
JOURNAL SUBMISSION 1

Automatic Estimation Techniques are Useful?
Tim Menzies, Member, IEEE, Omid Jalali, Jairus Hihn, Dan Baker, and Karen Lum

Abstract

Best practices for software effort estimation can include the use of automatic techniques to summarize past
data. There exists a large and growing number of techniques. Which are useful? In this study, 158 techniques were
applied to some COCOMO data. 154

158 = 97% of the variants explored below add little or nothing to a standard
linear model (with simple column and row pruning). For example, learners that assume multiple linear models
(such as model trees) or no parametric form at all (such as nearest neighbor estimation) perform relatively poorly.
Also, elaborate searches did not add value to effort estimation. Exponential time searching for the best subsets of
the columns performed no better than near-linear-time column pruning. It is possible that other techniques, not
included in the 158 techniques studied here, might perform better. However, based on current evidence, this study
concludes that when technique learners are used for effort estimation, a linear model with simple column and row
pruning will suffice (at least, for COCOMO-style data).

Index Terms

COCOMO, effort estimation, data mining, evaluation

I. INTRODUCTION

Effort estimation is a complex task requiring careful reflection of by skilled personnel over project
details. Automatic learning techniques can usefully augment (but not replace) that reflection process. Best
practices for expert-based and model-based estimation are listed in Figure 1. In expert-based estimation,
humans generate estimates using a variety of techniques. In model-based approaches, some technique
summarizes the past to build a predictive model for current data. Note that some of the automatic model-
based techniques offer much support for several of the expert-based best practices:

#4: Some of the irrelevant and unreliable information can be identified and ignored using row and
column pruning.

#5: Data from previous development tasks can be converted into predictive models.
#7: Multiple estimates for parts or all of a project can be automatically and quickly generated.

#10: The uncertainty of an estimate can be checked by running the learners multiple times on subsets of
the past data.

#11: Estimation accuracy can be assessed by reporting the median estimation accuracies across the subset
studies.

Five years ago, we began with the following question: can the new generation of learners (e.g., model trees)
offer better support for tasks #4,#5,#7,#10,#11) than traditional techniques (e.g., simple linear regression)?
There are many such learners. New open source data mining toolkits, such as the R project,1 Orange,2

and the WEKA [1] are appearing with increasing frequency.

Tim Menzies, Omid Jalali, and Dan Baker are with the Lane Department of Computer Science and Electrical Engineering, West Virginia
University, USA: tim@menzies.us, ojalali@mix.wvu.edu, danielryanbaker@gmail.com.

Jairus Hihn and Karen Lum at with NASA’s Jet Propulsion Laboratory: jhihn@mail3.jpl.nasa.gov, karen.t.lum@jpl.nasa.
gov.

The research described in this paper was carried out at West Virginia University and the Jet Propulsion Laboratory, California Institute
of Technology, under a contract with the US National Aeronautics and Space Administration. Reference herein to any specific commercial
product, process, or service by trade name, trademark, manufacturer, or otherwise does not constitute or imply its endorsement by the US
Government.

1http://www.r-project.org/
2http://www.ailab.si/orange/

JOURNAL SUBMISSION 2

According to Jorgensen [4], expert-based best practices include:
1. Evaluating estimation accuracy, but avoiding high evalua-

tion pressure;
2. Avoiding conflicting estimation goals;
3. Asking the estimators to justify and criticize their estimates;
4. Avoiding irrelevant and unreliable estimation information;
5. Using documented data from previous development tasks;
6. Finding estimation experts with relevant domain back-

ground;
7. Estimating top-down and bottom-up, independently of each

other;
8. Using estimation checklists;
9. Combining estimates from different experts and estimation

strategies.
10. Assessing the uncertainty of the estimate;
11. Providing feedback on estimation accuracy; and
12. Providing estimation training opportunities.

According to Boehm([2], [5]), Chulani([6], [7]), Kemerer [8],
Stutzke [9], Shepperd [10], our own work([11], [12], [13]),
and a recent tutorial at the 2006 International Conference of the
International Society of Parametric Analysts [14], best practices
for model-based estimation include at least the following:

13. Reuse regression parameters learned from prior projects on
new projects;

14. Log-transforms on costing data before performing linear
regression to learn log-linear effort models;

15. Model-tree learning to generate models for non-linear re-
lationships;

16. Stratification, (i.e., given a database of past projects), and
a current project to be estimated just learn models from
those records from similar projects;

17. Local calibration, (i.e., tune a general model to the local
data via a small number of special tuning parameters);

18. Hold-out experiments for testing the learned effort
model [11];

19. Assessment of effort model uncertainty via the performance
deviations seen during the hold-out experiments of item
#17; and

20. Variable subset selection techniques for minimizing the size
of the learned effort model([12], [13], [15], [16]).

Fig. 1. Categories of effort estimation best practices: expert-based (at top); model-based (in the middle); techniques that combine expert
and model-based (at bottom).

In our experience, recorded in this paper, is that many complex variants of data mining for effort
estimation add little value over a very small number of very simple techniques. To justify this conclusion,
we report here a large experiment with COCOMO data([2], [3]). After much experimentation, we found
that of all the 158 variants we explored, a single linear model (with two simple extensions for column
and row pruning) performed as well as or better than anything else. For example, learners that assume
multiple linear models (such as model trees [17]) or no parametric form at all (such as nearest neighbor
estimation [10]) perform relatively poorly. Also, elaborate searches did not add value to effort estimation.
Exponential time searching for the best subsets of the columns performed no better than near-linear-time
column pruning.

Our result should be welcomed news to software engineers:
• Engineers have a duty to apply accepted best practices to their tasks. With so many learning techniques

readily available, software engineers might be concerned that they are generating effort estimates using
less-than-best techniques.

JOURNAL SUBMISSION 3

• Our results suggest that they need not explore a very wide range of effort estimation techniques. At
least for COCOMO-style data, nearly all the variants explored below add little or nothing to a linear
model (with simple column and row pruning).

We focus here on COCOMO-style data for three reasons:
• In our work with United States government contractors, we are aware of numerous organizations that

use COCOMO data for justifiying their effort estimates for government work.
• Unlike other effort estimators, such as PRICE-S [18], SEER-SEM [19], and SLIM [20], COCOMO

is in the public domain, with published data and baseline results [7].
• All of the information we could access was in the COCOMO-I format [2].

Researchers or vendors of commercial effort estimation tools might be less sanguine about our results:
• Researchers should take great care when claiming that one particular technique is “the best.” Au-

tomatic effort estimates have a large variance in their predictions (see our results, below). Some
supposedly better technique might appear better simply due to experimental noise. It is, therefore,
vital to survey a very large number of techniques since, at least in this study, only a small minority
of techniques (154

158
= 97%).

• In this paper, very simple extensions to decades-old techniques out-performed 97% of all other
techniques studied here. If those percentages carry over to other effort estimation studies, then there
may be little empirical justification for elaborate commercial effort estimation tools such as PRICE-
S [18], SEER-SEM [19], or SLIM [20].

In all, this paper makes five contributions:
1) Simplifying the task of a commercial software engineer applying automatic learners to effort es-

timation: for COCOMO-style data, just use a linear model and perhaps some simple column/row
pruning.

2) Documenting a baseline result: many automatic techniques add little or no value.
3) Defining a challenge problem: finding better automatic effort estimation tools.
4) Explaining why prior studies have not discovered demonstrably better techniques for effort estima-

tion: see the discussion, below.
5) Offering a cautionary tale to researchers exploring automatic techniques for effort estimation:

• Many techniques add little or no value to effort estimation.
• No single technique is always “best.”
• A small minority of simple techniques may be better than anything else.
• Hence, in the future, it is insufficient to report results from a study of a handful of techniques.

Rather, publications should compare their proposed technique to a large number of alternatives.
The rest of this paper is structured as follows. After some preliminary notes on generality, terminology,
and techniques, we describe the data, techniques, and experimental procedure used in this study. This
is followed by results and discussion sections, some comments on the external validity of this work,
conclusions, and future work.

