
cases, we can resolve disagreements by decom-
posing the requirement into its constituent parts.
Disagreement is thus constructive and acts as a
guide, showing us where we need more detail to
adequately capture important distinctions. We
also vary the depth to match the problem at hand.
When assessing a novel technology, for example,
we examine risks related to the technology’s most
novel aspects in detail, rather than those pertaining
to well-understood aspects.

Costs
Clearly, populating a DDP model can involve

a nontrivial amount of effort. Is it worth it? We’ve
performed several DDP studies every year since
1999. We’ve made several observations on the basis
of these experiences.

First, a DDP study’s cost is the stakeholders’
time while they help build the model and then use it
to make decisions. When we study novel technolo-
gies, we have little historical data to draw from, so
model-population—identifying requirements, risks,
and mitigation, and creating impact and effect links
among them—is a human-intensive elicitation pro-
cess. In particular, eliciting impacts requires partici-
pants to consider all risk/requirement pairs, while
eliciting effects requires consideration of all mitiga-
tion/risk pairs. Both steps are major time sinks.

We can often take shortcuts, such as ruling out
subareas in which an entire risk subset has no im-
pact on a requirements subset, and decomposing
the effort into different expertise areas so different
stakeholders can provide parallel inputs for differ-
ent areas. However, populating the DDP model
remains relatively labor-intensive. A typical tech-
nology study involves 10 to 20 participants, all of
whom participate in several two-to-four half-day
sessions. Thus, total labor time can be as high as
several hundred hours.

Benefits
Although somewhat harder to quantify, our

experiences suggest that, typically, the benefits of
performing a DDP study substantially outweigh
the costs. The nature of these benefits varies. We’ve
seen several instances of each of the following:

Realization of a mismatch between the technol-

To
ta

l r
eq

ui
re

m
en

ts
 a

tta
in

m
en

t

Pareto frontier (optimal)

Total cost ($K)

Every point represents a
selection of mitigations

2,000 6,0004,000 14,0008,000 12,00010,000 16,000 18,000

8

7

6

5

4

3

2

1

Figure 3. A scatter plot
of various mitigation
costs and requirements
attainment.

8 I E E E S O F T W A R E w w w . c o m p u t e r . o r g / s o f t w a r e

ogy developers’ belief about the application re-
quirements and the would-be customers’ actual
needs. Because DDP model building usually
starts with requirements, this realization occurs
early on, letting us correct the mismatch and
proceed with the study.
Realization of a mismatch among various
stakeholders’ perceptions of the cost of achiev-
ing certain requirements. Customers tend to de-
clare all their requirements essential. However,
as they realize that some requirements might
cost much more than others, they’re motivated
to reconsider this stance.
Realization of an imbalance in the preexist-
ing technology-development plan. That is, the
plan spends too much to mitigate some risks
and too little to mitigate others; as a result, re-
quirements attainment is suboptimal (because
the developers could otherwise attain the same
requirements level for less). Because our stud-
ies focus on novel technologies, with concerns
that span multiple discipline areas, it’s hard for
one person to have the knowledge needed to
develop a balanced plan. DDP’s quantitative
(albeit coarse) treatment is key to addressing
this knowledge deficit.
A broad-ranging consideration of potential im-
pediments to success. This, the most common
benefit, stems from our combining inputs from
all relevant stakeholders, such as project man-
agers; engineers; quality-assurance personnel;
technologists, whose (often novel) technologies
are the study’s subject; and scientists, whose
investigations drive the mission. This input
lets us identify problems and their solutions
early, which saves costs of later-phase correc-
tions that require rework, redesign, and so on.
Stakeholder input also helps us better target
the technology to well-suited applications.

Discussion
When using DDP, we must simultaneously con-

sider a wide range of requirements, including prop-
erties of

the technology itself, both functional (such as
“computes distance to ground”) and nonfunc-
tional (such as “computes in 10 seconds”);
the technology’s surrounding environment,
both functional (“provides radar data to the
technology”) and nonfunctional (“provides at
least 10 percent of CPU cycles to the technol-
ogy”); and
the development process, both functional (“cost

and schedule predictability”) and nonfunctional
(“ability to track development progress”).

