
Noname manuscript No.
(will be inserted by the editor)

Incremental Development of Software Quality Prediction
Models

First Author · Second Author

Received: date / Accepted: date

Abstract The identification of fault-prone modules has a significant impact on software
quality assurance. In addition to prediction accuracy, one of the most important goals is to
detect fault prone modules as early as possible in the development life cycle. Requirements,
design, and code metrics have been successfully used for predicting fault-prone modules.
In this paper, we investigate the benefits of the incremental development of software qual-
ity models. We compare the performance of these models as the volume of data and their
life cycle origin (design, code, or their combination) evolve during project development. We
analyze fourteen data sets from publicly available software engineering data repositories.
These data sets offer both design as well as code metrics. Using a number of modeling tech-
niques and statistical significance tests, we confirm that increasing the volume of training
data improves model performance. Further, models built from code metrics typically outper-
form those that are built using design metrics only. However, both types of models prove to
be useful as they can be constructed in different phases of the life cycle. Code-based models
can be used to improve the effectiveness of assigning verification and validation activities
late in the development life cycle. We also conclude that models that utilize a combina-
tion of design and code level metrics outperform models which use either one metric set
exclusively.

Keywords Design metrics, Code metrics, Software quality prediction, Model performance
evaluation

1 Introduction

The accuracy of software quality models, which identify the modules where faults may
hide, has not improved significantly over the past decade. Menzies et. al. call this the “ceil-
ing effect.” [34]. Despite intensive research, the current generation of models is not finding

F. Author
first address
Tel.: +123-45-678910
Fax: +123-45-678910
E-mail: fauthor@example.com

S. Author
second address

2

new information in the data sets available in public repositories, such as PROMISE [9]
and NASA MDP [3]. Therefore, we hypothesize that future fault prediction research should
change its focus from designing better modeling algorithms towards improving (a) the in-
formation content of the training data, or (b) the model evaluation functions which would
inject additional knowledge regarding context in which software is used into the modeling
process. This paper explores option (a) by thoroughly evaluating the information content
offered by design level and code level metrics.

Recently, we have had success with augmenting code metrics with features extracted
from requirements documents via lightweight text parsing [25]. When modeling was ap-
plied to features extracted from both code and requirements, we observed a remarkable
improvement in the probability of correctly detecting fault-prone modules while reducing
the probability that a fault-free module is wrongly classified as fault-prone. While these re-
sults are promising, the conclusions were based on a limited sample size. We had access
to requirements metrics from only three defect data sets. Nevertheless, we hypothesize that
using metrics that reflect software artifacts from different phases in the life cycle offer the
opportunity for improving the performance of fault prediction models. When it comes to the
availability of design level and code level metrics, public repositories offer a much larger
number of data sets, allowing us to analyze this hypothesis.

A decade ago, Zhao et. al. explored the differences between fault prediction models
developed using code level and design level metrics [56]. They conclude that “the design
metrics are as good as the code metrics; little improvement can be achieved if both design
metrics and code metrics are used...”. However, their conclusions were drawn from the data
analysis from a single software project using only one fault prediction modeling technique
(logistic regression). One of our goals is to reexamine their conclusion. In this study, we use
14 publicly available project data sets. Each of these projects offers both design and static
code metrics. We built fault prediction models using each metrics set separately (models
denoted as design and code, respectively), as well as from a combined metrics data set
(denoted as all). Unlike Zhao et. al., we will utilize five modeling techniques frequently
used in the current research.

If the conclusion from [56], which states that “design metrics are as good as code met-
rics” holds, the implication is that software projects should build fault prediction models as
soon as the design metrics become available. Further, if “little improvement can be achieved
if both design metrics and code metrics are used”, updating design-based models makes no
sense. However, this paper will demonstrate that incremental development of fault predic-
tion models is beneficial and should not be ignored. In this paper, incremental development
implies that models are updated as the project artifacts are developed and their metrics be-
come available. Our results show that models benefit from the increased size of the training
data as well as from the ability to combine design and code metrics.

The remainder of the paper is organized as follows. Section 2 describes the data sets and
metrics used in the study. Section 3 outlines the experimental design in terms of the chosen
modeling techniques, selected evaluation methods, and the statistical testing procedure. Sec-
tion 4 presents the experimental results and discusses their implications. Section 5 provides
a background of related work, and Section 6 concludes with a summary and future work.

3

Table 1 Datasets used in this study

Data Modules % Faulty # Metrics Project description lang.
all design code

CM1 505 16.04% 40 16 20 Spacecraft instrument C
KC1 2,407 13.9% 21 4 17 Storage management for receiving/processing ground data C++
KC3 458 6.3% 40 16 20 Storage management for ground data Java
KC4 125 48% 40 16 20 A ground-based subscription server Perl
PC1 1,107 6.59% 40 16 20 Flight software from an earth orbiting satellite C
PC3 1,563 10.43% 40 16 20 Flight software for earth orbiting satellite C
PC4 1,458 12.24% 40 16 20 Flight software for earth orbiting satellite C

MW1 433 6.7% 40 16 20 A zero gravity experiment related to combustion C
MC2 161 32.30% 40 16 20 A video guidance system C++
JM1 10,878 19.3% 21 4 17 A real time predictive ground system C
MC1 9,466 0.64% 39 15 20 A combustion experiment of a space shuttle (C)C++
PC2 5,589 0.42% 40 16 20 Dynamic simulator for attitude control systems C
PC5 17,186 3.00% 39 15 20 A safety enhancement of a cockpit upgrade system C++
ar4 107 18.69% 29 9 18 Control software for washing machines C

2 Metrics Description

2.1 Used metrics

The data sets used in this study originate from the Metrics Data Program (MDP) reposi-
tory [3] and PROMISE repository [9]. The fourteen projects shown in Table 1 are used in
the experiments.

These data sets offer module metrics that describe 14 diverse projects. Thirteen come
from NASA MDP repository and ar4 comes from PROMISE repository [9]. These are
highly diverse projects. NASA typically subcontracts software development and it is likely
that no two projects originate from the same site or development organization. The criticality
of these projects varies from low cost utilities to highly sensitive mission critical applica-
tions [27]. Their only similarity is that they are developed for a specific purpose and, while
some level of software reuse is likely, there is no information regarding previous releases.
ar4 does not come from NASA.

Projects JM1 and KC1 offer 24 total metrics (model attributes), MC1 and PC5 have 42
total attributes, while the remaining 9 data sets have 43 metrics describing individual mod-
ules. MDP data sets contain a module id field and two error-related attributes: error count
and error density. We removed module id and error density attributes prior to modeling.
The error count attribute we converted into a boolean attribute called DEFECT . If the
error count attribute is greater than or equal to 1, then the value of DEFECT is TRUE,
otherwise it is FALSE. DEFECT becomes the predicted variable. After removing and
replacing these attributes, JM1 and KC1 have 21 attributes that can be used as independent
(predictor) variables, MC1 and PC5 have 39, the other data sets from MDP have 40. Project
ar4 has 29 attributes.

The metrics shown in Table 2 have been extracted using McCabe IQ 7.1, a reverse en-
gineering tool that derives software quality metrics from code, visualizes flowgraphs and
generates report documents [2]. It is important to note that McCabe IQ reverse engineers
design metrics from code flowgraphs, rather than from design documentation. It is not un-
usual to analyze software design quality from design artifacts reengineered from the code
[5,6,11,12,49,50]. However, we recognize that this fact is one of the validity threats for our
experiment and will be discussed later.

