
Increasing Confidence in Verification Results by Combining Diverse Tools:
an Empirical Study

David Owen
Department of Mathematical Sciences

Messiah College, Grantham, PA
owen@messiah.edu

Bojan Cukic, Tim Menzies
Lane Department of Computer Science and Electrical Engineering

West Virginia University, Morgantown, WV
cukic@csee.wvu.edu, tim@menzies.us

Abstract

Automated verification tools are capable of detecting
subtle errors in models of complex software systems. Un-
fortunately, it can be difficult to use these tools effectively.
Input models must correctly represent essential system be-
havior. Models must also enable efficient verification in
terms of their time and memory requirements. Satisfying
these two requirements can be challenging even for experts.
But, given a correct model, can a user be confident that the
verification results are correct?

One way to assess correctness of verification results is
to provide translation tools from a modeling language to
the input languages of diverse verification tools. Our ex-
periments with automatic translators from the SCR model-
ing language to the input languages of various verification
tools show that verification results produced from automat-
ically translated models are not always consistent. In the
tradition of fault identification and fault tolerance provided
through diversity, we argue that various verification tools
need to be used in concert. Our fault seeding experiments
indicate that the results of different model verification tools
can be compared, their discrepancies analyzed and mod-
eling faults corrected. Our experiments further imply that
“ensemble verification” should be a viable paradigm for
the assessment of high assurance systems in the future.

1. Introduction

Increasingly complex software is being used in critical
applications. Powerful techniques are available to verify the
correctness of complex systems, but using these techniques

effectively can be challenging, in terms of human exper-
tise, and costly, in terms of computational resources [7,12].
Tools have been developed to aid in constructing abstract
models of software, but verification of these models contin-
ues to require time and memory resources rarely available in
desktop computers. On the other hand, different strategies
have been developed to decrease time and memory require-
ments of automated verification (see e.g., [5, 11, 13, 14]).
It can be very challenging to develop software models that
take full advantage of performance improving strategies
made available by a particular tool and satisfy the assump-
tions needed for the state space size reduction. Previously,
we demonstrated that combining two complementary verifi-
cation strategies can improve verification accuracy and per-
formance [17]. In those experiments we found inconsistent
results between two verification tools, and the process of
resolving the inconsistency brought to light hidden assump-
tions that would have undermined verification results. The
experiments described in this paper extend that work, com-
paring results from five verification tools.

In addition to the inconsistent result reported in [17], we
found two more cases of inconsistent results between dif-
ferent verification tools. First, we found inconsistent re-
sults between the Cadence SMV [14] and NuSMV [6] sym-
bolic model checkers, resolved by modifying automatically
generated input models before running NuSMV. Second,
we found inconsistent results between the Salsa invariant
checker [4] and the SPIN explicit-state model checker [12],
resolved by observing that the model automatically gener-
ated for SPIN included some behavior not present in the
model generated for Salsa. In each case where inconsistent
results were found, there would have been no way to iden-
tify the fault in the model if that tool were used alone.

The technical contribution of this paper includes a set
of mutation operators, based on the set of operators by Of-
fut et.al. [16], adapted for specifications written in the SCR
software modeling language [10]. We used this set of opera-
tors to create fault-seeded versions of an SCR specification
in the experiments described below. Based on these tests,
we comment on the relative merits of using one, or more
than one, automated verification tools.

More generally, the results of this paper call for a
change to generally accepted automated software verifica-
tion methodologies. Our proposed approach is quite differ-
ent than standard model-based verification methods. Oth-
ers have considered complementary relationships between
verification tools [8]. Smith [20] discussed the merits of
SPIN vs SMV model checkers and commented that SMV’s
use of Binary Decision Diagrams (BDD) makes it the most
suitable for hardware checking (where repeated structures
in the design allow for very efficient BDD representations).
These papers provide guidance on selecting the right tool
for a user’s particular need at a particular time in the soft-
ware development life cycle. But these approaches assume
that users can easily migrate between different verification
tools and environments, something that has proven unrealis-
tic for a vast majority of software engineering professionals.

This paper differs because we do not debate the value of
different verification tools and/or modeling notations. We
describe a practical way to make the most of available ver-
ification tools: rather than choosing one tool and attempt-
ing to use it optimally, choose several complementary tools
and use them together in a way that exploits their different
strengths. We show that an ensemble of verification tools
is typically able to identify more modeling faults than each
participating tool. Decades of research yielded numerous
verification tools. Instead of debating the differences be-
tween these tools, we should routinely use them all, pro-
vided that the adequate model translation support exists.

The rest of the paper is organized as follows. Section
2 provides background information about verification tools
used in our study. Section 3 describes the experimental
setup. The results of our experiments are presented in Sec-
tion 4. We summarize our findings in Section 5 and provide
conclusions in Section 6.

2. Background

This section describes the modeling and verification
tools that together make up the framework for the experi-
ments described in the next section. First, we briefly de-
scribe existing tools which we used in our experiments:
the SCR Toolset, the Cadence SMV and NuSMV symbolic
model checkers, the SPIN explicit-state model checker, and
the Salsa invariant checker. We next describe Lurch, our
random search debugging tool for formal models.