Because DDP encompasses properties of both
the technology and its environment (also known
as optative and indicative requirements, respec-
tively5), it helps developers make trade-off deci-
sions between the two. It thus accommodates the
intertwining of specification and implementation,6
which is especially useful for large and complex
projects, where process and functional perfor-
mance issues are equally important.

Coarse requirements representation
DDP requires only that developers describe

each requirement such that all stakeholders have
a common understanding of its meaning and give
each a weight representing its relative importance.
It can thus coarsely represent all key process and
quality requirements. However, this coarse repre-
sentation has several implications.

First, DDP requirements are discrete, not con-
tinuous. Earlier, for example, we described a DDP
speed requirement “when there are few and/or slow
control loops.” During the actual DDP session,
however, we’d ensure a common understanding of
the precise meaning—that is, the number of control
loops divided by seconds-per-loop. Note, however,
that our DDP requirement models a single point in
the potentially continuous space of loop number di-
vided by seconds-per-loop. In our actual study, we
modeled just two points, “few/slow” and “many/
fast,” which were distinct capability regimes of par-
ticular interest to the postulated applications. This
is typical of our studies: for a given quality mea-
sure, we use (at most) a handful of individual DDP
requirements to represent discrete points in some
continuous range.

Second, DDP requirements lack a cost attribute.
If, for example, we used a requirement to represent
a potential feature, there’d likely be a cost associ-
ated with providing that feature. Other require-
ments trade-off methods (such as the cost-value
approach7) commonly ascribe costs directly to re-
quirements. In DDP, we achieve this same effect in-
directly: we assume that we’ll meet a DDP require-
ment unless there are DDP risks that detract from
its attainment. To decrease these risks, we select
DDP mitigations, which do have associated costs.
Although this seems convoluted at first glance, it
lets us represent a variety of approaches. For ex-
ample, if the project requires some level of compu-
tational performance, we can represent alternative
solutions, such as hosting the processing on a more
powerful computer or developing faster algorithms.

DDP
encompasses

properties
of both the
technology

and its
environment.

 March/April 2008 I E E E S O F T W A R E 9

Third, we don’t directly model mutually in-
compatible requirements because the limiting fac-
tor is typically the cost of addressing all the associ-
ated risks. For example, “security” and “response
time” might be considered mutually incompatible
(as when virus checkers hog CPU cycles), yet a suf-
ficiently powerful computer can have both.

Fourth, the DDP notion of risk must encom-
pass all kinds of potential impediments to attain-
ing requirements, not just mechanism breakage and
software bugs. Again, DDP’s “risk” nomenclature
can be misleading; some other work instead uses
the term “obstacles.”8 Indeed, to identify risks, we
often begin by thinking of a requirement and the
factors that might prevent attaining it. We share the
traditional risk-assessment idea that risks have like-
lihoods that can be reduced by mitigations. How-
ever, while project risk-management approaches
often advocate scoring risks against just three fac-
tors—cost, schedule, and performance—such re-
quirements are too abstract for the kind of deci-
sion making we wish to support. So, we decompose
risks further, such as separately considering bounds
on run-time memory size and the executable’s stor-
age size. We don’t, however, descend to the detailed
“shall” statements that characterize a carefully con-
sidered design; those emerge later in the life cycle.

Overall, DDP favors breadth over representa-
tional fidelity. Breadth has proven useful, letting
us account for a wide range of relevant aspects in
early-lifecycle decision making (of which there are
surprisingly many).

Risk and mitigation assessment
When projects have novel elements, any ap-

proach that assists in early life-cycle decision mak-
ing must work from estimates, not certainties. We
derive DDP’s estimates from stakeholders’ assess-
ments of how risks impact requirements and how
mitigations affect risks. Rather than restrict their at-
tention to Pareto-frontier solutions, the DDP model
helps decision makers locate acceptable-decision
neighborhoods (with similar costs and benefits).
Decision makers then explore a neighborhood’s al-
ternatives to arrive at a specific selection.