II. BACKGROUND

A. Preliminaries
Our experiments are based around COCOMO-I data from Boehm’s standard text [2] and a subsequent

NASA study. Some of this data is quite old, dating back to the 1980s. If we were proposing a specific
relationship between, say, 21st-century analyst capability and development effort, then we could not do so
from such old data. However, that is not the goal of this paper. Our task is to assess N techniques using
some publically available data, and for that task, our data sets will suffice. Future work should repeat this
study on other, more recent, data sets.

Note that we make no claim that these our findings necessarily hold over all learning techniques.
Indeed, such a “try everything” approach may be fundamentally impossible. Learners can be stacked by

JOURNAL SUBMISSION 4

meta-learning schemes where the conclusions of one data miner influences the next. There exists one
stacking for every ordering of N learners; so, five learners can be stacked 5! = 120 ways, and ten learners
can be stacked in millions of different ways.

Nor do we claim that our results necessarily hold beyond parametric COCOMO-style effort estimation.
Parametric estimation assumes that the effort conforms to some pre-determined analytical form (e.g., a
single linear relationship). COCOMO-style estimation requires that domain information be encoded using
a fixed set of features such as programmer capability and software process complexity. Other estimation
techniques, such as case-based reasoning (CBR) ([21], [22]) allow for arbitrary domain information and
do not assume any parametric form. Many estimation techniques such as the expert-based estimation
techniques surveyed by Jorgensen [4] (and summarized in Figure 1) do not even use models.

That is, it is theoretically possible that some other estimation technique will refute our result. Such a
theoretical possibility is not realized until it is obseved experimentally. Our task here is to record that
it is surprisingly hard to find new kinds of superior effort estimation techniques. This result, based on
public-domain data, is a repeatable baseline experiment. This paper is a success if other researchers refute
our findings and demonstrate the superiority of other techniques not explored here.

B. Terminology
1) Variables, Parameters, Factors, or Features: In this study, data from P projects is stored as rows

in a table. The columns of that table offer details on that data. Columns have various names including
”variables,” ”parameters,” ”factors,” or ”features.”

This paper uses the term “features” since that is consistent with the technical term used by the machine
learning community for column pruning (i.e., feature subset selection [23]).

C. Methods, Models, or Techniques
To simplify our discussion, we elect to call the 158 variants “techniques.” These 158 variants were

implemented using our COSEEKMO toolkit [24], which currently supports 15 learners and 8 row and
column pre-processors which can be applied to two different sets of internal tuning parameters.

In one view, this combination of (15 + 8 ∗ 8) ∗ 2 = 158 different estimation generation techniques does
not comprise different learning “methods”. Rather it might be more accurate to call them “instances of
methods.”

Nevertheless, to any business user of our tools, our menagerie of estimation software contains 158
techniques that may yield different effort estimates. Hence, the merits of each technique much be stud-
ied separately. That is, our experiments compare 158 competing techniques that must be assessed and
(hopefully) pruned to a more management size.

III. TECHNIQUES

The following experiments explore numerous techniques from our COSEEKMO effort estimation
workbench [24]. For space reasons, we do not describe them all. Also, such an exposition would be
superfluous since, as shown below, most are demonstrably inferior to a small set of four techniques.

Therefore the following notes are selective and include the four techniques that we found to be “best,” the
one that performed worst, and other techniques that comment on premises of some prior publications [13].
For more details on the techniques discussed here, see the appendix or some recent survey papers([21],
[25]).

Also, before exploring the techniques in detail, we offer some elaboration on the expert/model-based
estimation techniques discussed above.

JOURNAL SUBMISSION 5

upper: acap: analysts capability
increase pcap: programmers capability
these to aexp: application experience
decrease modp: modern programming practices
effort tool: use of software tools

vexp: virtual machine experience
lexp: language experience

middle sced: schedule constraint
lower: data: database size
increase turn: turnaround time
these to virt: machine volatility
increase stor: main memory constraint
effort time: time constraint for CPU

rely: required software reliability
cplx: process complexity

Fig. 2. The fi features used in this study. From [2]. Most range from 1 to 6, representing “very low” to “extremely high.”

A. Expert- and Model-based Estimation
Figure 1 divided effort estimation into expert- and model- based techniques. This separation is not a

strict division since some practices fall into both categories: e.g., #4 and #20 are similar, as are #10 and
#19. Also, some research actively tries to combine the two approaches:

• Shepperd’s CBR tools [10] explore algorithmic techniques for emulating expert analogical reasoning.
• Chulani and Boehm’s Bayesian tuning technique [7] for regression models allows an algorithm to

carefully combine expert judgment with the available data.
• Elsewhere, we have argued for the use of heuristic rejection rules to represent expert intuitions on

how to rank different effort models [26].
As mentioned in the introduction, one way to view model-based techniques is that they seek algorithms

that offer maximal support for:
• Ignoring irrelevancies (#4).
• Learning from past data (#5).
• Quickly generating multiple estimates (#7).
• Assessing estimate uncertainty (#10).
• Commenting on estimation accuracy (#11).

B. Regression-based Techniques (and COCOMO)
The COCOMO effort estimation model([2], [3]) is widely used by, among others, NASA and American

software companies working NASA subcontracts. Unlike other effort estimators, such as PRICE-S [18],
SEER-SEM [19], or SLIM [20], COCOMO is in the public domain with published data and baseline
results [7]. COCOMO-I, defined in 1981 [2], contains 15 parameters, plus lines of code, and COCOMO-
II, defined in 2000 [3] ,contains several more. Our work focuses on COCOMO-I since there exists nearly
100 public-domain examples of prior projects in the COCOMO-I format3 but none in the COCOMO-II
format.4

COCOMO is based on linear regression, which assumes that the data can be approximated by one
linear model that includes lines of code (KLOC) and other features (f) seen in a software development
project:

effort = β0 +
∑

i

βi · fi

Linear regression adjusts βi to minimize the prediction error (predicted minus actual values for the project).

3http://promisedata.org/?s=nasa93
4At the 2005 COCOMO forum, there were discussions about relaxing the access restrictions on the nearly 200 examples used to build

the COCOMO-II model. To date, those discussions have not progressed.

JOURNAL SUBMISSION 6

1 2 3 4 5 6
upper ACAP 1.46 1.19 1.00 0.86 0.71
(increase PCAP 1.42 1.17 1.00 0.86 0.70
these to AEXP 1.29 1.13 1.00 0.91 0.82
decrease MODP 1.2 1.10 1.00 0.91 0.82
effort) TOOL 1.24 1.10 1.00 0.91 0.83

VEXP 1.21 1.10 1.00 0.90
LEXP 1.14 1.07 1.00 0.95

middle SCED 1.23 1.08 1.00 1.04 1.10
lower DATA 0.94 1.00 1.08 1.16
(increase TURN 0.87 1.00 1.07 1.15
these to VIRT 0.87 1.00 1.15 1.30
increase STOR 1.00 1.06 1.21 1.56
effort) TIME 1.00 1.11 1.30 1.66

RELY 0.75 0.88 1.00 1.15 1.40
CPLX 0.70 0.85 1.00 1.15 1.30 1.65

Fig. 3. The COCOMO-I βi table [2]. For example, the bottom-right cell is saying that if CPLX = 6, then the nominal effort is multiplied
by 1.65.

After much research, Boehm advocated the COCOMO-I features shown in Figure 2. He also argued
that effort is exponential on KLOC [2]:

effort = a ·KLOCb ·
∏
i

βi (1)

where a and b are domain-specific constants and βi comes from looking up fi values in Figure 3. When βi

is used in the above equation, it yields estimates in months where one month is 152 hours (and includes
development and management hours).

Exponential functions like Equation 1 can be learned via linear regression after a conversion to a linear
form:

log(effort) = log(a) + b·log(KLOC) +
∑

i

log(βi) (2)

Most of our techniques transform the data in this way so that when collecting performance statistics, the
estimates must be unlogged.