2.1. The SCR Toolset

The SCR requirements specification language, a tabular
notation for concise, unambiguous description of functional
requirements, was developed by Heitmeyer and others over
the last twenty years and has been used in a variety of re-
search and industrial applications [10]. An SCR specifica-
tion includes both monitored variables, which represent en-
vironmental quantities monitored by the system, and con-
trolled variables, which represent quantities controlled by
the system. Monitored variables may change nondetermin-
istically, but behavior within the system, causing changes
to controlled variables, must be deterministic. In general,
changes in controlled variables are triggered by conditioned
events of the form:

@T(c) WHEN d def= ¬c ∧ c′ ∧ d

This event could be read: “c changes from false to true
when d is true.” The @T(c) portion of the event is a two-
state predicate and is true if the condition c is false in the
current state but true in the next state. For the entire event
to be true (including WHEN d) the condition d must be true
in the current state.

The SCR Toolset includes the following modeling and
verification tools:

1. Specification Editor: Enables user-friendly viewing,
editing, and search of specifications; also provides ac-
cess to the other tools through a single interface.

2. Simulator: Allows user to observe and control execu-
tion of the specification, to follow a path to an error
discovered by one of the model checking tools, for ex-
ample.

3. Dependency Graph Browser: Constructs and displays
a graph showing relationships between variables in the
specification.

4. Consistency Checker: Detects various kinds of errors
including syntax errors, invalid values, circular defini-
tions, and violations of disjointness or coverage prop-
erties.

5. Model Checker(s): Automatic translation from SCR to
the SMV and SPIN model checkers.

6. Verifier: Automatic translation to TAME [3], a simpli-
fied theorem proving tool.

7. Property Checker: Automatic translation from SCR
to Salsa, a more powerful tool (than the consistency
checker) for proving disjointness or coverage proper-
ties, or user-specified assertions.

8. Invariant Generator: Automatically generates state in-
variants for the specification.

2

In addition to these tools, we wrote scripts to automati-
cally translate from an SCR specification to the input lan-
guage for Lurch, our random search debugging tool [18],
described later. Through these scripts and the tools listed
above, it is thus possible to automatically translate an SCR
specification model into the input languages of all five of
the testing and verification tools described below.

2.2. The Cadence SMV and NuSMV Sym-
bolic Model Checkers

The Cadence SMV [14] and NuSMV [6] symbolic
model checkers are two freely available contemporary ver-
sions of SMV, the “symbolic model verifier,” a popular ver-
ification tool for formal models of synchronous hardware
and software systems.

The input to a model checker is a description of a sys-
tem of interacting finite-state machines and a set of tempo-
ral logic properties. The model checker builds and explores
a global finite-state machine representing the overall sys-
tem and verifies that the properties hold true for all possible
paths through the system behavior. If a property is violated,
the model checker outputs a counterexample: the full path
from initial conditions to the property violation.

The fundamental challenge in model checking is to con-
trol the size of the global finite-state machine, so that the
amount of time and memory required to fully explore it is
not prohibitive. SMV uses a compact symbolic representa-
tion of the state space, based on binary decision diagrams
(BDDs) to control the size of the global finite-state ma-
chine. This strategy affects what features and restrictions
are included in the input language, what types of properties
can be verified, and what kinds of input models the tools
works best on. In general, symbolic model checking has
worked well on models of synchronous systems, including
computer hardware.

The input languages for Cadence SMV and NuSMV
and basically the same. (However, as described below, we
initially got inconsistent results between these two model
checkers and found it was necessary to modify input models
slightly before using NuSMV.) Because of differences be-
tween the SCR modeling language and the SMV language,
the SCR Toolset’s translator to SMV restricts the type of
assertions to those involving only the current state of the
system. For example, any assertion using the SCR Next (’)
operator is removed from the model before translating to
SMV.

2.3. The SPIN Explicit-State Model
Checker

The SPIN explicit-state model checker is a widely used
and freely available automated verification tool specifically

designed to work well on models of asynchronous soft-
ware systems [12]. Unlike Cadence SMV and NuSMV,
which represent sets of states symbolically with BDDs,
SPIN represents each global state explicitly in the global
finite-state machine representing the behavior of the overall
system. SPIN uses other techniques to control the size of
the global finite-state machine, including partial order re-
duction, which decreases the number of states by ignoring
redundant parallel paths irrelevant to the properties being
verified. SPIN also includes a variety of options for decreas-
ing the amount of memory required for each state stored.

Unlike the SCR modeling language, in which state tran-
sitions may be triggered by change events based on the cur-
rent state and previous state of the system, in Promela, the
SPIN input language, state transitions are based only on
the current state of the system. Rather than removing be-
havior from the SCR model before translation to Promela
(as is done before translation to SMV), the SCR Toolset’s
Promela translator makes two copies of every variable in
the specification, one for the previous state and one for the
current state of the system. Change events (and assertions
involving both the previous and current state) can thus be
included in the Promela version of the specification. This
makes SPIN’s verification result more comprehensive, since
the input model is closer to the original SCR model, but it
also makes the verification run require much more time and
memory, compared to verification with Cadence SMV or
NuSMV. Some of the performance difference may also be
due to the fact that SCR is a synchronous modeling lan-
guage, and SPIN has been designed for asynchronous mod-
els, unlike Cadence SMV and NuSMV, which are designed
for synchronous models.

2.4. The Salsa Invariant Checker

The Salsa invariant checker uses a combination of ideas
from theorem proving and symbolic model checking to
prove generic disjointness and coverage properties, as well
as user-specified assertions, for input models written in a
modified form of the SCR specification language [4, 19].
Like an automated theorem proving tool, Salsa attempts to
carry out an inductive proof using decision procedures. Like
a symbolic model checker, Salsa uses BDDs to represent the
global system in a very compact way.