4

In all the data sets available metrics are classified into three groups: design, code, and
other, as indicated in Table 2. What separates design metrics from code metrics is the
opportunity to extract them from design specification diagrams such as UML. For exam-
ple, Ohlsson and Alberg extract design metrics from Formal Description Language (FDL)
graphs [43]. Their design metrics include node count, branch count, and McCabe cyclo-
matic complexity measures [33], also produced by McCabe IQ tool. McCabe complexity
metrics are also used as design metrics in [56], the study that provides motivation and a
point of comparison for this research. As a quick reminder, if graph G represents module’s
flowgraph, its cyclomatic complexity v(G) is calculated as v(G) = e−n +2, where e is the
number of edges and n is the number of nodes.

The code metrics in our study are the features that can only be extracted from the source
code. Static code metrics, such as num operators, num operands, and Halstead metrics
are calculated from program statements [19]. In this paper, other metrics are those related
to both the design and code. Most data sets have four metrics we classified as other. We do
not use other metrics in isolation to build models, but we include them in the experiments
in which fault prediction models are developed from all available attributes.

ar4 is the only data set that does not come from the MDP collection. This data set
has 29 attributes including nine design metrics, eighteen code metrics, and two metrics
classified as other. Although the names of some of the ar4 metrics are different from
MDP, they in fact are equivalent to a subset of metrics used in the MDP repository. For
example, metrics “total loc”, “unique operands”, and “halstead time” in ar4 correspond to
“loc total”,“num operands”, and “halstead prog time” in MDP. The metrics describing ar4
project are presented in bold font in Table 2.

3 Experimental Design

As a reminder to readers, the goal of our experiments is support for the conjuncture that
the incremental development of fault prediction models throughout the design and imple-
mentation phases of the life cycle. There are two interesting aspects of incremental model
development:

1. Utilization of the increasing size of the training data set, and
2. Timely (sequential) utilization of design and code metrics.

To reach these goals, we will compare the performance of models derived from:

– different percentages of data for model development (training): 10%, 25%, 50%, 75%,
and 90%. In each experiment, the reminder of the data set will be used for model evalu-
ation.

– different metric groups: design, code, and all.

The data sets we used do not include development schedule information. Therefore,
we cannot faithfully emulate the actual “arrival” schedule of modules and their metrics.
However, we will deploy cross-validation, the statistical practice of randomly partitioning a
sample of data into two subsets: training and testing subset ten times. Reporting the median
result from the ten experiments should minimize the impact a development sequence could
have on the prediction results. The predicted variable is DEFECT , that is, the models pre-
dict whether a module is likely to contain fault(s). As mentioned earlier, we will deploy
five well known classification algorithms for software quality prediction, listed in Table 3.
These classification algorithms have consistently been recommended to practitioners and

5

Table 2 Software metrics used in this study

group metrics description or formula

code

parameter count Number of parameters to a given module
num operators:N1 The number of operators contained in a module
num operands:N2 The number of operands contained in a module
num unique operators:µ1 The number of unique operators contained in a module
num unique operands:µ2 The number of unique operands contained in a module
halstead content:µ The halstead length content of a module µ = µ1 + µ2

halstead length:N The halstead length metric of a module N = N1 + N2

halstead level:L The halstead level metric of a module L = (2∗µ2)
µ1∗N2

halstead difficulty:D The halstead difficulty metric of a module D = 1
L

halstead volume:V The halstead volume metric of a module
V = N ∗ log2(µ1 + µ2)

halstead effort:E The halstead effort metric of a module E = V
L

halstead prog time: T The halstead programming time metric of a module
T = E

18
halstead error est: B The halstead error estimate metric of a module

B = E2/3

1000
number of lines Number of lines in a module
loc blank The number of blank lines in a module
loc code and comment:NCSLOC The number of lines which contain both code and

comment in a module
loc comments The number of lines of comments in a module
loc executable The number of lines of executable code for a module

(not blank or comment)
percent comments Percentage of the code that is comments
loc total The total number of lines for a given module

design

edge count:e Number of edges found in a given module from
one module to another

node count:n Number of nodes found in a given module
branch count Branch count metrics
call pairs Number of calls to functions in a module
condition count Number of conditionals in a given module
cyclomatic complexity: v(G) The cyclomatic complexity of a module

v(G) = e− n + 2
decision count Number of decision points in a module
decision density Condition count/Decision count
design complexity:iv(G) The design complexity of a module
design density Design density is calculated as: iv(G)

v(G)

essential complexity:ev(G) The essential complexity of a module
essential density Essential density is calculated as: (ev(G)−1)

(v(G)−1)

maintenance severity Maintenance Severity is calculated as: ev(G)
v(G)

modified condition count The effect of a condition affect a decision outcome by
varying that condition only

multiple condition count Number of multiple conditions within a module
pathological complexity A measure of the degree to which a module contains

extremely unstructured constructs

others

normalized cylomatic complexity v(G)
number of lines

global data complexity:gdv(G) the ratio of cyclomatic complexity of a module’s
structure to its parameter count

global data density Global Data density is calculated as: gdv(G)
v(G)

cyclomatic density v(G)
NCSLOC

6

provide adequate performance [30,25,34,20,26]. More importantly, the classifiers are im-
plemented in publicly available machine learning toolkit Weka [42]. The use of multiple
machine learning models allows us to compare the results with the recent study conducted
by Lessmann et. al. [30], in which they compare the performance of two dozen classification
algorithms on MDP data sets. We use the default parameters in all the classifiers except in
Random Forest, in which we follow the recommendation of algorithm’s creator L. Breiman
[10] and use 500 tree ensemble (rather than the Weka default of 10 trees, which optimizes
run-time).

Table 3 Classification algorithms used in the study.

Classifier Abbreviation
Random Forest rf
Bagging bag
Logistic regression lgi
Boosting bst
Naivebayes nb

In total, we conducted 10, 500 experiments utilizing 14 data sets, 5 different sizes of
training subset, 3 metric groups, 10 cross validation runs, all of these repeated using 5
classification algorithms.

3.1 Model Evaluation and Comparison

Conducting such a large number of experiments, we have to define the criteria for their
evaluation and comparison. For model evaluation, we decided to use Receiver Operating
Characteristic (ROC) curves. Model performance will be visually compared in Box-plot
diagrams, followed by a rigorous nonparametric statistical significance testing.

ROC curves provide an intuitive way to evaluate the classification performance of dif-
ferent models. An ROC curve is a plot of the Probability of Detection (pd) as a function of
the Probability of False alarm (pf) across all the possible experimental threshold settings.
Many classification algorithms allow users to define and adjust the threshold parameter in
order to generate an appropriate classifier [54]. When modeling software quality, a higher
pd can be produced at the cost of increased pf and vice versa. A typical ROC curve has a
concave shape with (0,0) as the beginning and (1,1) as the end point. Figure 1 shows three
example ROC curves representing models built using all, code, and design metric sets over
the data set MW1 with 90% data as training subset. The legend provides a link between the
classification algorithm and individual curves.