Local calibration (LC) is a specialized form of linear regression developed by Boehm [2, p526-529]
that assumes effort is modeled via the linear-form Equation 2. Linear regression would try to adjust all
of the βi values. This is not practical when training on a very small number of projects. Hence, LC fixes
the βi values while adjusting the < a, b > values to minimize the prediction error. We shall refer to
LC as “standard practice” since, in the COCOMO community at least, it is the preferred technique for
calibrating standard COCOMO data [5].

C. Case-Based-Reasoning
COCOMO’s features are both the strongest and weakest part of the technique. On the one hand, they

have been selected and tested by a large community of academic and industrial researchers led by Boehm.
This group meets annually at the COCOMO forums (large meetings that have been held annually since
1985). On the other hand, these features may not be available in the databases of a local site. Hence,
regardless of the potential value added of using a well-researched feature set, those features may not be
available.

An alternative to COCOMO is the CBR approach used by Shepperd [21] and others [22]. CBR accepts
data with any set of features. Often, CBR uses a nearest neighbor technique to make predictions using
past data that is similar to a new situation. Some distance measure is used to find the k nearest older
projects to each project in the Test set. An effort estimate can be generated from the mean effort of the
k nearest neighbors (for details on finding k, see below).

The benefit of nearest neighbor algorithms is that they make the fewest domain assumptions. That is,
they can process a broader range of the data available within projects. This is not true for other techniques:

JOURNAL SUBMISSION 7

• Local calibration cannot be applied unless projects are described using the COCOMO ontology
(Figure 2).

• Linear regression is best applied to data where most of the values for the numeric factors are known.
This is not true for other techniques where most of the values for the numeric factors are known.

The drawback of nearest neighbor algorithms is that, sometimes, they can ignore important domain
assumptions. For example, if effort is really exponential on KLOC, a standard nearest neighbor algorithm
has no way to exploit that.

D. Row and Column Pruning
The genesis of this paper was two observations relating to work of Shepperd and Kadoda [27]. We

speculated that more extensive row and column pruning might change the results of that paper.
Shepperd and Kadida compared the effort models learned from a variant of regression, rule induction,

CBR, and neural networks. Their results exhibited much conclusion instability. In their study, no single
technique was demonstrably “best” since the empirical results differed markedly across different data
sets and subsets. However, they found weak evidence that two techniques were generally inferior (rule
induction and neural nets) [27, p1020].

Our data sets are expressed in terms of the COCOMO features [2]. These features were selected by
Boehm (a widely cited researcher with much industrial experience; e.g., see [28]) and subsequently tested
by a large research and industrial community (since 1985, the annual COCOMO forum has met to debate
and review the value of those features). Perhaps, we speculated, conclusion instability might be tamed by
the use of better features.

Also, there is an interesting quirk in Shepperd and Kadoda’s experimental results. Estimation techniques
can prune tables of training data:

• CBR prunes away irrelevant rows.
• Stepwise regression prunes away columns that add little information to the regression equation.
• Shepperd and Kadoda’s rule induction and neural net instantiations have no row or column pruning.

Note that the two techniques found to be “worst” by Shepperd and Kadoda had no row or column
pruning techniques. Pruning data can be useful to remove outliers or “noise” information (spurious signals
unconnected to the target variable). One symptom of outliers and noise is conclusion instability across
different data sets and different random samplings. Hence, we wondered if conclusion instability could
be tamed via the application of more elaborate row and column pruners.

Pruning can be useful since project data collected in one context may not be relevant in another.
Kitchenham et al. [29] take great care to document this effect. In a systematic review comparing estimates
generated using historical data within the same company or imported from another, Kitchenham et al.
found no case where it was better to use data from other sites. Indeed, sometimes importing such data
yielded significantly worse estimates. Similar projects have less variation and so can be easier to calibrate:
Chulani et al. [7] and Shepperd and Schofield [10] report that row pruning improves estimation accuracy.

Given a table P ∗ F containing one row for P projects described using F features, row and column
pruning eliminates irrelevant projects and features. After pruning, the learner executes on a new table
P ′ ∗ F ′ where P ′ ⊆ P and F ′ ⊆ F .

Row pruning can be manual or automatic. In manual row pruning (also called “stratification” in the
COCOMO literature [5]), an analyst applies his or her domain knowledge to select project data that is
similar to the new project to be estimated. Every other technique explored in this study is fully automatic.
Such automation enables an exploration of a broad range of options.

Instead, in the sequel, we compare the results from using source subsets to using all the data from one
source. Recall that our data sets come from two sources: Boehm’s COCOMO text [2] and some more-
recent NASA data. Those sources can be divided into various data sets representing data from different
companies, or different project types. The minimum size of a subset is 20 instances, while a source may
contain 93 rows (NASA93) or 63 rows (COC81).

JOURNAL SUBMISSION 8

ca
te

go
ry

-m
is

si
on

pl
an

ni
ng

ce
nt

er
-2

ye
ar

-1
97

5

m
od

e-
em

be
dd

ed

ce
nt

er
-5

pr
oj

ec
t-

gr
o

fg
-g

pr
oj

ec
t-

X

al
l

m
od

e-
se

m
id

et
ac

he
d

ca
te

go
ry

-a
vi

on
ic

sm
on

ito
ri

ng

year-1980 15 / 43 13 / 62 0 / 75 9 / 50 14 / 63 9 / 52 31 / 87 13 / 63 38 / 93 27 / 80 5 / 63
category-missionplanning 1 / 56 3 / 54 2 / 39 7 / 52 1 / 42 20 / 80 7 / 51 20 / 93 18 / 71 0 / 50

center-2 10 / 64 5 / 53 0 / 76 23 / 37 32 / 85 0 / 75 37 / 93 32 / 74 13 / 54
year-1975 12 / 46 23 / 53 0 / 60 31 / 86 23 / 52 37 / 93 25 / 81 20 / 47

mode-embedded 13 / 47 3 / 41 8 / 93 12 / 47 21 / 93 0 / 90 3 / 48
center-5 0 / 62 33 / 86 38 / 39 39 / 93 23 / 85 17 / 52

project-gro 20 / 83 0 / 61 23 / 93 20 / 72 4 / 49
fg-g 33 / 85 80 / 93 69 / 80 30 / 80

project-X 38 / 93 23 / 84 17 / 51
all 69 / 93 30 / 93

mode-semidetached 24 / 75
category-avionicsmonitoring

Fig. 4. NASA93: intersection / union of examples in different data sets.

m
od

e-
e

la
ng

-f
tn

ki
nd

-m
in

la
ng

-m
ol

ki
nd

-m
ax

m
od

e-
or

g

all 28 / 63 24 / 63 21 / 63 20 / 63 31 / 63 23 / 63
mode-e 7 / 45 16 / 33 13 / 35 10 / 49 0 / 51
lang-ftn 6 / 39 0 / 44 16 / 39 12 / 35

kind-min 14 / 27 0 / 52 4 / 40
lang-mol 2 / 49 4 / 39
kind-max 15 / 39

Fig. 5. COC81: intersection/union of examples in different data sets.

Automatic row pruning uses algorithmic techniques to select a subset of the projects (rows). NEAREST
and LOCOMO [30] are automatic and use nearest neighbor techniques on the Train set to find the k
most relevant projects to generate predictions for the projects in the Test set. The core of both automatic
algorithms is a distance measure that must compare all pairs of projects. Hence, these automatic techniques
take time O(P 2). Both NEAREST and LOCOMO learn an appropriate k from the Train set, and the
k with the lowest error is used when processing the Test set. NEAREST averages the effort associated
with the k nearest neighbors, while LOCOMO passes the k nearest neighbors to Boehm’s LC technique.