Salsa either determines that a property is true or outputs
a two-state counterexample. This is different from the coun-
terexample produced by a model checker, which would in-
clude all states along a path from initial conditions to the
property violation. In some cases Salsa is unable to prove
properties that are actually true, so the user must determine
whether counterexamples produced by Salsa are valid; that
is, whether the first state in the counter example is reachable
from the system’s initial state.

3

2.5. The Lurch Random Search Tool

Lurch, our random search tool for detecting property vio-
lations in formal models, explores a sample of paths through
the global finite-state machine, choosing randomly when
more than one branch is possible [18]. A run ends when
Lurch reaches a property violation, the end of a path, or
a user-specified depth search limit. Runs are repeated un-
til a user-specified number of paths have been explored, or
until saturation is achieved; that is, if the percentage of
unique global states explored, compared to the total num-
ber of global states explored, drops below a user-specified
threshold, the search is stopped [15].

Lurch was originally designed to run on asynchronous
models, in which the individual finite-state machines in the
input model all run in parallel. The experiments below use
functionality added later to support synchronous, hierarchi-
cal finite-state machine models, in which the individual ma-
chines may each execute a tansition at each execution step,
but within each step machines are ranked in a dependency
order. This is necessary to support models translated from
SCR, a synchronous, hierarchical modeling language.

Lurch’s input language is similar to Promela, the input
language for SPIN, allowing state transitions and assertions
to be based only on the current state of the system. Be-
cause of this, scripts that translate from SCR to Lurch actu-
ally translate from the SCR Toolset’s Promela model, gen-
erated for SPIN, to Lurch, rather than directly from SCR to
Lurch [17]. This makes the Lurch version of an SCR spec-
ification larger (like the SPIN version), but does not have
much impact of Lurch’s performance, since Lurch does a
limited number of random runs through the model.

3. Experimental Setup

This section begins with a description of the software
model used in our experiments, an SCR specification of a
security system. Next, we summarize our process for cre-
ating fault-seeded versions of the specification, which we
used to evaluate the testing and verification tools listed in
the previous section. Finally, for each of the tools, we de-
scribe how it was used and give a brief summary of results.

3.1. The PACS SCR Specification

In the experiments presented below we used an SCR
specification for a personnel access control system (PACS)
originally described in a prose requirements document from
the National Security Agency [1]. The SCR specification
was derived from that document as an example to demon-
strate how to write a high quality formal requirements spec-
ification and has been used by others to evaluate composi-
tional verification methods [9]. This specificaction is large

Label Description Example
AOR Arithmetic Operator Repl. + → -
CRP Constant Repl. 1 → 2
EVR Enumerated Type Val. Repl. a → b

(where a and b are
possible values for
enumerated type)

IOR Implication Operator Repl. => → <=>
LCR Logical Connector Repl. AND → OR
ROR Relational Operator Repl. < → <=
SND SCR Next Operator Del. ’ →
SOR SCR Event Operator Repl. @T → @F
UOD Unary Operator Del. NOT →
VRP Variable (same type) Repl. x → y

(where x and y are
variables of same
type)

Figure 2. Mutation operators used to gener-
ated fault-seeded versions of the PACS SCR
specification.

enough that versions of it produced by the SCR Toolset’s
automatic translators require significant time and memory
to fully verify. For example, with default options full veri-
fication with SPIN would have required 6.8GB and over 24
hours; with various compression options enabled this could
be reduced to 512MB and approximately 30 minutes on a
2.5 GHz desktop machine.

Figure 1 shows a finite-state machine representing the
core mode logic SCR model of the PACS requirements. Ini-
tially, the system mode is EnterCard; when a card is entered
the mode changes to CheckCard. If the card is not valid, a
limited number of retries is allowed, during which time the
mode alternates between CheckCard and ReEnterCard. If
the card is valid, the mode changes to EnterPIN; when a
PIN is entered the mode changes to CheckPIN. Similar to
CheckCard, from CheckPIN the user has a limited number
of retries if an invalid PIN is entered, during which time the
mode alternates between CheckPIN and ReEnterPIN. If a
valid PIN is entered the mode changes to Proceed. In Pro-
ceed mode, the user is able to enter through the gate. Once
the gate closes the system is reset to EnterCard.

In modes CheckCard and CheckPIN, if the maximum
number of retries is reached after repeated invalid card or
PIN entries, the mode changes to Error. From Error a se-
curity officer may override the PACS, the mode of which
then changes to Override. The user may then enter through
the gate. When the gate is closed, the mode changes to En-
terCard. Also, if the system is reset by the security officer
in any mode (except EnterCard), the mode is reset to Enter-
Card (note the dotted line transition in the upper right part
of Figure 1).

3.2. Fault-Seeded Specifications

Figure 2 shows the set of mutation operators used to cre-
ate fault-seeded versions of the PACS SCR specification for

4

Figure 1. PACS mode finite-state machine.

use in our experiments. A preliminary set of 45 fault-seeded
specifications were prepared manually, and later 278 spec-
ifications were generated automatically using these opera-
tors.1. This set of operators is based on the set argued to be
sufficient for Fortran programs [16]. Operators AOR, LCR
and ROR are taken directly from [16]. UOD is similar to
the unary insertion (UOI) operator from [16] but is easier to
implement without a complete parse of the input specifica-
tion.