The Area Under the ROC Curve, referred to as AUC, is a numeric performance eval-
uation measure directly associated with an ROC curve. It is very common to use AUC to
compare the performance of different classifiers. From Figure 1, we can see that the per-
formance of design metrics is the worst among the three. And the performance of all and
code metric models are tangled making it difficult to tell which one is better. The values
of AUCs provide a direct answer: the AUCs of all, code, and design are 0.840, 0.824,
and 0.782, respectively. The differences among the values are small: all − code = 0.016,
code− design = 0.042, all − design = 0.058. Thus, without investigating the significance
of our observations, we conclude that all > code > design.

7

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

MW1 metrics

PF

PD

all:bst
code:bst
des:bst

Fig. 1 ROC curves of MW1, developed using three different metric groups.

The area under the curve of the upper left corner of ROC, referred as AUCUL, also
provides a meaningful performance index for software engineering studies [26]. From AUC,
we know that the performance of all is better than that of code. Looking closely at Figure 1,
we can see in the region of the upper left hand corner of ROC, it seems that the performance
of code metrics is better than that of all. The values of AUCUL are 0.429, 0.476 and 0.247
for all, code and design groups respectively. Using AUCUL, we have code > all > design.
Using AUCUL as the measurement for the performance in this case appears meaningful. For
this reason, we decided to use both AUC and AUCUL as measurements in our studies. We
calculate AUC and AUCUL using the trapezoid rule.

Due to 10-way cross validation, comparing a large number of ROC curves becomes
difficult. For this reason, we visualize the ten corresponding values of AUC (or AUCUL) in
a Box-plot diagram.

A Box-plot, also known as a box and whisker diagram, graphically depicts numerical
data distributions using the five first order statistics: the smallest observation, lower quartile
(Q1), median, upper quartile (Q3), and the largest observation. The box is constructed based
on the interquartile range (IQR) from Q1 to Q3. The line inside the box depicts the median
which follows the central tendency. The whiskers indicate the smallest observation and the
largest observation. Figure 2 shows an example Box-plot of three groups of metrics on MW1
data set using 90% data as training subset. The models developed using all metrics have the
best performance (the largest median values of AUCs) while the performance of models
from design metrics group is the worst of the three.

3.2 Statistical Significance Test Procedure

We will use statistical hypothesis testing and a rigorous statistical significance test proce-
dure to understand the outcome of our fault prediction experiments. Our hypotheses are:

H0: There is no difference in the performance of fault prediction models resulting from
the 5 different sizes of training subsets (or among the 3 different metrics groups).
vs.

8

all:bst code:bst des:bst

0.
78

0.
80

0.
82

0.
84

Three groups metrics of MW1

AU
C

Fig. 2 Boxplots of MW1 data set

Hα: At least two different sizes of training subset(or two different metrics groups) result in
fault prediction models that have significantly different performance.

Model performance, as described above, is measured through the two similar Area Un-
der the ROC Curve parameters. To address these hypotheses, we will use “multiple hypoth-
esis testing” procedure. Multiple hypothesis testing (also called multiple comparisons) is a
well-known procedure. The critical problem is to control the “family-wise error”, that is, to
control Type I error during the comparison. There are two methods to test the significant
differences among multiple samples: parametric analysis of variance (ANOVA) and and its
nonparametric counterpart, the Friedman test.

In [17], Demsar overviewed the theoretical work on statistical tests for the multiple
comparisons problems in machine learning. Whenever the comparison includes more than
two samples, Demsar recommends the Friedman test with the corresponding post-hoc Ne-
menyi test. Demsar advocates these tests largely due to the fact that nonparametric proce-
dures make less stringent demands on the data. However, nonparametric tests do not utilize
all the information available, as the actual data values (in our case AUC or AUCUL) are not
used in the test procedure. Instead, the ranks of the observations are used.

The Friedman test ranks the performance of samples. For example, in Table 4, the best
performing sample receives the rank 1, the second best is ranked 2, etc. In case of ties,
average ranks are assigned to both samples. For example, in the first row of Table 4 the last
two cells have the same AUC values. Unable to rank them as 1 and 2, they are assigned the
average rank of 1+2

2 = 1.5.
Let k represent the number of different samples. For example, k = 5 represents the five

sizes of training subsets. Let N represent the number of different experiments which utilize
the samples. In our case N = 5 represents the five classification algorithms used for building
fault prediction models. Rj is then the average rank of the size of a training subset j over
different classifiers. This rank is in the last row of Table 4). The Friedman statistic test is
distributed according to the F-distribution:

FF =
(N − 1)χ2

F

N(k − 1)− χ2
F

, (1)

9

Table 4 Comparison of fault prediction models on PC3 design metrics. The values inside the parentheses
are the ranks.

10% 25% 50% 75% 90%
bag 0.66(5) 0.704(4) 0.733(3) 0.734(1.5) 0.734(1.5)
bst 0.659(5) 0.698(4) 0.724(3) 0.728(2) 0.736(1)
log 0.625(5) 0.704(4) 0.727(3) 0.734(2) 0.738(1)
nb 0.635(5) 0.688(3) 0.682(4) 0.695(2) 0.703(1)
rf 0.676(5) 0.694(4) 0.728(2) 0.721(3) 0.733(1)

rank 5.0 3.8 3.0 2.1 1.1

with k − 1 and (k − 1)(N − 1) degrees of freedom where χ2
F = 12N

k(k+1) [ΣjR
2
j −

k(k+1)2

4].
The critical value of F-distribution can be found in any statistical book.

If the null hypothesis of Friedman test is rejected, the Nemenyi test is further used as the
after-the-fact test. The performance of two samples is significantly different if their average
ranks differ by at least the Critical Difference, denoted by CD:

CD = qα

√
k(k + 1)

6N
, (2)

where qα is the critical value of the Studentized range statistic divided by
√

2, provided in
Demsar’s paper [17].

The procedure is illustrated through an example as follows. Table 4 lists median values
of AUC from models built from five different sizes as training subset(10%, 25%, 50%, 75%
and 90%) using five classification algorithms using project PC3 design metrics. The rank of
each cell is indicated inside the parenthesis along with the actual AUC value. The average
rank is listed in the last row. In the Friedman test, we use ranks instead of the actual values.

In this paper, we use the 95% confidence interval (α = 0.05) as a threshold to judge
the significance. The Friedman test and the Nemenyi test are implemented in the statistical
package R (http://www.r-project.org/). First, the Friedman test calculates the F distribution:
χ2

F = 12∗5
5(5+1) [(5.02 + 3.82 + 3.02 + 2.12 + 1.12 − 5(5+1)2

4)] = 18.12

FF =
(5−1)χ2

F

5(5−1)−χ2
F

= (5−1)∗18.12
5(5−1)−18.12 = 38.55.

With five training subsets and 5 classifiers, FF is distributed according to the F distribution
with 5 − 1 = 4 and (5 − 1)(5− 1) = 16 degrees of freedom. The critical value of F (4, 16)
for α = 0.05 is 3.01. Because 3.01 < 38.55, we reject the null-hypothesis and conclude that
there is significant difference among models developed from different sizes of the training
data on PC3. The critical value of qα is 2.728 [17], consequently:

CD = qα

√
k(k+1)

6N = 2.728

√
5(5+1)

6∗5 = 2.728.