Column pruners fall into two groups:
• COCOMIN [31] is a near-linear-time pre-processor that selects the features on some heuristic criteria

and does not explore all subsets of the features. It runs in O(F ·log(F)) for the sort and O(F) time
for the exploration of selected features.

• WRAPPER and LOCALW are much slower search algorithms that explore subsets of the features in
no set order. In the worst case, this search is an exhaustive examination of all combinations; that is,
this search takes time O(2F).

For more information on these pruning methods, see the appendix.

IV. EXPERIMENTS

A. Data
This paper is based on 19 data sets from two sources:

COC81: 63 records in the COCOMO-I format. Source: [2, p496-497]. Download from http://promisedata.
org/?s=coc81.

JOURNAL SUBMISSION 9

NASA93: 93 NASA records in the COCOMO-I format. Download from http://promisedata.org/
?s=nasa93.

The data sets represent different subsets of the data (for example, just the ground systems, just the
systems that use FORTRAN, etc.) Taken together, these two sets are the largest COCOMO-style data
source in the public domain (for reasons of corporate confidentiality, access to Boehm’s COCOMO-
II data set is highly restricted). NASA93 was originally collected to create a NASA-tuned version of
COCOMO, funded by the Space Station Freedom Program, and contains data from six NASA centers,
including the Jet Propulsion Laboratory. For more details on this data set, see [26].

Different subsets and number of subsets used (in parentheses) are:
All(2): Selects all records from a particular source.
Category(2):NASA93 designation selecting the type of project; (e.g., avionics).
Center(2): NASA93 designation selecting records relating to where the software was built.
Fg(1): NASA93 designation selecting either f (flight) or g (ground) software.
Kind(2): COC81 designation selecting records relating to the development platform; (e.g., max is

mainframe).
Lang(2): COC81 designation selecting records about different development languages; (e.g, ftn is

FORTRAN).
Mode(4): designation selecting records relating to the COCOMO-I development mode: either semi-

detached, embedded, and organic.
Project(2): NASA93 designation selecting records relating to the name of the project.
Year(2): A NASA93 term that selects the development years, grouped into units of five (e.g., 1970,

1971, 1972, 1973, and 1974 are labeled “1970”).
There are more than 19 data sets overall. Some have fewer than 20 projects and ,hence, were not used.
The justification for using 20 projects or more is offered in [26].

As shown in Figure 4 and Figure 5, there is some overlap between these subsets:
• Occasionally this overlap is quite large (e.g., the 80 records shared by NASA93 “all” and the ground

systems labeled “fg-g”).
• However, in the usual case, the overlap is less than a third (for COC81) and a quarter (for NASA93)

of the number of examples found in the union of both subsets.
• Also, sometimes it is zero; for example, NASA93’s mission planning systems have zero overlap

with avionics monitoring.
In the study reported below, it will be shown that for this data, a single linear model (augmented,

possibly, with simple row and column pruning) does as well as or better than many other techniques. It
might be argued that such a conclusion is an artifact of our data: that is, since COCOMO assumes a linear
model, then it is hardly surprising that the “best” techniques found by this study also favor linear models.
Such an argument is incorrect. It is true that the collection process that generated our data assumed the
COCOMO ontology (i.e., it asked only about acap, pcap, etc.). However, that collection process did not
assume an underlying linear model. When this data was collected, domain experts were queried about
aspects of their projects and not about the number relationship between, for example, acap and software
development effort.

B. Experimental Procedure
Each of the 19 subsets of COC81 and NASA93 were expressed as a table of data P ∗ F . The table

stored project information in P rows, and each row included the actual development effort. In the subsets
of COC81 and NASA93 used in the study, 20 ≤ P ≤ 93. The upper bound of this range (P = 93) is the
largest data set’s size. The lower bound of this range (P = 20) was selected based on a prior study [26].

The table also has F columns containing the project features {f1, f2, ...}. The features used in this
study come from Boehm’s COCOMO-I work and include items such as lines of code (KLOC), schedule
pressure (sced), and analyst capability (acap).

JOURNAL SUBMISSION 10

technique = name row pruning column pruning learner
a = LC 8 8 LC = Boehm’s local

calibration
b = COCOMIN + LC 8 4automatic O(P 2) local calibration
c = COCOMIN + LOCOMO + LC 4automatic O(P 2) 4automatic O(F ·log(F) + F) local calibration
d = LOCOMO + LC 4automatic O(F ·log(F) + F) 8 local calibration
e = ALL + LC 8 8 local calibration on

all the data from one
source

f = M5pW + M5p 8 4Kohavi’s WRAPPER [32] calling M5p [33], O(2F) model trees
g = LOCALW + LC 8 4Chen’s WRAPPER [26] calling LC, O(2F) local calibration
h = LsrW + LSR 8 4Kohavi’s WRAPPER [32] calling LSR, O(2F) linear regression
i = NEAREST 4automatic O(P 2) 8 mean effort of nearest

neighbors

Fig. 6. Nine effort estimation techniques explored in this paper. F is the number of features (columns), and P is the number of projects
(rows).

To build an effort model, table rows were divided at random into a Train and Test set (and |Train|+
|Test| = P). COSEEKMO’s techniques were then applied to the Train set to generate a model, which
was then used on the Test set. In order to compare this study with our work [26], we used the same
Test set size as the COSEEKMO study (i.e., |Test| = 10).

Effort models were assessed via three evaluation criteria:
• AR: absolute residual; abs(actual − predicted).
• MRE: magnitude of relative error; abs(predicted−actual)

actual
.

• MER: magnitude of error relative to estimate; abs(actual−predicted)
predicted

.
For the sake of statistical validity, the above procedure was repeated 20 times for each of the 19 data

sets of COC81 and NASA93. Each time, a different seed was used to generate the Train and Test sets.
Techniques’ performance scores were assessed using performance ranks rather than exact values. To

illustrate the process of replacing exact values with ranks, consider the following example. If treatment
A generates N1 = 5 values {5, 7, 2, 0, 4} and treatment B generates N2 = 6 values {4, 8, 2, 3, 6, 7},
then these values sort as follows:

Samples A A B B A B A B A B B
Values 0 2 2 3 4 4 5 6 7 7 8

Once ranked, averages are used when values are the same:
Samples A A B B A B A B A B B
Values 0 2 2 3 4 4 5 6 7 7 8
Ranks 1 2.5 2.5 4 5.5 5.5 7 8 9.5 9.5 11

Note that, when ranked in this manner, the largest value (8 in this case) gets the same rank even if it
was ten to 100 times larger. That is, such rank tests are less susceptible to large outliers. This is very
important for experiments with effort estimation. In our experiments, we can build thousands to tens of
thousands of estimators that exhibit infrequent, but very large outliers. For example, the relative error of
an estimate is RE = predicted−actual

actual
. In our work, we have seen data sets generate RE% below 100, then

suddenly spike in one instance to over 8000%.
After ranking the performance scores, we applied the Mann-Whitney U test [34]:
• Non-paired tests compare the performance of populations of treatments, while paired tests compare

performance deltas of two techniques running on exactly the same train or test data. Since we are
using row and column pruning, paired tests are inappropriate: the underlying data distributions in the
train test can vary widely when, for example, a technique that does use row or column pruning is
compared to one that does not.

• Mann-Whitney supports very succinct summaries of the results without intricate post-processing. This
is a very important requirement for our work since we are comparing 158 techniques. Mann-Whitney

JOURNAL SUBMISSION 11

does not require that the sample sizes are the same. So, in a single U test, learner L1 can be compared
to all its rivals.

Mann-Whitney can be used to report a “win,” “loss,” or “tie” for all pairs of techniques Li, Lj, i 6= j:
• “Tie”: The ranks are statistically the same.
• “Win”: Not a tie and the median rank of one technique has a lower error than the other.
• “Loss”: Not a tie, and the opposite of a win.

Given L learning techniques, tie+win+ loss for any one technique is L−1. When discussing discarding
a technique, an insightful metric is the number of losses. If this is non-zero, then there is a case for
discarding that technique.