In studying our approach, we’ve discovered two
recurring phenomena. First, an acceptable-decision
neighborhood might feature radically distinct alter-
natives. For example, in one of our studies, we ex-
amined the neighborhood within 5 percent of the
maximal requirements attainment possible within
our budget. We found several strikingly distinct
alternatives. In one case, a selection of 30 mitiga-
tions included two that, together, cost more than
half the cost of the other 28 combined, while an-

other case avoided using either of the two expensive
mitigations!

To find distinct alternatives, we adopt data-min-
ing techniques that identify data-set outliers using
distance from nearest neighbors as a measure of un-
usualness.9 We don’t seek outliers per se, merely in-
terestingly distinct alternatives. Alternately, we use
the same metric to group similar solutions. (Other
work describes how to apply metric-based tech-
niques to DDP models.10)

Second, relatively few of the mitigation-selection
decisions are crucial. For example, in one of our
larger studies, we had almost 100 mitigations. In
the target neighborhood, two-thirds of those miti-
gations had little effect on the overall cost and ben-
efit. To identify subsets of critical decisions, we use
a machine-learning technique that one of us (Tim
Menzies) pioneered and has widely applied.11,12

Both of these phenomena—the radically distinct
alternatives within an acceptable-decision neighbor-
hood and the relative prevalence of inconsequential
mitigation selections—can be helpful. When deci-
sion makers can easily see the critical decisions,
they can better focus their attention. When they
can view radically distinct alternatives, they can
pick and choose, accounting for preferences not en-
coded in the model. Indeed, our work is partially
motivated by the design-by-shopping paradigm,13
which focuses on revealing the options space avail-
able to users, without presuming that analysts have
previously elicited all selection criteria.

A lthough DDP is akin to quality function
deployment,14 a mainstream decision-
support approach, it has a quantitative,

probabilistic foundation inspired by risk-assessment
techniques. This novel combination places it in a
sparsely populated niche among decision-making
techniques. We believe this is why it continues to be
useful in studying the requirements needs of a wide
variety of technologies—software, hardware, and
combinations of the two.

Free DDP software licenses are available for
research and government use; send inquiries to
softwarerelease@jpl.nasa.gov.

Acknowledgments
We conducted our research at the Jet Propulsion

Laboratory, California Institute of Technology, un-
der a contract with the National Aeronautics and
Space Administration.

References
 1. S.L. Cornford, “Managing Risk as a Resource Using

the Defect Detection and Prevention Process,” Proc.

10 I E E E S O F T W A R E w w w . c o m p u t e r . o r g / s o f t w a r e

4th Int’l Conf. Probabilistic Safety Assessment and
Management, Tate Publishing, 1998, pp. 1609–1614.

 2. M.S. Feather et al., “Applications of Tool Support for
Risk-Informed Requirements Reasoning,” Computer
Systems Science and Eng., vol. 20, no. 1, Jan. 2005, pp.
5 17.

 3. D.M. Tralli, “Programmatic Risk Balancing,” Proc.
IEEE Aerospace Conf., IEEE Press, 2003, pp.
2775 2784.

 4. M.S. Feather and S.L. Cornford, “Quantitative Risk-
Based Requirements Reasoning,” Requirements Eng.,
vol. 8, no. 4, 2003, pp. 248 263.

 5. P. Zave and M. Jackson, “Four Dark Corners of Re-
quirements Engineering,” ACM Trans. Software Eng.
and Methodology, vol. 6, no. 1, 1997, pp. 1 30.

 6. W. Swartout and R. Balzer, “On the Inevitable Inter-
twining of Specification and Implementation,” Comm.
ACM, vol. 25, no. 7, 1982, pp. 438 440.

 7. J. Karlsson, and K. Ryan, “A Cost-Value Approach for
Prioritizing Requirements,” IEEE Software, vol. 14, no.
5, 1997, pp. 67 74.