The set of five sufficient operators in [16] also includes
an absolute value insertion (ABS) operator, which replaces
an entire arithmetic expression by zero, a positive value, or
a negative value. To avoid fully parsing the input specifi-
cation, and because SCR does not assign a logical value to
arithmentic expressions, ABS was not used. Instead we in-
troduced CRP (considered in [16] but not one of the five
selected) and EVR, which replace integers or, for variables
of enumerated type, other legal values. IOR and SND are
similar to LCR and UOD, but deal with SCR-specific fea-
tures. Andrews et.al. [2] use a similar set of mutation op-
erators with C programs, to accurately evaluate test suites.
These mutation operators produce fault-seeded C programs
realistic enough that a given set of tests will achieve approx-
imately the same level of program coverage that the given
test set achieves for programs with real faults.

Figure 3 shows how many fault-seeded specifications
were generated with each mutation operator. For specifi-
cations generated using two mutation operators, we indicate
both operators. Different number of specifications were cre-

1Manually generated specifications were included, since 1) manual
fault seeding was not based on any expert knowledge of the PACS, and
2) average performance of verification tools varied little between the sets
of manually seeded and automatically seeded specifications.

AOR (9) CRP (9) EVR (58)
AOR CRP (1) CRP EVR (1) EVR-s (4)
AOR EVR (6) CRP LCR (1) EVR EVR (10)
AOR LCR (1) CRP ROR (2) EVR EVR-s (1)
AOR SOR (2) CRP VRP (1) EVR IOR (3)

EVR LCR (1)
EVR ROR (11)
EVR SND (2)
EVR SOR (9)
EVR VRP (12)

IOR (16) LCR (20) ROR (31)
IOR ROR (1) LCR LCR (3) ROR ROR (7)
IOR SOR (2) LCR ROR (5) ROR SND (1)
IOR VRP (2) LCR SOR (3) ROR SOR (4)

LCR VRP (6) ROR VRP (7)

SND (5) SOR (30) VRP (23)
SND SOR (1) SOR SOR (1) VRP VRP (1)
SND VRP (1) SOR VRP (1)

Figure 3. Mutation operator(s) and the num-
ber of specifications generated for each
(pair).

5

ated for different operators because operators apply to dif-
ferent locations it in the original specification. For exam-
ple, there are many more places in the original specification
where the EVR (enumerated type value replacement) opera-
tor may be applied than there are where the SND (SCR Next
operator deletion) may be applied. The program we used
to randomly generate fault-seeded specifications therefore
generated many more unique specifications with an EVR
mutation than with an SND mutation. In fact, there were so
few possible places in the original specification where the
UOD operator could be applied that no fault-seeded specifi-
cations were produced with that operator. Also, the EVR-s
operator, a variation on EVR in which enumerated type val-
ues in a list are swapped instead of randomly replacing a
value with some other possible value, was used in five of
the specifications produced.

3.3. Use of the SCR Toolset

Each fault-seeded specification was checked first using
the command-line program testtool and GUI consistency
checker provided with the SCR Toolset. These tools check
for generic errors including syntax errors, circular defini-
tions, and violations of disjointness or coverage properties.
Disjointness violations occur when, from a certain system
state, for a given input, more than one transition is possible.
Coverage violations occur when, from a certain state of the
system, for a given input, no next state is specified.

If, for a particular specification, errors were detected by
these basic SCR Toolset checks, we excluded that specifica-
tion from further experiments. Because our focus is on the
accuracy of back-end verification tools, eliminating models
where basic SCR Toolset checks detected faults was appro-
priate (in practice, these models would never be passed to
back end verification tools). If the specification contained
no faults detected by the SCR Toolset, we created Salsa,
SMV and SPIN versions of the specification using the au-
tomatic translators included in the SCR Toolset. We devel-
oped original scripts to generate a NuSMV version from the
SCR Toolset’s SMV version (which worked as-is for Ca-
dence SMV but not for NuSMV) and a Lurch version from
the SCR Toolset’s SPIN version. All together, this process
generated 323 fault seeded specification instances.

3.4. Use of The Salsa Invariant Checker

For specifications which passed basic SCR Toolset
checks, we the invariant checker on the SCR Toolset’s au-
tomatically generated Salsa version of the specification. By
comparing Salsa’s results on each fault-seeded specification
to results on the original (correct) specification, fault-seeded
specifications were divided into five categories:

1. Salsa proved fewer assertions for the fault-seeded
specification than for the original (94 fault-seeded
specification instances in this category).

2. Salsa proved more assertions for the fault-seeded spec-
ification than for the original (16).

3. Salsa proved the same number of assertions but fewer
generic properties than for the original (36).

4. Salsa proved the same number of assertions but more
generic properties than for the original (7).

5. Salsa results matched results for the original (170).

Salsa alone can not be used to produce complete verifi-
cation results since assertions not proved true by Salsa may
or may not be false. But, if a properties is proved true by
Salsa, in principle, it can be removed from the specification
before running a model checker. In some cases verifying a
lower number of properties can greatly improve the perfor-
mance of the model checking tools. This is a great example
of a complementary nature of some verification tools. How-
ever, as described later, we witnessed examples where SPIN
reported assertion violations in the Promela version of the
model which were not present in the original SCR specifica-
tion. In the spirit of diversity, Salsa might be used in concert
with a model checking tool to check for spurious assertion
violation reports.

3.5. Use of the Cadence SMV and NuSMV
Symbolic Model Checkers

Cadence SMV and NuSMV were next run on the SMV
version of each fault-seeded specification. With some mi-
nor but important adjustments in the SMV’s input model to
make it compatible with NuSMV (described later), Cadence
SMV and NuSMV results were consistent. Assertion vio-
lations were detected in 141 specifications; no violations
were detected in 182 specifications. As stated above, the
SCR Toolset’s translator to SMV restricts the type of asser-
tions it translates to only those that involve the current state
of the system. For our experiments this meant that only 9
of the 16 assertions in the original SCR specification could
have been checked by Cadence SMV and NuSMV. In cases
like this, Cadence SMV or NuSMV can not be used alone
to produce complete verification results.