In summary, our experimental procedure is 20 repetitions of the following:
• Dividing some subset into Train and Test sets. Note that in the special case of technique e, the

“subset” was all the data from one source.
• Learning an effort model from the Train set using COSEEKMO’s 158 techniques.
• Applying that model to the Test set.
• Collecting performance statistics from the Test set using AR, MER, or MRE.
• Reporting the number of times a technique loses, where “loss” is determined by a Mann-Whitney U

test (95% confidence).

C. 158 Techniques
COSEEKMO’s 158 techniques combine:
• Some learners, such as standard linear regression, local calibration, and model trees.
• Various pre-processors that may prune rows or columns.
• Various nearest neighbor algorithms that can be used either as learners or as pre-processors to other

learners.
Note that only some of the learners use pre-processors. In all, COSEEKMO’s techniques combine 15
learners without a pre-processor and 8 learners with 8 pre-processors (i.e., 15 + 8 ∗ 8 = 79 combinations
in total).

COSEEKMO’s techniques input project features described using the symbolic range very low to extra
high. Some of the techniques map the symbolic range to numerics 1 through 6. Other techniques map
the symbolic range into a set of effort multipliers and scale factors developed by Boehm (see Figure 3).
Previously, we have queried the utility of these effort multipliers and scale factors [26]. COSEEKMO,
hence, executes its 79 techniques twice: once using Boehm’s values, then again using perturbations of
those values. So, in all, COSEEKMO contains 2 ∗ 79 = 158 techniques.

There is insufficient space in this paper to describe the 158 techniques (for full details, see [30]). Such
a complete description would be pointless since, as shown below, most of them are beaten by a very small
number of techniques that consistently outperform them. For example, our previous concerns regarding
the effort multipliers and scale factors proved unfounded (and so at least half the runtime of COSEEKMO
is wasted).

D. Brief Notes on Nine Techniques
This paper focuses on the nine techniques (a, b, c, d, e, f, g, h, i) of Figure 6. Four of these (a, b, c, d) are

our best performing techniques, while the other four comment on premises of some prior publications [13].
Each technique may use a column or row pruner or, as with a and e, no pruning at all.

One way to categorize Figure 6 is by the technique’s relationship to accepted practice, as defined in
the COCOMO texts([2], [5]). Technique a is endorsed as best practice in the COCOMO community.
The others are our attempts to do better than current established practice using , for example, intricate
learning schemes or intelligent data pre-processors.

JOURNAL SUBMISSION 12

Technique e refers to an assumption we have explored previously [35], namely, is there some minimal
subset of data required to generate adequate effort estimates? Technique e uses all possible data from
one source and ignores any knowledge of the form “this is a ground system, so we should only train our
effort estimator using ground system data.”

Technique f is an example of a more intricate learning scheme. Standard linear regression assumes that
the data can be fitted to a single model. Instead of fitting the data to one linear model, model trees learn
multiple linear models and a decision tree that decides which linear model to use. Model trees are useful
when the projects form regions, and different models are appropriate for different regions. COSEEKMO
includes the M5p model tree learner defined by Quinlan [33].

In techniques f and h, the notations M5pW and LsrW denote a WRAPPER that uses M5p or LSR as
its target learner (respectively).

Technique g refers to a technique that we argued for in a previous publication [26].
Technique i generates estimates by averaging the effort seen in the nearest neighbors to each test

instance. Shepperd and Schofield [10] proposed this kind of reasoning for effort estimation from “sparse”
data sets. 5 Note that this kind of reasoning does not use Boehm’s assumptions about the parametric nature
of the relationship between COCOMO attributes and the effort estimate.

V. RESULTS

Figures 7, 8, and 9 show results from our experimental procedure. Each mark on these plots shows the
number of times a technique loses in seven COC81 subsets (left plots) and twelve NASA93 subsets
(right plots). The x-axis shows results from the techniques (a, b, c, d, e, f, g, h, i) described in Figure 6.

In these plots, techniques that generate lower losses are better. For example, the top-left plot of Figure 9
shows results for ranking techniques applied to COC81 using AR. In that plot, all of techniques (a, d)
results from the seven COCO81 subsets can be seen at y = losses ≈ 0 [XXXXX - please clarify]. That
is, in that plot, these two techniques never lose against the other 158 techniques.

In these results, conclusion instability due to changing evaluation criteria can be detected by comparing
results across Figures 7, 8, and 9. Also, conclusion instability due to changing subsets can be detected
by comparing results across different subsets - either across the two sources, COC81 and NASA93, or
across their subsets selected during cross validation. In order to make this test more thorough, we also
conducted the study using different random seeds controlling Train and Test set generation (i.e., the
three runs of Figure 9 that used different random seeds).

For most techniques, there is much conclusion instability in the results. No single technique was ever
“best” across all of Figures 7, 8, and 9. Some techniques exhibited a very wide range of behavior. For
example, consider the results for technique h (LsrW+LSR) in the right-hand plot of Figure 7. In one
subset, it loses less than ten times out of 158. In other subsets, it losses up to nearly 100 times out of
158.

Nevertheless, while the merits of some techniques differ widely across different data subsets and
evaluation criteria, a small minority of the techniques exhibit stable behavior. Specifically, the results
from a, b, c, and d fall very close to y = 0 losses across all of Figures 7, 8, and 9. The significance of
this result is discussed below.

There are some instabilities in our results. For example, the exemplary performance of techniques a
and d in the top-left plot of Figure 9 does not repeat in other plots. For instance, in the NASA93 MRE
and MER results shown in Figure 7 and Figure 8, technique b loses much less than methods a and d.

However, in terms of number of losses generated by methods a through i, the following two results
hold across all evaluation criteria, and all subsets, and all seeds:

1) One member of techniques a through d always performs better (loses less) than all members of
techniques e through h. Also, all members of techniques (e, f, g, h) perform better than i.

5A table of data is “sparse” if many of its cells are empty. All our COCOMO data is non-sparse.

JOURNAL SUBMISSION 13

 150

 100

 50

 0
ihgfedcba

COC81 MRE Losses

 150

 100

 50

 0
ihgfedcba

NASA93 MRE Losses

Fig. 7. MRE results. Mann-Whitey (95% confidence). These plots show number of losses of techniques (a, b, c, d, e, f, g, h, i) against 158
techniques as judged by Mann-Whitney (95% confidence). Each vertical set of marks shows results from 7 subsets of COC81 or 12 subsets
of NASA93.

 150

 100

 50

 0
ihgfedcba

COC81 MER Losses

 150

 100

 50

 0
ihgfedcba

NASA93 MER Losses

Fig. 8. MER results. Mann-Whitey (95% confidence). Same rig as Figure 7.

2) Compared to 158 techniques, one member of a through d always loses at some rate very close to
zero.

In our results, there is no single universal “best” technique. Nevertheless, out of 158 techniques, there
are 154 clearly inferior techniques. Hence, we recommend ranking techniques a through d on all the
available historical data, then applying the best ranked technique to estimate new projects.

VI. DISCUSSION

The methods recommended above are a strong endorsement of Boehm’s 1981 estimation research.
All our “best” techniques are based on Boehm’s preferred technique for calibrating generic COCOMO
models to local data. Technique a is Boehm’s LC procedure. This result endorses three of Boehm’s 1981
assumptions about effort estimation:

Boehm’81 Assumption 1:
Effort can be modeled as a single function that is exponential on lines of code . . .

JOURNAL SUBMISSION 14

Results using random seed1:

 150

 100

 50

 0
ihgfedcba

COC81 AR Losses

 150

 100

 50

 0
ihgfedcba

NASA93 AR Losses

Results using random seed2:

 150

 100

 50

 0
ihgfedcba

COC81 AR Losses

 150

 100

 50

 0
ihgfedcba

NASA93 AR Losses

Results using random seed3:

 150

 100

 50

 0
ihgfedcba

COC81 AR Losses

 150

 100

 50

 0
ihgfedcba

NASA93 AR Losses

Fig. 9. AR results, repeated three different times with three different random seeds. Same rig as Figure 7.