Figure 3 shows the results of the Nemenyi test. The numbers in the scale represent the
average ranks: the higher the rank, the worse the performance of the model based on the
given training sample. Not surprisingly, on PC3 data, the performance of fault prediction
models increases with the size of the training subset. When the difference between the av-
erage ranks of two samples is smaller than the value of CD = 2.728, the difference in their
performance is not significant. This is indicated by straight line connections, which indicate
performance clusters. From Figure 3, we can identify two clusters, one includes 10%, 25%
and 50% models; the other includes 25%, 50%, 75%, and 90%.

10

Fig. 3 Comparison of models which use different training subset sizes on PC3 design metrics, using Demsar’s
procedure.

4 Experimental Results

4.1 Increasing the Size of Training Set

One of the questions that repeatedly surfaces in discussions about fault prediction modeling
deals with the amount of data needed to build reasonably accurate models. The question is
not critical when models from earlier releases are used in the quality assurance of the new
version or product release. Presumably, such systems are part of the product line and fault
prediction models from earlier releases are adequate for the new release [44]. However,
when an organization develops one-of-a-kind system or the first system release with no
substantial history (and limited reuse), the amount of data needed to develop the model is
the real issue in practice. This is certainly the case for most of the projects described in the
NASA MDP repository. We will not directly address the ”minimal” data set requirement
for model development. Rather, following the idea of incremental model development, we
would like to know the rate of model improvement as additional modules and their metrics
descriptors become available.

For these reasons, we compare the performance of models generated using five training
subset, containing 10%, 25%, 50%, 75%, and 90% of project modules. Although these pro-
portions represent different sizes of training data for different projects, they match realistic
milestones in the development life cycle.

We will test the following statistical hypotheses:
H0: The size of the model’s training set has no influence on model performance
vs.
Hα: Some (at least two) models developed using different training subset sizes result in
significantly different model performance.

For this experiment, we utilize 14 data sets, 5 different training subsets, 3 groups of
metrics, 5 classifiers and two measurement methods of AUC and AUCUL, summarized in
420 box-plot diagrams. Each box-plot diagram reports the median result from 10 cross val-
idation repetitions of each experiment. Due to the sheer volume of information, Demsar′s

11

statistical analysis procedure [17] will provide acceptable summarization of results. The re-
sults are shown separately for models that utilize design metrics only, code metrics only,
and all metrics.

The general trends to be reported are not surprising:

– 10% training subset results in the weakest performance.
– In most cases, the “best” performance can be expected from models which use 90% of

data for training. Unfortunately, these models are the least useful as only 10% of the
modules are left for fault prediction.

– Models increase their performance as the size of the training data set grows. However,
these increases are rather minimal and statistical significance must be considered.

A more detailed analysis of the experimental results, including their statistical signifi-
cance and practical implications follows.

4.1.1 Design metrics models

We test the null hypothesis first on fault prediction models that use only design metrics.
In Section 3.2, Figure 3 depicts an example of statistical testing procedure applied to the

five models developed from the design metrics of PC3 project. We applied the the same sta-
tistical procedure to the design metric fault prediction models of the remaining 13 projects.
To avoid visual clutter when presenting the results, we modified the ranking diagram of
Figure 3. Figure 4 presents the ranking of models for all projects.

CD= 2.728

12345

cm1)([]
jm1)(
kc1)(
kc3)([]
kc4)([]
mc1)([]
mc2)([]
mw1)([]
pc1)([]
pc2)([]
pc3)([]
pc4)([]
pc5)([]
ar4)([]

10%
25%
50%
75%
90%

CD= 2.728

12345

cm1)([]
jm1)(
kc1)(
kc3)([]
kc4)([]
mc1)([]
mc2)([]
mw1)([]
pc1)([]
pc2)([]
pc3)([]
pc4)([]
pc5)([]
ar4)([]

10%
25%
50%
75%
90%

(a) AUC as measurement (b) AUCUL as measurement

Fig. 4 The Friedman test on design metrics models using (a) AUC and (b) AUCUL for performance eval-
uation

Panel (a) presents the model rankings using AUC as performance measure, while panel
(b) uses AUCUL for performance evaluation. CD represents the critical difference value for

12

this statistical test: if the difference between two ranks is greater than the value of CD, they
are statistically different, otherwise, they are not.

Referring to the graphic in Figure 4 the higher the rank (on a horizontal scale from 1 to
5) the worse the performance of the model. To account for the statistical significance, we
enclose the five models from each project into the two pairs of brackets. Each bracket pair
encloses the distance equivalent to the value of CD = 2.728. The round brackets enclose
models which form a performance cluster with the worst performing model (typically the
model which trains from the 10% subset). We will call this cluster the lower rank cluster.
The square brackets enclose the performance cluster which includes the best performing
model (typically inferred from the 90% subset). This will be our higher rank cluster. These
bracket pairs replace the horizontal lines from Figure 3.

Let us look closely into the performance of the five models built from cm1 in Figure 4(a).
For the increasing sizes of training subsets, the corresponding ranks are 4.8, 3.6, 3.4, 2.2,
and 1. These ranks form two performance clusters. Models built from 25%, 50%, and 75%
subsets are in the intersection between the lower and higher performance rank clusters. The
fault prediction models for projects jm1 and kc1 exhibit no statistically significant differ-
ences regardless of the size of the training subset. Therefore, they are all included in a single
performance rank cluster. The models for all other projects form two performance rank clus-
ters. It is also interesting to note that in project kc4, the best performing model is developed
using 75% of modules for training. In smaller projects (kc4 contains only 125 modules),
training from 90% may result in over-fitting.

The summary of design metrics based models evaluated through AUCUL, from Fig-
ure 4(b), is similar:

1. In 2 data sets, jm1 and kc1, there is no significant difference amongst the 5 models.
2. In 6 data sets the lower cluster includes models built from 10% to 50% of data. These

projects are kc3, pc1, pc2, pc3, pc4, ar4.
3. In 4 data sets the lower cluster includes models built from 10% to 75% of data. These

projects are cm1, mc1, mc2, and mw1.
4. In kc4 and pc5, models which used 75% of data for training ranked the best.
5. In 3 data sets the higher cluster includes models built from 25% to 90% of data. These

projects are kc4, mc1, and pc5.
6. In 9 data sets the higher cluster includes models built from 50% to 90% of data. These

projects are cm1, kc3, mc2, mw1, pc1, pc2, pc3, pc4, and ar4.

These results indicate that the model evaluation using AUC and AUCUL are, generally,
very similar. Minor differences appear in average ranks and clustering, but they are not likely
to impact our conclusions. Further, there are never more than two performance clusters.
Therefore, more detailed result comparisons in Table 5 and in Figure 5 will describe only
10%, 50%, and 90% training subsets, and use AUC for model evaluation.

Table 5 shows median values of AUC and variances for 10%, 50%, and 90% train-
ing subsets. The median value is rounded to two digits, variance to 4 digits. The last three
columns show the percentage increase in model performance. If the performance increases,
the value positive. Table 5 provides a closer look into the actual performance differences
between models. The gains in fault prediction vary from project to project and they are gen-
erally difficult to anticipate. Clearly, the significance results indicate that building only one
or two models over the development life cycle, given that only design metrics are utilized,
should be sufficient. Figure 5 visualizes the corresponding box-plot diagrams.