 8. A. Van Lamsweerde and E. Letier, “Integrating
Obstacles in Goal-Driven Requirements Engineering,”
Proc. 20th Int’l Conf. Software Eng (ICSE)., IEEE CS
Press, 1998, pp. 53-62.

 9. E.M. Knorr and R.T. Ng, “Finding Intensional Knowl-
edge of Distance-Based Outliers,” Proc. 25th Very
Large Database Conf., ACM Press, 1999, pp. 211 222.

 10. M.S. Feather, J. Kiper, and S. Kalafat, “Combining
Heuristic Search, Visualization, and Data Mining for
Exploration of System Design Spaces,” Proc. 14th Int’l
Symp., Int’l Council on Systems Eng. (INCOSE), CD-
ROM, Int’l Council on Systems Eng., 2004.

 11. T. Menzies and H. Singh, “Many Maybes Mean Mostly
the Same Thing,” Soft Computing in Software Eng., E.
Damiani, L.C. Jain, and M. Madravio, eds., Springer-
Verlag, 2003, pp. 125 150.

 12. M.S. Feather and T. Menzies, “Converging on the
Optimal Attainment of Requirements,” Proc. IEEE
Int’l Conf. Requirements Eng, IEEE CS Press, 2002,
pp. 263 270.

 13. R. Balling, “Design by Shopping: A New Paradigm,”
Proc. 3rd World Congress of Structural and Multidisci-
plinary Optimization (WCMSO-3), Springer, 1999, pp.
295 297.

 14. Y. Akao, Quality Function Deployment, Productivity
Press, 1990.

For more information on this or any other computing topic, please visit our
Digital Library at www.computer.org/csdl.

About the Authors
Martin S. Feather is a principal at the Jet Propulsion Laboratory, California
Institute of Technology. His research interests include software verification and validation,
early-phase requirements engineering and risk management, and infusion of software
engineering research. He received a PhD from Edinburgh University, Scotland. He is a
member of IFIP Working Groups 2.1 and 2.9, and serves on the Editorial Board of Springer’s
Requirements Engineering and Automated Software Engineering journals. Contact him at
Martin.S.Feather@jpl.nasa.gov; http://eis.jpl.nasa.gov/~mfeather.

Steven L. Cornford is a senior engineer at the Jet Propulsion Laboratory, California
Institute of Technology. His research interests include risk assessment, systems engineering,
and technology infusion. He has a PhD in physics from Texas A&M University, and received
the NASA Exceptional Service Medal for his efforts as a payload reliability assurance man-
ager, cognizant engineer, and principal investigator. Contact him at Steven.L.Cornford@jpl.
nasa.gov.

Kenneth A. Hicks is manager for technology infusion and flight validation in the
System Modeling and Analysis Program Office at the Jet Propulsion Laboratory, California
Institute of Technology. He also serves as a technical liaison between JPL, NASA Ames
Research Center, and NASA Dryden Flight Research Center. His research interests include the
use of space-flight and technology development programs as a means to foster development
and adoption of a wide range of spacecraft technologies. He has a BS in computer science
from University of La Verne. Contact him at Kenneth.A.Hicks@jpl.nasa.gov.

James D. Kiper is associate dean for research and graduate studies in the School of
Engineering and Applied Science, and a professor of computer science at Miami University
in Oxford, Ohio. His research interests include engineering, software risk assessment, and
design rationale. He received a PhD in computer science from Ohio State University. He is a
member of the IEEE Computer Society, ACM, and the ASEE. Contact him at kiperjd@muohio.
edu.

Tim Menzies is an associate professor at West Virginia University, Morgantown, West
Virginia. His research interests include practical AI for software engineering, focusing on
how to build and assess AI tools that find the least number of constraints that most effect a
software project (the “less is more” approach). He received a PhD from University of New
South Wales. He is a member of the IEEE, a former research chair at the NASA IV&V facility,
and co-chair of the Promise workshop on repeatable experiments in software engineering.
Contact him at tim@menzies.us; http://menzies.us.

Software
Engineering
Radio
The Podcast for Professional Software Developers
every 10 days a new tutorial or interview episode

se-radio.net