Boehm’81 assumption 2:
. . . and linearly proportional to the product of a set of effort multipliers.

Boehm’81 assumption 3:
The effort multipliers influence the effort by a set of pre-defined constants that can be taken
from Boehm’s textbook [2].

Our results argue that there is little added value in techniques e through i, at least for our COCOMO-
style data sets. This is a useful result because these techniques contain some of our slowest algorithms.
For example, the WRAPPER column selection technique used in f , g,amd h is an elaborate heuristic

JOURNAL SUBMISSION 15

search through, potentially, many combinations.
The failure of model trees in technique f is also interesting. If the model trees of technique f had out-

performed a through d, that would have suggested that effort is a multi-parametric phenomenon where,
for example, over some critical size of software, different effects emerge. This proved not to be the case,
endorsing Boehm’s assumption that effort can be modeled as a single parametric log-linear equation.

Note that technique e often performed better than other techniques. This is partial evidence that
increasing the training set size can be as useful as trying smarter algorithms. However, note that technique
e was always beaten by one of a through d. Clearly, the value of training sets specialized to particular
subsets can be enhanced by row and column pruning.

Of all the techniques in Figure 6, a, b, c, or d perform the best and i performed the worst. The techniques
a through d lost less than 20 times in all runs, while the NEAREST technique used in i lost thousands
of times. Why?

One distinguishing feature of technique i is the assumptions it makes about the domain. The NEAREST
neighbor technique i is assumption-less since it makes none of the Boehm assumptionsfrom 1981, listed
above. We hypothesize that Boehm’s assumptions are useful when processing COCOMO data.

To the above comment, we hasten to add that while NEAREST performed relatively worse in isolation,
we still believe that nearest neighbor techniques like NEAREST are a valuable addition to any effort
estimation toolkit:

• Nearest neighbors used in conjunction with other techniques can be quite powerful. For example, in
the above results, nearest neighbor row pruning proved to be a powerful addition to Boehm’s local
calibration technique.

• As mentioned above, not all domains are described in terms that can be used by the parametric
forms like COCOMO. If the available domain data is in another format favorable to some of the
other learners, then it is possible that our ranking would change. For example, Shepperd and Schofield
argue that their CBR techniques, like the NEAREST procedure used in technique i, are better suited
to sparse data domains where precise numeric values are not available for all factors [10]. None of
the data used in the study were sparse.

VII. EXTERNAL VALIDITY

This study has several biases, listed below.
Evaluation bias: We showed conclusion stability across three criteria: absolute residual, magnitude

of error relative to estimate, and magnitude of relative error. This does not mean that we have shown
stability across all possible evaluation biases. Other evaluation biases may rank our estimation techniques
differently. Further experimentation is required on this point.

Sampling bias: The automatic techniques described here require data and are only useful in organizations
that maintain historical data. Such data collection is rare in organizations with low process maturity.
However, it is common elsewhere (e.g., amongst government contractors whose contract descriptions
include process auditing requirements). For example, United States government contracts often require
a model-based estimate at each project milestone. Such models are used to generate estimates or to
double-check an expert-based estimate.

Another source of sampling bias is that the data sets used in this study come from two COCOMO
sources: (1) Boehm’s 1981 text on Software Engineering [2] and (2) data collected from NASA in the
1980s and 1990s from six different NASA centers, including the Jet Propulsion Laboratory. When we
showed our results to researchers in the field, they asked if two sources was enough to draw valid external
conclusions. Further, they remark that some of the COCOMO data and all of the NASA93 data comes
from one domain (aerospace) and so its conclusions can not be generalized to other domains.

In reply, we comment that our two sources were repositories that accepted data from a wide range
of projects. For example, our NASA data comes from different teams working at geographical locations
across the United States, using a variety of programming languages. While some of our data is from

JOURNAL SUBMISSION 16

flight systems (a particular NASA specialty), most come from ground systems, which share many of
the properties of other terrestrial software (same operating systems, development languages, development
practices). Much of NASA’s software is written by contractors who service a wide range of clients (not
just NASA).

Regarding the concern about most of this data’s coming from aerospace applications, we comment that
the great majority of NASA’s software relates to ground systems that store data in standard commercial
databases, that visualize data using standard commercial packages, or that generate reports in formats
acceptable to standard commercial reporting tools. NASA software is often developed by contractors who
are contractually obliged (ISO-9001) to demonstrate their understanding and usage of current industrial
best practices. For this reason, prior research has argued that conclusions from NASA data are relevant to
the general software engineering industry. Basili, Zelkowitz, et al. [36], for example, published extensively
for decades their conclusions taken from NASA data.

Yet another source of sampling bias is that our conclusions are based only on the data sets studied here.
The data used in this study is the largest public-domain set of COCOMO-style data available. In addition,
our data source is as large as the proprietary COCOMO data sets used in prior IEEE publications [7].

Biases in the model: This study adopts the COCOMO model for all its work. This decision was forced
on us: the COCOMO-style data sets are the only public domain data we could access. Also, all our
previous work was based on COCOMO data since our funding body (NASA) makes extensive use of
COCOMO. The implications of our work on other estimation frameworks is an open and (as mentioned
in the introduction) pressing issue. We strongly urge researchers with access to non-COCOMO data to
repeat the kind of row and column pruning analysis described here.

VIII. CONCLUSION

This paper concludes five years of research that began with the following question: can the new
generation of learners offer better support for the following five model-based effort estimation tasks?

• Ignoring irrelevancies, e.g. using row and column pruning;
• Learning from past data; e.g. using data mining estimations;
• Quickly generating multiple estimates; e.g. using 10-way cross validation
• Assessing estimate uncertainty; e.g. by recording the variance in the estimates in the 10-ways;
• Commenting on estimation accuracy; e.g. by recoding the median in the estimates in the 10-ways.

We report that, at least for the techniques studied here, many complex variants of data mining for effort
estimation add little value over a very small number of very simple techniques. In other work [31], we
detected no improvement using bagging [37] and boosting [38] techniques for COCOMO-style data sets.
In this work, we have found that one of four techniques is always better than another 154 techniques:

• A single linear model is adequate for the purposes of effort estimation. All of the techniques that
assume multiple linear models, such as model trees (f), or no parametric form at all, such as nearest
neighbor (i), perform relatively poorly.

• Elaborate searches do not add value to effort estimation. All of the O(2F) column pruners do worse
than near-linear-time column pruning.

• The more intricate techniques, such as model trees, do no better than other techniques.
Our conclusions come from NASA COCOMO data, and we reject arguments that this data (a) is too
narrow a source (“just” NASA), (b) is too old to be relevant to current research, or (c) had a simple linear
model “hard-wired” into its internal structure:

a) NASA is really an umbrella organization that loosely co-ordinates a very large group of subcontractors
who work not only for NASA, but also for other, non-NASA, clients.

b) The goal of this study was to explore some public-domain data source with numerous estimation
techniques. Future work should repeat this study on other, more recent, data sets. In the meanwhile,
the collection date of this data does not stop conclusions of the form “techniques A,B,C... were
applied to data X,Y,Z..., and the following conclusions were observed.”

JOURNAL SUBMISSION 17

c) When this data was collected, domain experts were queried about aspects of their projects and not
about the number relationship between, for example, analyst capability and software development
effort. That is, while the data collection process was biased by the COCOMO ontology, it was not
biased by underlying assumptions of the relationship between (say) lines of code and development
effort.

While the specifics of our experiment related to NASA COCOMO data, our general point is that it is
possible to find stable rankings for effort estimation techniques. These rankings were stable across:

• Different data sets.
• Many different subsets of that data selected at random.
• Even different evaluation criteria.