13

Table 5 Median and variance of 10%, 50%, and 90% training subset models from design metrics, measured
by AUC

data m10% v10% m50% v50% m90% v90%
m50%
m10%

− 1
m90%
m10%

− 1
m90%
m50%

− 1

cm1 0.54 0.0035 0.57 0.002 0.6 0.0133 5.56% 11.11% 5.26%
jm1 0.66 9e-04 0.67 8e-04 0.66 0.0013 1.52% 0 -1.49%
kc1 0.72 0.0027 0.73 9e-04 0.73 0.0028 1.39% 1.39% 0
kc3 0.61 0.0194 0.74 0.0121 0.77 0.017 21.31% 26.23% 4.05%
kc4 0.75 0.0109 0.78 0.0017 0.76 0.0175 4% 1.33% -2.56%
mc1 0.53 0.0054 0.62 0.0091 0.68 0.0214 16.98% 28.3% 9.68%
mc2 0.6 0.0087 0.63 0.0035 0.63 0.0271 5% 5% 0
mw1 0.66 0.0163 0.76 0.0038 0.78 0.0282 15.15% 18.18% 2.63%
pc1 0.57 0.0067 0.66 0.0028 0.69 0.0118 15.79% 21.05% 4.55%
pc2 0.5 0.0269 0.67 0.0174 0.75 0.0503 34% 50% 11.94%
pc3 0.65 0.0033 0.73 8e-04 0.73 0.0041 12.31% 12.31% 0
pc4 0.73 0.0029 0.78 0.001 0.78 0.0036 6.85% 6.85% 0
pc5 0.94 9e-04 0.95 1e-04 0.95 3e-04 1.06% 1.06% 0
ar4 0.62 0.0185 0.7 0.0085 0.72 0.0803 12.9% 16.13% 2.86%

1 5 9

0.
4

0.
6

0.
8

1.
0

cm1

AU
C

1 5 9

0.
4

0.
6

0.
8

1.
0

jm1

AU
C

1 5 9

0.
4

0.
6

0.
8

1.
0

kc1

AU
C

1 5 9

0.
4

0.
6

0.
8

1.
0

kc3
AU

C

1 5 9

0.
4

0.
6

0.
8

1.
0

kc4

AU
C

1 5 9

0.
4

0.
6

0.
8

1.
0

mc1

AU
C

1 5 9

0.
4

0.
6

0.
8

1.
0

mc2

AU
C

1 5 9

0.
4

0.
6

0.
8

1.
0

mw1

AU
C

1 5 9

0.
4

0.
6

0.
8

1.
0

pc1

AU
C

1 5 9

0.
4

0.
6

0.
8

1.
0

pc2

AU
C

1 5 9

0.
4

0.
6

0.
8

1.
0

pc3

AU
C

1 5 9

0.
4

0.
6

0.
8

1.
0

pc4

AU
C

1 5 9

0.
4

0.
6

0.
8

1.
0

pc5

AU
C

1 5 9

0.
4

0.
6

0.
8

1.
0

ar4

AU
C

Fig. 5 Box-plots of 10%, 50%, and 90% training subset models built from design metrics, measured by
AUC. On x-axis, “1” stands for 10%; “5” stands for 50%; “9” stands for 90%.

14

4.1.2 Code metrics models

CD= 2.728

12345

cm1)([]
jm1)([]
kc1)([]
kc3)([]
kc4)([]
mc1)([]
mc2)([]
mw1)([]
pc1)([]
pc2)([]
pc3)([]
pc4)([]
pc5)([]
ar4)([]

10%
25%
50%
75%
90%

CD= 2.728

12345

cm1)([]
jm1)(
kc1)([]
kc3)([]
kc4)([]
mc1)([]
mc2)([]
mw1)([]
pc1)([]
pc2)([]
pc3)([]
pc4)([]
pc5)([]
ar4)([]

10%
25%
50%
75%
90%

(a) AUC (b) AUCUL

Fig. 6 The Friedman test on code metrics models evaluated using (a) AUC and (b) AUCUL

We repeated the same statistical analysis procedure for the models derived from code
metrics.

Using AUC (AUCUL) as measurement, from Figure 6, we can see that:

1. For 8 (10) data sets lower cluster includes models developed from 10% to 50% of mod-
ules.

2. For 6 (3) data sets lower cluster includes models developed from 10% to 75% or mod-
ules.

3. For 5 (9) data sets the high cluster includes models developed from 50% to 90%.
4. For 9 (4) data sets the high cluster includes models developed from 25% to 90%.
5. In jm1, all five models are included in the same performance cluster

Similar to design metrics based models, code metrics models evaluated through AUC
and AUCUL result only in minor differences in ranks and clustering.

Table 6 shows median values of the AUC and variances for the models built from 10%,
50%, and 90% training subsets, as well as their comparison. Figure 7 shows the corre-
sponding box-plot diagrams. We note that performance increases due to the growing size of
training samples in code metrics based fault prediction models are more modest than in case
of models built from design metrics. However, the magnitude of performance improvement
varies between different projects and is difficult to anticipate.

15

Table 6 AUC median and variance for models built from 10%, 50%, and 90% of modules for training using
code metrics

data m10% v10% m50% v50% m90% v90%
m50%
m10%

− 1
m90%
m10%

− 1
m90%
m50%

− 1

cm1 0.61 0.0054 0.69 0.0019 0.72 0.0112 13.11% 18.03% 4.35%
jm1 0.69 1e-04 0.72 2e-04 0.72 7e-04 4.35% 4.35% 0
kc1 0.77 0.0011 0.8 3e-04 0.8 0.0017 3.9% 3.9% 0
kc3 0.68 0.0212 0.78 0.0041 0.84 0.0273 14.71% 23.53% 7.69%
kc4 0.57 0.0088 0.62 0.0082 0.65 0.024 8.77% 14.04% 4.84%
mc1 0.79 0.015 0.92 0.0065 0.94 0.0092 16.46% 18.99% 2.17%
mc2 0.61 0.0066 0.67 0.0032 0.7 0.0224 9.84% 14.75% 4.48%
mw1 0.71 0.016 0.79 0.0047 0.84 0.0281 11.27% 18.31% 6.33%
pc1 0.7 0.0103 0.8 0.0037 0.83 0.0113 14.29% 18.57% 3.75%
pc2 0.59 0.0341 0.8 0.0139 0.89 0.0338 35.59% 50.85% 11.25%
pc3 0.75 0.0025 0.81 5e-04 0.82 0.0036 8% 9.33% 1.23%
pc4 0.84 0.0046 0.9 0.0036 0.9 0.0055 7.14% 7.14% 0
pc5 0.93 5e-04 0.95 3e-04 0.95 5e-04 2.15% 2.15% 0
ar4 0.7 0.0293 0.79 0.0089 0.81 0.0853 12.86% 15.71% 2.53%

1 5 9

0.
4

0.
6

0.
8

1.
0

cm1

AU
C

1 5 9

0.
4

0.
6

0.
8

1.
0

jm1

AU
C

1 5 9

0.
4

0.
6

0.
8

1.
0

kc1

AU
C

1 5 9

0.
4

0.
6

0.
8

1.
0

kc3
AU

C

1 5 9

0.
4

0.
6

0.
8

1.
0

kc4

AU
C

1 5 9

0.
4

0.
6

0.
8

1.
0

mc1

AU
C

1 5 9

0.
4

0.
6

0.
8

1.
0

mc2

AU
C

1 5 9

0.
4

0.
6

0.
8

1.
0

mw1

AU
C

1 5 9

0.
4

0.
6

0.
8

1.
0

pc1

AU
C

1 5 9

0.
4

0.
6

0.
8

1.
0

pc2

AU
C

1 5 9

0.
4

0.
6

0.
8

1.
0

pc3

AU
C

1 5 9

0.
4

0.
6

0.
8

1.
0

pc4

AU
C

1 5 9

0.
4

0.
6

0.
8

1.
0

pc5

AU
C

1 5 9

0.
4

0.
6

0.
8

1.
0

ar4

AU
C

Fig. 7 Box-plot diagrams of fault prediction models built from 10%, 50%, and 90% of data using code
metrics, measured by AUC. On x-axis, “1” stands for 10%; “5” stands for 50%; “9” stands for 90%.