3.6. Use of the Lurch Random Search Tool

Next, we ran Lurch on versions of the fault-seeded spec-
ifications generated from Promela versions produced by the
SCR Toolset. Lurch’s random search does not necessarily
alert the user to property violation every time because it
randomly searches through the state space model. In some
runs it may not “stumble” into a property violation. For this

6

10 violations in Less than 10 viol-
under 50 runs ations in 50 runs

10 / 10 (175) 0 / 50 (117)
10 / 11 (16) 1 / 50 (2)
10 / 12 (5)
10 / 13 (4)
10 / 17 (1)
10 / 27 (1)
10 / 38 (1)
10 / 39 (1)

Table 1. Lurch results on fault-seeded PACS
specifications: number of times violations
detected vs. search runs, number of specifi-
cations in parentheses.

reason, Lurch was run between 10 and 50 times on each
input model. Only in cases where Lurch detected a prop-
erty violation at least 10 times was Lurch counted as having
detected the violation. Although it is sufficient that Lurch
detects property violation only once, we wanted to analyze
the consistency of our “random testing approach” to veri-
fication of formal models. If Lurch found a violation ten
times in less than 50 runs, we stopped running Lurch on
that input model. As shown in table 1, for most input mod-
els (292 of 323) Lurch either detected a property violation
ten times in the first ten runs or detected no violation in 50
runs. In only a few cases (6 of 206) when a violation was
detected did Lurch detest the property violation in less than
75% of runs.

Because input models used with Lurch were based on
Promela versions of the specifications produced by the SCR
Toolset, all assertions in the original SCR specification (in-
cluding assertions not included in SMV versions of the
specifications) were checked by Lurch. This is why Lurch,
an incomplete random search tool, detected a larger number
of property violations than the complete verification tools
Cadence SMV or NuSMV.

3.7. Use of the SPIN Explicit-State Model
Checker

Finally, SPIN was run on versions of the fault-seeded
specifications produced by the SCR Toolset’s Promela
translator, in the following three ways:

1. First, run SPIN with default settings where the default
search depth limit is set to 10,000.

2. Second, we run SPIN with settings necessary to get
complete verification runs. Promela models were com-
piled with minimized automaton memory compression
and run with the depth limit set to 2,000,00.

3. Third, we run the input model with final d step
marker removed. This ensures that nondeterministic

SCR tables are handled properly, and with settings
necessary for complete verifications runs on all mod-
els. We compiled models with minimized automa-
ton memory compression and run with depth limit of
3,200,000.

With default settings, SPIN detected property violations
in 205 of 323 input models. With settings adjusted to in-
sure a complete verification run, SPIN was able to detect
violations in 26 more of the models. As explained in [18]
and briefly below, in order to get a fully reliable verification
result running SPIN on an input model translated from an
SCR specification by the SCR tools, it is necessary to re-
move the final d step marker from the model. Running
SPIN on input models with this change, with the depth set-
tings adjusted to enable a complete verification run, SPIN
was able to detect property violations in four more mod-
els. As described below, two of these were disconfirmed by
Salsa. All in all, SPIN detected assertion violations in 233
of 323 input models.

SPIN requires much more time and memory, in most
cases, then the other tools described above. But in our ex-
perimental framework only SPIN could be used to fully ver-
ify all 16 assertions in the original SCR specification. Based
on results from SPIN, we determined that 90 of the fault-
seeded specifications were equivalent mutants; that is, they
specify the behavior identical to the original, as far as the
given assertions are concerned.

4. Results

This section describes three cases of inconsistent results
between verification tools and discusses how each was re-
solved. We then give an overview of experimental results,
comparing the accuracy of the results from different verifi-
cation tools used in our experiments. Note that we are not
so much comparing the accuracy of the verification tools
in isolation, but the accuracy of the overall system veri-
fication results. System verification accuracy depends on
factors which include the automatic translation tools from
SCR to input models of the verification tools and the con-
figuration settings of the tools chosen to minimize time and
memory requirements.

4.1. Inconsistent Results Between Cadence
SMV and NuSMV

We mentioned in Section 3.5 that achieving consistent
verification results between Cadence SMV and NuSMV
model checkers required “minor adjustments”. We found
that consistent verification between Cadence SMV and
NuSMV model checkers required a modification in the
SCR Toolset’s SMV model translation utility. Prior to

7

Copyright 1996 Cadence Berkeley Labs. Cadence Design Systems...

Model checking results
======================
(AG (((˜(cGuardAlarm=On))|(cUserDisplay=SeeOfficer))&((˜(cUserDisplay=.....false

*** This is NuSMV 2.4.1 zchaff (compiled on Tue Jan 30 19:33:47 UTC 2007)...

-- specification AG ((!(cGuardAlarm = On) | cUserDisplay = SeeOfficer)
& (!(cUserDisplay = SeeOfficer) | cGuardAlarm = On)) is true

Figure 4. Inconsistent results from Cadence SMV (top) and NuSMV (bottom) running on the same
input model.

implementing the change, Figure 4 shows the conflict-
ing output produced by the two model checkers for one
of the fault-seeded specifications.2 Cadence SMV and
NuSMV disagreed about whether one of the assertions
included in the input model is true or false—the asser-
tion (cGuardAlarm = On) <=> (cUserDisplay
= SeeOfficer). Needless to say, this result was unex-
pected and its resolution implied weeks long human analy-
sis effort.