Shepperd and Kadoda did not find the conclusion stability reported here. We speculate that making stable
conclusions in the field of effort estimation requires careful management of estimation variance. Such
variance is clearly present in our results: no single technique was ever “best” in the results of Figures 7
through 9. Indeed, some techniques exhibited a wide range of behavior. For example, compared to 158
other techniques, technique h (LswR+LSR) loses between zero and 75 times, depending on the evaluation
criteria and choice of data. However, while some techniques have very unstable performance, others are
remarkably stable.

We attribute the stability of our results to:
• An experimental procedure that explored a large number of techniques. Surveying a large number of

techniques is important since, at least in this study, only a small minority of techniques are stable.
• The use of of ranked statistical tests (Mann-Whitney) that are not distracted by large outliers.
• The use of row and column pruning to cull irrelevant data that might confuse the modeling process.

Therefore, we hope that this paper inspires a large number of similar studies where researchers try to
repeat our results on their data using a large number of techniques, ranked statistical analysis, and row
and column pruning.

As to what the practical implications of this study are, we remark that simply applying one or two
techniques in a new domain is not enough. In the study reported in this paper, one technique out of a set
of four was always the best but that best technique was data set-specific. Therefore, prior to researchers
drawing conclusions about aspects of effort estimation properties in a particular context, there should be
a selection study to rank and prune the available estimators according to the details of a local domain.

Our results also suggest that such selection studies need not be very elaborate. At least for COCOMO-
style data, we report that 154

158
= 97% of the techniques implemented in our COSEEKMO toolkit [26]

added little or nothing to Boehm’s 1981 regression procedure [2]. Hence, during a selection study, such
techniques could be ignored. Such a selection study need only try the following techniques and the one
that does best on historic data (assessed using the Mann-Whitney U test) used to predict new projects:

• Adopt Boehm’s three assumptions from 1981 and use LC-based techniques.
• Try LC with none of LOCOMO’s row pruning or COCOMIN’s column pruning. While some row

and column pruning can be useful, elaborate column pruning (requiring an O(2F) search) is not.

IX. FUTURE WORK

We make no claim that this study explores the entire space of possible effort estimation techniques.
Indeed, when we review the space of known techniques (see Figure 1 in [39]), it is clear that COSEEKMO
covers only a small part of that total space. Readers may know of other effort estimation techniques they
believe we should try. Alternatively, readers may have a design or an implementation of a new kind of
effort estimator. In either case, before it can be shown that an existing or new technique is better than
the four we advocate here, we first need a demonstration that it is possible to make stable conclusions
regarding the relative merits of different estimation techniques. This paper offers such a demonstration
and hopes to encourage much future work in this direction.

More specfically, we recommend an investigation of an ambiguity in our results:

JOURNAL SUBMISSION 18

• Prior experiments found conclusion instability after limited application of row and column pruning
to non-COCOMO features.

• Here, we found conclusion stability after extensive row and column pruning to COCOMO-style
features.

It is, hence, unclear what removed the conclusion instability. Was it pruning, or was it the use of the
COCOMO features? To test this, we require a new kind of data set. Given examples expressed in whatever
local features are available, those examples should be augmented with COCOMO features. Then, this study
should be repeated:

• With and without the local features.
• With and without the COCOMO features.
• With and without pruning.

We would be interested in contacting any industrial group with access to this new kind of data set.

ACKNOWLEDGMENTS

Martin Shepperd was kind enough to make suggestions about different evaluation biases and the design
of the NEAREST and LOCOMO techniques.

APPENDIX

A. Pre-processing with Row Pruning
The LOCOMO tool [30] in COSEEKMO is a row pruner that combines a nearest neighbor technique

with LC. LOCOMO prunes away all projects except those k nearest the Test set data.
To learn an appropriate value for k, LOCOMO uses the Train set as follows:
• For each project p0 ∈ Train, LOCOMO sorts the remaining Train−p0 examples by their Euclidean

distance from p0.
• LOCOMO then passes the k0 examples closest to p0 to LC. The returned < a, b > values are used

to estimate effort for p0.
• After trying all possible k0 values, 2 ≤ k0 ≤ |Train|, k is then set to the k0 value that yielded the

smallest mean MRE.6

This calculated value k is used to estimate the effort for projects in the Test set. For all p1 ∈ Test, the k
nearest neighbors from Train are passed to LC. The returned < a, b > values are then used to estimate
the effort for p1.

B. Pre-processing with Column Pruning
Kirsopp and Schofeld [16] and Chen, Menzies, Port, and Boehm [13] report that column pruning

improves effort estimation. Miller’s research [15] explains why. Column pruning (a.k.a. feature subset
selection [23] or variable subset selection [15]) reduces the deviation of a linear model learned by
minimizing least squares error [15]. To see this, consider a linear model with constants βi that inputs
features fi to predict for y:

y = β0 + β1 ∗ f1 + β2 ∗ f2 + β3 ∗ f3...

The variance of y is some function of the variances in f1, f2, etc. If the set F contains noise, then random
variations in fi can increase the uncertainty of y. Column pruning techniques decrease the number of
features, fi, thus increasing the stability of the y predictions. That is, the fewer the features (columns),
the more restrained are the model predictions.

Taken to an extreme, column pruning can reduce y’s variance to zero (e.g., by pruning the above
equation back to y = β0) but increases model error (the equation y = β0 will ignore all project data when

6A justifications for using the mean measure within LOCOMO is offered at the end of the appendix.

JOURNAL SUBMISSION 19

generating estimates). Hence, intelligent column pruners experiment with some proposed subsets F ′ ⊆ F
before changing that set. COSEEKMO currently contains three intelligent column pruners: WRAPPER,
LOCALW, and COCOMIN.

WRAPPER [32] is a standard best-first search through the space of possible features. At worst, the
WRAPPER must search a space exponential on the number of features F (i.e., 2F). However, a simple
best-first heuristic makes WRAPPER practical for effort estimation. At each step of the search, all of the
current subsets are scored by passing them to a target learner. If a set of features does not score better
than a smaller subset, then it gets one “mark” against it. If a set has more than STALE = 5 number of
marks, it is deleted. Otherwise, a feature is added to each current set, and the algorithm continues.

In general, a WRAPPER can use any target learner. Chen’s LOCALW is a WRAPPER specialized for
LC. Previously([13], [26]), we have explored LOCALW for effort estimation.

The above description of WRAPPER should be read as a brief introduction to all the techniques
associated with this kind of column pruner. A WRAPPER is a powerful tool and can be extensively and
usefully customized (e.g., using a hash-table cache to hold the frequently seen combinations; alternative
search techniques to best-first search; etc). We refer the interested reader to the thorough treatment of the
subject found in Miller [15] and Kohavi and Johns [32].

Theoretically, WRAPPER’s (and LOCALW’s) exponential time search is more thorough, and more
useful, than simpler techniques that try fewer options. To test that theory, we will compare WRAPPER
and LOCALW to a linear-time column pruner called COCOMIN [31].

COCOMIN is defined by the following operators:

{sorter, order, learner, scorer}

The algorithm runs in linear time over a sorted set of features, F . This search can be ordered in one of
two ways:

• A “backward elimination” process starts with all features F and throws some away, one at a time.
• A “forward selection” process starts with one feature and adds in the rest, one at a time.

Regardless of the search order, at some point, the current set of features F ′ ⊆ F is passed to a learner
to generate a performance score by applying the model learned on the current features to the Train set.
COCOMIN returns the features associated with the highest score.

COCOMIN pre-sorts the features on some heuristic criteria. Some of these criteria, such as standard
deviation or entropy, are gathered without evaluation of the target learner. Others are gathered by evaluating
the performance of the learner using only the feature in question plus any required features, such as
KLOC for COCOMO, to calibrate the model. After the features are ordered, each feature is considered
for backward elimination, or forward selection if chosen, in a single linear pass through the feature space,
F . The decision to keep or discard the feature is based on an evaluation measure generated by calibrating
and evaluating the model with the training data.

Based on [31], the version of COCOMIN used in this study:
• Sorted the features by the highest median MRE.
• Used a backward elimination search strategy.
• Learned using LC.
• Scored using mean MRE.