16

CD= 2.728

12345

cm1)([]
jm1)(
kc1)([]
kc3)([]
kc4)([]
mc1)([]
mc2)([]
mw1)([]
pc1)([]
pc2)([]
pc3)([]
pc4)([]
pc5)([]
ar4)([]

10%
25%
50%
75%
90%

CD= 2.728

12345

cm1)([]
jm1)(
kc1)([]
kc3)([]
kc4)([]
mc1)([]
mc2)([]
mw1)([]
pc1)([]
pc2)([]
pc3)([]
pc4)([]
pc5)([]
ar4)([]

10%
25%
50%
75%
90%

(a) AUC as measurement (b) AUCUL as measurement

Fig. 8 The Friedman test on all metrics (a) AUC and (b) AUCUL

4.1.3 All metrics

All metrics refers to the entire set of module attributes available for each fault prediction data
set. These attributes include design and code metrics, as well as some software measures that
combine them.

The results of the ranking analysis for the incremental learning experiment with all
metrics, using AUC (and AUCUL) as performance evaluation measures, are shown in Fig-
ure 8(a) and (b). A quick summary follows:

1. Regardless of the evaluation technique, jm1 does not show statistically significant dif-
ference for any training method.

2. There are 10 (5) data sets for which the lower cluster includes models trained from 10%,
to 50% subsets of available modules.

3. There are 3 (8) data sets for which the lower cluster includes models trained from 10%,
to 75% subsets of available modules.

4. There are 7 (5) data sets for which the higher performance cluster includes models
trained from 50%, to 90% subsets of available modules.

5. There are 6 (8) data sets for which the higher performance cluster includes models
trained from 25%, to 90% subsets of available modules.

Table 7 shows median values of the AUC and variances for the models built from 10%,
50%, and 90% training subsets, as well as their comparison. Figure 9 shows the correspond-
ing box-plot diagrams. An interesting observation inferred from Table 7 is that in case of
a comprehensive metrics attributes, fault prediction models do not degrade when the size
of the training set grows. This is similar to code metrics models, but different from models
which use design information only.

The analysis of all the experiments leads to the following perspective. Regardless of
the type of metrics used for model development (design, code, all), fault prediction models

17

Table 7 AUC median and variance for models built from 10%, 50%, and 90% of modules for training using
all metrics

data m10% v10% m50% v50% m90% v90%
m50%
m10%

− 1
m90%
m10%

− 1
m90%
m50%

− 1

cm1 0.61 0.0054 0.69 0.0019 0.72 0.0112 13.11% 18.03% 4.35%
jm1 0.69 1e-04 0.72 2e-04 0.72 7e-04 4.35% 4.35% 0
kc1 0.77 0.0011 0.8 3e-04 0.8 0.0017 3.9% 3.9% 0
kc3 0.68 0.0212 0.78 0.0041 0.84 0.0273 14.71% 23.53% 7.69%
kc4 0.57 0.0088 0.62 0.0082 0.65 0.024 8.77% 14.04% 4.84%
mc1 0.79 0.015 0.92 0.0065 0.94 0.0092 16.46% 18.99% 2.17%
mc2 0.61 0.0066 0.67 0.0032 0.7 0.0224 9.84% 14.75% 4.48%
mw1 0.71 0.016 0.79 0.0047 0.84 0.0281 11.27% 18.31% 6.33%
pc1 0.7 0.0103 0.8 0.0037 0.83 0.0113 14.29% 18.57% 3.75%
pc2 0.59 0.0341 0.8 0.0139 0.89 0.0338 35.59% 50.85% 11.25%
pc3 0.75 0.0025 0.81 5e-04 0.82 0.0036 8% 9.33% 1.23%
pc4 0.84 0.0046 0.9 0.0036 0.9 0.0055 7.14% 7.14%% 0
pc5 0.93 5e-04 0.95 3e-04 0.95 5e-04 2.15% 2.15% 0
ar4 0.7 0.0293 0.79 0.0089 0.81 0.0853 12.86% 15.71% 2.53%

1 5 9

0.
4

0.
6

0.
8

1.
0

cm1

AU
C

1 5 9

0.
4

0.
6

0.
8

1.
0

jm1

AU
C

1 5 9

0.
4

0.
6

0.
8

1.
0

kc1

AU
C

1 5 9

0.
4

0.
6

0.
8

1.
0

kc3
AU

C

1 5 9

0.
4

0.
6

0.
8

1.
0

kc4

AU
C

1 5 9

0.
4

0.
6

0.
8

1.
0

mc1

AU
C

1 5 9

0.
4

0.
6

0.
8

1.
0

mc2

AU
C

1 5 9

0.
4

0.
6

0.
8

1.
0

mw1

AU
C

1 5 9

0.
4

0.
6

0.
8

1.
0

pc1

AU
C

1 5 9

0.
4

0.
6

0.
8

1.
0

pc2

AU
C

1 5 9

0.
4

0.
6

0.
8

1.
0

pc3

AU
C

1 5 9

0.
4

0.
6

0.
8

1.
0

pc4

AU
C

1 5 9

0.
4

0.
6

0.
8

1.
0

pc5

AU
C

1 5 9

0.
4

0.
6

0.
8

1.
0

ar4

AU
C

Fig. 9 Box-plot diagrams of fault prediction models built from 10%, 50%, and 90% of data using all metrics,
measured by AUC. On x-axis, “1” stands for 10%; “5” stands for 50%; “9” stands for 90%.

18

should be built as early as an initial set of modules becomes available. Using 10% of project
modules for this purpose results in models that are statistically as good as those developed
from 50% or sometimes even 75% of project modules. Larger training set generally helps
improve model performance, but the cost of incremental model rebuilding should be com-
pared with the performance benefits. When justified, model rebuilding does not need to be
a continual or a frequent activity. Rather, models could be built early and, possibly, updated
at the mid point of the development.

These experiments further revealed that, in general, AUC and AUCUL offer similar
performance evaluation indices. For this reason, in the remaining experiments, we will only
report AUC.

4.2 Comparison of design, code, and all metrics models

The increase in size of available data for model definition is only one aspect in the incre-
mental development of fault prediction models. The other opportunity comes from the fact
that design artifacts and their metrics are typically available before the modules are imple-
mented and code metrics can be computed. In rapid prototyping or agile processes, a few
modules will be developed, implemented and tested in the first few process cycles. Their
fault proneness status can be used to build models predicting the quality of design or code
artifacts. Therefore, the question of comparing the performance of fault prediction models
built from different types of metrics is important.