The fault-seeded specification in question contained two
mutations, so our first step in attempting to resolve the in-
consistency between Cadence SMV and NuSMV was to
look at the results from running these tools on input mod-
els generated from specifications that each had just one
of the mutations. Results on these single-mutation ver-
sions were consistent: for an input model generated from
the specification with just the first mutation, both Cadence
SMV and NuSMV reported that all assertions included
in the input model were true; for an input model gener-
ated from the specification with just the second mutation,
both Cadence SMV and NuSMV reported that the asser-
tion (cGuardAlarm = On) <=> (cUserDisplay
= SeeOfficer) was false. Thus we concluded that the
assertion violation reported by Cadence SMV was likely
present in the input model, but somehow masked by the first
mutation for NuSMV.

To confirm the Cadence SMV result, SPIN was run on
an input model generated from the fault-seeded specifica-
tion for which Cadence SMV and NuSMV produced in-
consistent results. Figure 5 shows the result from SPIN,
consistent with the result from Cadence SMV. Based on
this, we next contacted the developers of NuSMV and via
several emails determined the reason for NuSMV’s incor-
rect verification result for the specific input model. Al-
though the input model was syntactically valid for NuSMV,
the keyword SPEC used to mark assertions is not inter-
preted the same way by NuSMV as by Cadence SMV.
As a result, NuSMV was checking assertions in the in-
put model only for a limited set of possible execution

2For clarity many lines of output have been deleted in this figure and
similar figures below.

paths. To force NuSMV to check assertions for all valid
execution paths, it was necessary to replace SPEC with
a NuSMV-specific key word, INVARSPEC. After doing
this and running NuSMV on the modified input model,
the output was consistent with Cadence SMV, reporting a
violation of the assertion (cGuardAlarm = On) <=>
(cUserDisplay = SeeOfficer).

This example might be dismissed as not relevant to the
question of whether a particular verification tool is more ac-
curate than another. The cause of the inconsistency between
NuSMV and Cadence SMV was not a bug in the verification
tool, but an incompatibility between the automatic trans-
lation tool used to generate the input model (which used
SPEC rather than INVARSPEC to mark assertions) and the
NuSMV input language. Needless to say, it came as a sur-
prise that the two versions of SMV could interpret the same
model differently. Further, from the point of view of the
user, the cause of the inconsistency is not relevant. The is-
sue is that a verification tool, expected to provide a 100%
confidence in the verification result, reported that an incor-
rect input model was correct. It is only because this output
was compared to that of other verification tools that was it
shown to be incorrect and eventually corrected.

4.2. Inconsistent Results Between Salsa and
SPIN

Figure 6 shows inconsistent results from Salsa and SPIN
running on another fault-seeded version of the input model.
Salsa reports that the property PINEntry is true (top of
Figure 6) but SPIN reports a violation of the assertion corre-
sponding to the property. Salsa is capable of proving prop-
erties true; however, if a property cannot be proven true by
Salsa it is not necessary false. In this way Salsa is differ-
ent from a model checker like SPIN, which is designed to
detect only genuine property violations. Strangely, in this
example SPIN reports a violation of a property proven true
by Salsa. Again, the surprising inconsistency implied con-
siderable human analysis.

Eventually we determined the reason for the inconsis-
tency: one feature of the SCR modeling language is ig-
nored by the translation tool used to generate the SPIN

8

Depth= 500129 States= 1e+06 Transitions= 1.02631e+06 Memory= 72.780...

pan: assertion violated ((!((cGuardAlarm_NEW==0))||(cUserDisplay_NEW==9))
&&(!((cUserDisplay_NEW==9))||(cGuardAlarm_NEW==0))) (at depth 859760)...

(Spin Version 4.2.4 -- 14 February 2005)...

State-vector 32 byte, depth reached 859769, errors: 1

Figure 5. Output from SPIN running on a model generated from the same fault-seeded specification
used to generate the models for which Cadence SMV and NuSMV outputs are shown in figure 4.

Analyzing SAL specification in file: utpb28.ssl.sal.
Checking disjointness of all modules...

Checking coverage of all modules...

Checking guarantees in all modules...

Checking PINEntry ... (1,0,1):0 - (1,1,0):0 pass...

Depth= 499462 States= 1e+06 Transitions= 1.02634e+06 Nodes= 17543 Memory= 60.608
pan: assertion violated ((mPINInput_OLD==mPINInput_NEW)||((mcStatus_OLD==10)||(mcStatus_OLD==5)))
(at depth 833676)...

(Spin Version 4.2.4 -- 14 February 2005)...

State-vector 32 byte, depth reached 833689, errors: 1

Figure 6. Inconsistent outputs from Salsa (top) and SPIN (bottom) running on the same input model.

version of the specification model. SCR allows the use of
NATURE constraints to limit the behavior of variables repre-
senting inputs from the environment. In this case one of the
NATURE constraints is necessary in the model for the prop-
erty PINEntry to be true. Thus Salsa, running on an input
model including the relevant NATURE constraint, found that
the property PINEntry was true. But SPIN, running on a
model without the constraint (because the translator ignores
it), found a violation of the property. This explanation of
the discrepancy between Salsa and SPIN was confirmed by
removing the constraint from the Salsa input model. Re-
running Salsa on the input model without the NATURE con-
straint, we found that Salsa could no longer prove the prop-
erty true.