Note that mean MRE is used internally to COCOMIN (and LOCOMO; see above) since it is fast and
simple to compute. Once the search terminates, this paper strongly recommends the more thorough (and,
hence, more intricate and slower) median non-parametric measures to assess the learned effort estimation
model.

REFERENCES

[1] I. H. Witten and E. Frank, Data mining. 2nd edition. Los Altos, US: Morgan Kaufmann, 2005.
[2] B. Boehm, Software Engineering Economics. Prentice Hall, 1981.

JOURNAL SUBMISSION 20

[3] ——, “Safe and simple software cost analysis,” IEEE Software, pp. 14–17, September/October 2000, available from http://www.
computer.org/certification/beta/Boehm Safe.pdf.

[4] M. Jorgensen, “A review of studies on expert estimation of software development effort,” Journal of Systems and Software, vol. 70,
no. 1-2, pp. 37–60, 2004.

[5] B. Boehm, E. Horowitz, R. Madachy, D. Reifer, B. K. Clark, B. Steece, A. W. Brown, S. Chulani, and C. Abts, Software Cost Estimation
with Cocomo II. Prentice Hall, 2000.

[6] B. B. S. Chulani, B. Clark and B. Steece, “Calibration approach and results of the cocomo ii post-architecture model,” in Proceceedings
ISPA,98, 1998.

[7] S. Chulani, B. Boehm, and B. Steece, “Bayesian analysis of empirical software engineering cost models,” IEEE Transaction on Software
Engineerining, vol. 25, no. 4, July/August 1999.

[8] C. Kemerer, “An empirical validation of software cost estimation models,” Communications of the ACM, vol. 30, no. 5, pp. 416–429,
May 1987.

[9] R. Strutzke, Estimating Software-Intensive Systems: Products, Projects and Processes. Addison Wesley, 2005.
[10] M. Shepperd and C. Schofield, “Estimating software project effort using analogies,” IEEE Transactions on Software Engineering,

vol. 23, no. 12, November 1997, available from http://www.utdallas.edu/∼rbanker/SE XII.pdf.
[11] T. Menzies, D. Port, Z. Chen, J. Hihn, and S. Stukes, “Validation methods for calibrating software effort models,” in Proceedings,

ICSE, 2005, available from http://menzies.us/pdf/04coconut.pdf.
[12] Z. Chen, T. Menzies, and D. Port, “Feature subset selection can improve software cost estimation,” 2005, available from http://menzies.

us/pdf/05/fsscocomo.pdf.
[13] Z. Chen, T. Menzies, D. Port, and B. Boehm, “Finding the right data for software cost modeling,” IEEE Software, Nov 2005.
[14] “Certified parametric practioner tutorial,” 2006.
[15] A. Miller, Subset Selection in Regression (second edition). Chapman & Hall, 2002.
[16] C. Kirsopp and M. Shepperd, “Case and feature subset selection in case-based software project effort prediction,” in Proc. of 22nd

SGAI International Conference on Knowledge-Based Systems and Applied Artificial Intelligence, Cambridge, UK, 2002.
[17] R. Quinlan, C4.5: Programs for Machine Learning. Morgan Kaufman, 1992, iSBN: 1558602380.
[18] R. Park, “The central equations of the price software cost model,” in 4th COCOMO Users Group Meeting, November 1988.
[19] R. Jensen, “An improved macrolevel software development resource estimation model,” in 5th ISPA Conference, April 1983, pp. 88–92.
[20] L. Putnam and W. Myers, Measures for Excellence. Yourdon Press Computing Series, 1992.
[21] M. Shepperd, “Software project economics: A roadmap,” in International Conference on Software Engineering 2007: Future of Software

Engineering, 2007.
[22] J. Li and G. Ruhe, “Decision support analysis for software effort estimation by analogy,” in Proceedings, PROMISE’07 workshop on

Repeatable Experiments in Software Engineering, 2007.
[23] M. Hall and G. Holmes, “Benchmarking attribute selection techniques for discrete class data mining,” IEEE Transactions On Knowledge

And Data Engineering, vol. 15, no. 6, pp. 1437– 1447, 2003, available from http://www.cs.waikato.ac.nz/∼mhall/HallHolmesTKDE.pdf.
[24] T. Menzies and J. Richardson, “Making sense of requirements, sooner,” IEEE Computer, October 2006, available from http://menzies.

us/pdf/06qrre.pdf.
[25] M. Jorgensen and M. Shepperd, “A systematic review of software development cost estimation studies,” January 2007, available from

http://www.simula.no/departments/engineering/publications/Jorgensen.200%5.12.
[26] T. Menzies, Z. Chen, J. Hihn, and K. Lum, “Selecting best practices for effort estimation,” IEEE Transactions on Software Engineering,

November 2006, available from http://menzies.us/pdf/06coseekmo.pdf.
[27] M. Shepperd and G. F. Kadoda, “Comparing software prediction techniques using simulation,” IEEE Trans. Software Eng, vol. 27,

no. 11, pp. 1014–1022, 2001.
[28] B. Boehm, “A spiral model of software development and enhancement,” Software Engineering Notes, vol. 11, no. 4, p. 22, 1986.
[29] B. A. Kitchenham, E. Mendes, and G. H. Travassos, “Cross- vs. within-company cost estimation studies: A systematic review,” IEEE

Transactions on Software Engineering, pp. 316–329, May 2007.
[30] O. Jalali, “Evaluation bias in effort estimation,” Master’s thesis, Lane Department of Computer Science and Electrical Engineering,

West Virginia University, 2007.
[31] D. Baker, “A hybrid approach to expert and model-based effort estimation,” Master’s thesis, Lane Department of Computer Science and

Electrical Engineering, West Virginia University, 2007, available from https://eidr.wvu.edu/etd/documentdata.eTD?documentid=5443.
[32] R. Kohavi and G. H. John, “Wrappers for feature subset selection,” Artificial Intelligence, vol. 97, no. 1-2, pp. 273–324, 1997.

[Online]. Available: citeseer.nj.nec.com/kohavi96wrappers.html
[33] J. R. Quinlan, “Learning with Continuous Classes,” in 5th Australian Joint Conference on Artificial Intelligence, 1992, pp. 343–348,

available from http://citeseer.nj.nec.com/quinlan92learning.html.
[34] H. B. Mann and D. R. Whitney, “On a test of whether one of two random variables is stochastically larger than the other,” Ann.

Math. Statist., vol. 18, no. 1, pp. 50–60, 1947, available on-line at http://projecteuclid.org/DPubS?service=UI&version=1.0&verb=
Display&hand%le=euclid.aoms/1177730491.

[35] T. Menzies, Z. Chen, D. Port, and J. Hihn, “Simple software cost estimation: Safe or unsafe?” in Proceedings, PROMISE workshop,
ICSE 2005, 2005, available from http://menzies.us/pdf/05safewhen.pdf.

[36] V. Basili, F. McGarry, R. Pajerski, and M. Zelkowitz, “Lessons learned from 25 years of process improvement: The rise and fall of the
NASA software engineering laboratory,” in Proceedings of the 24th International Conference on Software Engineering (ICSE) 2002,
Orlando, Florida, 2002, available from http://www.cs.umd.edu/projects/SoftEng/ESEG/papers/83.88.pdf.

[37] L. Brieman, “Bagging predictors,” Machine Learning, vol. 24, no. 2, pp. 123–140, 1996.
[38] Y. Freund and R. Schapire, “A decision-theoretic generalization of on-line learning and an application to boosting,” JCSS: Journal of

Computer and System Sciences, vol. 55, 1997.

JOURNAL SUBMISSION 21

[39] I. Myrtveit, E. Stensrud, and M. Shepperd, “Reliability and validity in comparative studies of software prediction models,” IEEE
Transactions on Software Engineerining, vol. 31, no. 5, pp. 380–391, May 2005.