To guide statistical analysis comparing design, code, and all metrics based models, we
define the following hypotheses:
H0: There is no difference in the performance of fault prediction of models developed using
the three metrics groups.
vs.
Hα: Fault prediction models built from (at least) one of the three metrics groups offer sig-
nificantly different performance.

The lesson learned in the previous section is that fault prediction models do not need
frequent updates. For this reason, we decided it will be sufficient to compare design, code,
and all models built from 10% and 50% of the modules only.

Figure 10 depicts box-plot diagrams for experiments with all the 14 data sets. The di-
agrams compare the performance of models which use design, code, and all metrics built
from 10% subsets. The performance measure in these experiments is AUC. The box-plots
indicate that the majority of models built from all metrics outperform those built from code
metrics, which in turn outperform design metrics models. The statistical significance of
these results will be tested following the Demsar’s procedure [17]. It is worth mention-
ing here that the reported performance reflects models which use all five classification al-
gorithms. While there are differences between classification algorithms, reporting median
AUC across all of them (following 10-way cross validation of each) minimizes the impact
of the classifier and emphasizes the inherent properties of metrics data sets. We study the
impact of classification algorithms in the next section, but if Lessman’s results [30] are
correct, models developed using different algorithms are not likely to have statistically sig-
nificant performance differences.

Following the notation introduced earlier, Figure 11 introduces performance clusters
based on the value of the Critical Distance, which for this experiment assumes value CD =
1.48. Enclosure of two or more models within either round brackets (lower performance

19

a c d

0.
4

0.
6

0.
8

1.
0

cm1

AU
C

a c d

0.
4

0.
6

0.
8

1.
0

jm1

AU
C

a c d

0.
4

0.
6

0.
8

1.
0

kc1

AU
C

a c d

0.
4

0.
6

0.
8

1.
0

kc3

AU
C

a c d

0.
4

0.
6

0.
8

1.
0

kc4

AU
C

a c d

0.
4

0.
6

0.
8

1.
0

mc1

AU
C

a c d

0.
4

0.
6

0.
8

1.
0

mc2

AU
C

a c d

0.
4

0.
6

0.
8

1.
0

mw1

AU
C

a c d

0.
4

0.
6

0.
8

1.
0

pc1

AU
C

a c d

0.
4

0.
6

0.
8

1.
0

pc2

AU
C

a c d

0.
4

0.
6

0.
8

1.
0

pc3

AU
C

a c d

0.
4

0.
6

0.
8

1.
0

pc4

AU
C

a c d

0.
4

0.
6

0.
8

1.
0

pc5

AU
C

a c d

0.
4

0.
6

0.
8

1.
0

ar4

AU
C

Fig. 10 Box-plot diagrams compare the performance of models built from design (d), code (c), and all (a)
metrics using 10% subset.

cluster) or square brackets (higher performance cluster) indicate that they do not exhibit
statistically distinguishable performance. We summarize the findings below.

– The performance of design metrics models is ranked the lowest in 13 out of 14 data
sets. The exception is project kc4 in which code metrics model was the weakest one. In
pc5, the rank of design and code models overlaps.

– The performance of all metrics models is ranked the best in 9 out of 14 data sets.
– The performance of code metrics models is ranked the best at 5 out of 14 data sets.
– The rank distance between design and code models is typically greater than the distance

between code and all models.

From the statistical significance point of view:

– In 6 projects, design, code and all models demonstrate no significant difference.
– In 5 data sets, design, code and all fault prediction models form two performance clus-

ters: design and code models form the lower cluster, code and all form the higher per-
formance cluster.

– In 3 data sets the lower cluster includes design and all models, while all and code form
the higher cluster.

20

CD= 1.48

123

cm1 ()[]
jm1 ()[]

kc1 ()

kc3 ()[]

kc4 ()[]

mc1 ()[]

mc2 ()

mw1 ()
pc1 ()[]
pc2 ()
pc3 ()[]
pc4 ()[]
pc5 ()

ar4 ()

des
cod
all

Fig. 11 Statistical performance ranks of design, code, and all models built using 10% of data for training.

We repeated the same analysis using models built from 50% subsets of data sets. The
box-plot diagrams are presented in Figure 12. The summary of the findings about models
built from 50% data subsets is very similar to those we had about models built from 10%
subsets.

More interesting observations emerge from the diagram in Figure 13. Using 50% of
data for model development seems to stabilize performance trends. For example, except in
kc4, in all other data sets design metrics models offer the inferior performance. Even more
interestingly, models built from all metrics outperform other models in all data sets. Please
note that this was not the case with models built from 10% of data, where in 5 projects code
models outperformed those drawing from all metrics as attributes.

Further statistical analysis of models built from the 50% subsets reveals that:

1. Only one data set, mw1, offers design, code and all models with statistically indistin-
guishable performance.

21

a c d

0.
4

0.
6

0.
8

1.
0

cm1

AU
C

a c d

0.
4

0.
6

0.
8

1.
0

jm1

AU
C

a c d

0.
4

0.
6

0.
8

1.
0

kc1

AU
C

a c d

0.
4

0.
6

0.
8

1.
0

kc3

AU
C

a c d

0.
4

0.
6

0.
8

1.
0

kc4

AU
C

a c d

0.
4

0.
6

0.
8

1.
0

mc1

AU
C

a c d

0.
4

0.
6

0.
8

1.
0

mc2

AU
C

a c d

0.
4

0.
6

0.
8

1.
0

mw1

AU
C

a c d

0.
4

0.
6

0.
8

1.
0

pc1

AU
C

a c d

0.
4

0.
6

0.
8

1.
0

pc2

AU
C

a c d

0.
4

0.
6

0.
8

1.
0

pc3

AU
C

a c d

0.
4

0.
6

0.
8

1.
0

pc4

AU
C

a c d

0.
4

0.
6

0.
8

1.
0

pc5

AU
C

a c d

0.
4

0.
6

0.
8

1.
0

ar4

AU
C

Fig. 12 Box-plot diagrams compare the performance of models built from design (d), code (c), and all (a)
metrics using 50% of data for training.

2. In the remaining 13 data sets, the three models form two performance clusters. Except
in kc4, all and code models form the higher performance cluster. In kc4, all and design
models form the higher performance cluster.

We summarize the findings emerging from experimentation with design, code and all
metrics models built from 10% and 50% subsets as follows:

1. Although code metrics models typically outperform design metrics models, the differ-
ence in their performance measured by AUC index is not statistically significant.

2. Whenever possible, fault prediction models should be developed using a combination
of design and code metrics. all metrics models typically outperform design and code
metrics models. The difference in performance between all metrics models and design
metrics models is typically statistically significant.

3. Larger model training data sets, in this case 50% subsets, stabilize the expected model
performance. More specifically, models built from 50% subsets almost uniformly offer
two rank performance clusters (design and code vs. code and all). In almost half of the
models built from 10% data subsets, the performance of design, code and all forms one
rank performance cluster, i.e., their performance is statistically indistinguishable.