This inconsistency is perhaps less critical than the one
described in previous section, just because there was no pos-
sibility of missing a genuine fault. The analysis of the fault
detected by SPIN would indicate that it is a benign one. But
this example does show a practical benefit of combining an
ensemble of complementary verification tools. If only SPIN
was used, much manual effort might be expended attempt-
ing to find and correct the input model so that the prop-
erty PINEntry would not be violated. Using Salsa makes
it easier to track down the cause of the violation found by
SPIN. In addition, this example underscores the need to val-
idate faults detected by SPIN or any other model checker.
The fault may be related to a mistake in the portion of the
machine generated input model representing the environ-
ment rather than the critical system to be verified.

4.3. Inconsistent Results Between Lurch
and SPIN

Figure 7 shows outputs from SPIN and Lurch running on
input models generated from a different fault-seeded ver-
sion of the specification. SPIN reports that the input model
is correct but Lurch reports an assertion violation. Because
Lurch is an incomplete random search tool, which can de-
tect property violations but not verify correctness, we would
expect to sometimes see violations missed by Lurch but de-
tected by SPIN. We would never expect the result shown
in Figure 7—Lurch, an incomplete tool, reports a violation,
while SPIN runs to completion but reports no violation.

As described in [17], we eventually determined that the
output from Lurch was correct and that the inconsistency
between SPIN and Lurch’s results was due to a performance
improving feature of SPIN included in the Promela model
generated by the SCR Toolset’s translator. Promela allows
blocks to be marked as deterministic steps with the key
word d step. SPIN assumes such blocks are determin-
istic, i.e., there is only one possible execution path through
the block, and therefore SPIN checks only one path through
the block. If a block that is not deterministic is enclosed
within d step, this results in some of the possible inter-
leaving behaviors of the input model being ignored. For
the fault-seeded specification in this example, that ignored
behavior included a violation of one of the assertions, the
violation detected by Lurch. After removing the relevant
d step marker from the input model and running SPIN
again, it quickly detected the assertion violation previously

9

Depth= 500129 States= 1e+06 Transitions= 1.02631e+06 Nodes= 19616 Memory= 144.710...

(Spin Version 4.2.4 -- 14 February 2005)...

State-vector 32 byte, depth reached 1714629, errors: 0

time memory states sts/sec % new col depth name...

9.08 7.55 1.2e+05 1.3e+04 49.0 0 155 _assert6_violated

Figure 7. Inconsistent outputs from SPIN (top) and Lurch (bottom) running on the same input model.

Figure 8. Sets of specifications for which var-
ious tools detected assertion violations.

detected only by Lurch.
In this experiment, if only the SPIN had been used, there

would have been no way of knowing that this particular
specification had a disjointness error and a related assertion
violation. Using Lurch as well, we were able to uncover the
assumption and better understand how to use SPIN to get
accurate verification results. Note that the use of d step
should not be viewed as an error in the translator. In prac-
tice, the SCR Toolset can usually be used to prove disjoint-
ness before running SPIN. However, for specifications the
SCR Toolset is unable to prove disjoint, the user is appar-
ently expected to know that the final d step marker should
be removed from the automatically generated Promela ver-
sion of the specification before running SPIN. How many
users are actually aware of this assumption is the question
of grave concern.

5. Discussion: Comparing the Results

Figure 8 shows the division of fault-seeded specifications
used in our experiments into sets based on which verifica-
tion tools detected their property violations. Since Salsa
was used to prove properties true but not to detect viola-
tions, there is no straightforward way to include Salsa re-

sults in this diagram. Regardless of the omission of Salsa
results, the diagram is instructive. Lurch detected prop-
erty violations in 204 specifications. After the lesson was
learned about the discrepancies between Cadence SMV and
NuSMV, they both detected violations in exactly the same
set of 141 specifications. SPIN detected violations in 233
specifications. SPIN actually detected violations in 235
specifications, but Salsa proved that 2 of those were false
alarms. We note that confirming this result required the do-
main knowledge or the presence of a domain engineer. In
absence of any additional evidence to the contrary, we con-
cluded that the remaining 90 specifications, out of a total
of 323, were the mutants logically equivalent to the correct
seed specification with respect to the properties checked by
the verification tools.

Figure 8 shows that SPIN detected a superset of all prop-
erty violations detected by any tool. So why not just use
SPIN to verify SCR specifications? Firstly, only 205 incor-
rect models were identified by SPIN when it ran with the
default settings, which limit the depth of search to 10, 000
(see Section 3.7). 26 additional models were correctly de-
tected when a complete search was allowed. As expected,
the time and memory requirements of complete search can
surpass those needed for an optimized search by a factor
of a 100 or more. The cost of computational efficiency is
limited accuracy. Needless to say, the user does not know
when a complete search is needed instead of an optimized
one. Users could chose to run complete SPIN searches on
all 323 models. With some scripting, this conservative ap-
proach would require almost to a year of computing time on
the desktop used in this study. A better approach would be
to run a complete search only if the optimized one does not
return any property violations. Apparently, this approach
would save user more than 200 complete search runs of
SPIN. Whichever approach a user might chose, two faulty
specification models would still remain hidden, as they re-
quired human intervention in the automatically generated
Promela model (removing the d step marker).

As stated above, learning how to use SPIN effectively
was greatly enhanced by our choice to use Lurch, Salsa and
SMV. We were able to compare the results from these tools
with results from SPIN and eliminate false positive property
violations. In addition, our experiments indicated that Ca-

10

dence SMV and NuSMV required far less time and memory
than SPIN running on input models produced from the same
fault-seeded specification. Thus it would make sense to use
Salsa, Cadence SMV or NuSMV first. If we trusted the re-
sults from these tools, we could remove properties proved
true by these tools before running SPIN. In our experiments,
doing so reduced SPIN’s time and memory requirements
by approximately half. However, given our findings, un-
less the system verification engineer is truly an expert with
abundance of experience, we would not recommend prop-
erty elimination as potentially fatal modeling faults may be
discovered by an ensemble of verification tools, rather than
individual ones.

6. Summary
In this paper, we argue that the interaction between dif-

ferent software and system verification tools can be more
informative than the information from each tool, used in
isolation. Data and tool diversity have proven to be viable
methods for achieving dependability. Our work demon-
strates that tool diversity is valuable when it comes to sys-
tem verification too.

We experimented with an SCR specification model ver-
ified by 4 alternative freely available verification tools:
Lurch, Salsa, (Nu)SMV, and SPIN. In spite of decades of
research, formal system modeling frameworks which allow
users to easily utilize these tools are rare. We relied on
SCR toolset and its translators from SCR tabular notation
to other modeling languages. We applaud its developers
for providing automated translators for many verification
tools. It would be easy to blame most of the verification
result discrepancies on the immaturity of SCR’s translation
utilities. But our opinion is just the opposite: SCR’s open
design allows ensemble verification in practice. Therefore,
even if its translators are imperfect, the ability to cross com-
pare verification results inspires confidence in the achieved
level of system assurance. For us, it was surprisingly sim-
ple to study these different verification perspectives. Given
the well known difficulties in developing formal models and
selecting appropriate state invariants for verification, our re-
sults suggest that future formal modeling environments will
have to support translation to diverse back end verification
tools. While we cannot report any inconsistency related to
well known verification tools, we believe that their default
parameters which trade off correctness for performance are
potentially hazardous. Such assumptions must be disclosed
to the users of verification tools more effectively and the
default configuration of model checkers should be the com-
plete search.

References

[1] Requirements Specification for Personnel Access Control

System. National Security Agency, 2003.
[2] J. Andrews, L. Briand, Y. Labiche, and A. Namin. Using Mu-

tation Analysis for Assessing and Comparing Testing Cover-
age Criteria. IEEE Transactions on Software Engineering,
32(8), 2006.

[3] M. Archer, C. Heitmeyer, and E. Riccobene. Proving In-
variants of I/O Automata with TAME. Automated Software
Engineering, 9(3), 2002.

[4] R. Bharadwaj and S. Sims. Combining Constraint Solvers
with BDDs for Automatic Invariant Checking. In Proc. Tools
and Algorithms for the Construction and Analysis of Sys-
tems, 2000.

[5] A. Biere, A. Cimatti, E. Clarke, and Y. Zhu. Symbolic Model
Checking Without BDDs. Lecture Notes in Computer Sci-
ence, 1579, 1999.

[6] A. Cimatti, E. Clarke, E. Giunchiglia, F. Giunchiglia, M. Pi-
store, M. Roveri, R. Sebastiani, and A. Tacchella. NuSMV2:
An Open-Source Tool for Symbolic Model Checking. In
Proc. International Conference on Computer-Aided Verifica-
tion, 2004.

[7] E. Clarke, O. Grumberg, and D. Peled. Model Checking.
MIT Press, 1999.

[8] J. Cobleigh, L. Clarke, and L. Osterweil. The Right Algo-
rithm at the Right Time: Comparing Data Flow Analysis Al-
gorithms for Finite-State Verification. In Proc. International
Conference on Software Engineering, 2001.

[9] D. Desovski. A Component-Based Approach to Verification
and Validation of Formal Software Models. PhD thesis, West
Virginia University, 2006.

[10] C. Heitmeyer, M. Archer, R. Bharadwaj, and R. Jeffords.
Tools for Constructing Requirements Specifications: The
SCR Toolset at the Age of Ten. Computer Systems Science
and Engineering, 20(1), 2005.

[11] G. Holzmann. The Model Checker SPIN. IEEE Transactions
on Software Engineering, 23(5), 1997.

[12] G. Holzmann. The SPIN Model Checker. Addison-Wesley,
2003.

[13] G. Holzmann and R. Joshi. Model-Driven Software Veri-
fication. In Proc. International SPIN Workshop on Model
Checking of Software, 2004.

[14] K. McMillan. The SMV System, 2000. Available at www.
kenmcmil.com/tutorial.ps.

[15] T. Menzies, D. Owen, and B. Cukic. Saturation Effects in
Testing of Formal Models. In Proc. International Sympo-
sium on Software Reliability Engineering, 2002.

[16] A. Offutt, A. Lee, G. Rothermel, R. Untch, and C. Zapf. An
Experimental Determination of Sufficient Mutant Operators.
ACM Transactions of Software Engineering Methodology,
5(2), 1996.

[17] D. Owen, D. Desovski, and B. Cukic. Effectively Combin-
ing Software Verification Strategies: Understanding Differ-
ent Assumptions. In Proc. International Symposium on Soft-
ware Reliability Engineering, 2006.

[18] D. Owen and T. Menzies. Lurch: a Lightweight Alternative
to Model Checking. In Proc. International Conference of
Software Engineering and Knowledge Engineering, 2003.

[19] S. Sims, R. Cleaveland, K. Butts, and S. Ranville. Auto-
mated Validation of Software Models. In Proc. International
Conference on Automated Software Engineering, 2001.

[20] M. Smith. Verifying Autonomous Planning Systems. In
Proc. NASA Software Assurance Symposium, 2006.

11