22

CD= 1.48

123

cm1 ()[]
jm1 ()[]

kc1 ()[]

kc3 ()[]

kc4 ()[]

mc1 ()[]

mc2 ()[]

mw1 ()
pc1 ()[]
pc2 ()[]
pc3 ()[]
pc4 ()[]
pc5 ()[]

ar4 ()[]

des
cod
all

Fig. 13 Statistical performance ranks of design, code, and all models built using 50% of data for training.

An interesting question arises regarding kc4 data set, in which design metrics outper-
form code metrics. While all other projects use C, C++ or Java, kc4 relies on the scripting
language Perl. The use of Perl is an obvious project anomaly (in the context of the data sets
included in this study) and a possible cause for much higher proportion of faulty modules
in kc4 (48%). While we cannot offer a more detailed analysis of the causes of anomalous
manifestations in fault prediction models for this data set, we are inclined to suggest a more
thorough research consideration be given to software quality for projects which use scripting
languages like Perl.

4.3 Comparing models developed using different classifiers

In the experiments reported so far, our results reflect median model performances achieved
using all the five classification algorithms listed in Table 3. As we mentioned, by collapsing
the performance of all the classifiers and models into a single performance index (AUC),

23

we intended to emphasize the inherent properties of metrics data sets. In this section, we
reveal the performance impact of different classification algorithms.

A recent study by Lessmann et. al. [30] indicates that most classification algorithms do
not offer models which exhibit statistically significant performance differences. Sixteen out
of 19 algorithms included in their study belong to a ”higher” rank cluster. In addition to the
10 data sets included in Lessmann’s study, we use four additional project data sets: mc1,
mc2, pc5, and ar4. Out of the five classifiers in our study three (random forest, logistic re-
gression and Naive Bayes) were reported by Lessmann to achieve statistically indistinguish-
able performance. Further, Lessmann reports results only from all metrics models using 2

3
of the data for training. We find some very interesting observations by experimenting with
the three types of metric sets (design, code, all) and by increasing the size of the training
subset (10% to 90%). An additional difference between the two studies reflects our opinion
that software quality practitioners are most likely to use off-the-shelf classifiers with their
default parameter values. We follow this principle in our study and report median results
from 10-way cross validation. Lessmann et. al. use grid-search approach to find an opti-
mal combination of algorithmic hyper-parameters which maximize the performance of each
classifier and report the mean values of AUC.

Our statistical hypotheses for this experiment can be formulated as follows:
H0: Fault prediction models developed from the same data sets using five different classifi-
cation algorithms do not result in statistically different performance.
vs.
Hα: At least two classification algorithms provide models whose performance is signifi-
cantly different.

Figure 14 depicts the outcome of our experiments analyzed through Demsar’s proce-
dure. The 15 experiments (lines in Figure 14) reflect the three metrics groups and the five
sizes of training subsets.

These results can be summarized as follows:

– Regardless of the classification algorithm, for all sizes of training subsets, models de-
veloped from design metrics have statistically indistinguishable performance.

– For all sizes of training subsets, models developed from all metrics are grouped in two
performance rank clusters; Random forest models are consistently in the higher rank
cluster.

– Code metrics models fall in between. When trained on 10% to 50% of the data, they
result in two rank clusters. When trained on larger subsets, all models fall into the single
performance rank clusters.

These are very interesting insights. For all and code metrics models, we can infer that
the choice of classification algorithm in mature data sets (those where we train from larger
subsets), consistent with Lessmann’s results, matters less than when they are built early.
When the samples come earlier in the development life cycle from a smaller number of
completed modules (10% or 25%), the choice of the classification algorithm matters more.

To gain better insights into these experiments, in Tables 8, 9, and 10 we preview median
AUC and variances from models developed for each data set. The top median AUC for each
project is marked in bold. We decided to report these values from experiments in which
models are trained using 50% of the available data. Models build from 50% subsets are
almost always statistically similar to those developed from larger and smaller data subsets.
These tables report the results which support box-plot diagrams shown in Figure 12. The
box-plots do not differentiate the performance of five classification algorithms, while the
tables do.

24

CD= 1.63

12345

 a_10)([]
 a_25)([]
 a_50)([]
 a_75)([]
 a_90)([]
 c_10)([]
 c_25)([]
 c_50)([]
 c_75)(
 c_90)(
 d_10)(
d_25)(
d_50)(
d_75)(
d_90)(

log
nb
bst
bag
rf

Fig. 14 Comparison of classification algorithms over different sizes of training subset and three metric
groups. Labels “a 10” (or “d 50”), for example, stand for all (design) metrics and 10% (50%) training
subset. The reported results reflect performance ranks over all 14 data sets.

From performance ranks in Figure 14, we find that random forest classifier achieves
the highest average rank for all and code metrics models. Of course, this does not mean
that random forests perform the best for each data set and training subset size. Tables 10)
and 9 reveal that almost half of code metrics models and a quarter of all metrics models
feature a different classifier as the best one. This is not surprising and practitioners should
be prepared to try out different classification algorithms. Given that applying off-the-shelf
classifiers with (mostly) default parameter values is not costly or difficult, the exercise may
be worth the effort. However, looking back on Figure 14, in many cases the differences will
be at the margin of statistical significance.

The three tables also reveal that AUC indices across the five classifier models (within
each row) are similar to each other. in For example, in Table 10, all classifiers almost per-
form very well on the pc5 data set and quite poorly for mc2 data set. It is evident that the
performance of a fault prediction model is determined by the characteristics of the data sets,

25

Table 8 Median and variance AUC from design metrics models built from 50% training subsets.

data bag bst log nb rf
median var median var median var median var median var

cm1 0.59 0.0023 0.57 0.0026 0.57 0.0017 0.59 9e-04 0.54 0.0018
jm1 0.67 0 0.67 0 0.68 0 0.63 4e-04 0.63 1e-04
kc1 0.73 5e-04 0.74 4e-04 0.74 5e-04 0.74 3e-04 0.68 4e-04
kc3 0.71 0.0167 0.73 0.0108 0.7 0.0151 0.79 0.004 0.74 0.0073
kc4 0.79 0.0011 0.76 0.0018 0.77 0.002 0.79 9e-04 0.75 0.0017
mc1 0.65 0.0067 0.6 0.0035 0.63 0.002 0.52 0.0034 0.74 0.0023
mc2 0.65 0.0022 0.62 0.0029 0.59 0.0027 0.68 0.0027 0.62 0.0026
mw1 0.76 0.0028 0.77 0.0019 0.75 0.0063 0.79 0.0016 0.71 0.0028
pc1 0.68 0.0023 0.66 0.0012 0.62 0.0021 0.63 0.004 0.68 0.0024
pc2 0.6 0.0091 0.71 0.0035 0.61 0.0202 0.79 0.0041 0.57 0.0094
pc3 0.73 4e-04 0.72 3e-04 0.73 4e-04 0.68 0.0016 0.73 4e-04
pc4 0.79 4e-04 0.79 3e-04 0.81 2e-04 0.75 0.0011 0.74 4e-04
pc5 0.96 1e-04 0.96 0 0.94 1e-04 0.94 1e-04 0.95 1e-04
ar4 0.7 0.01 0.68 0.0071 0.64 0.0108 0.76 0.0051 0.72 0.0041

Table 9 Median and variance AUC from code metrics models built from 50% training subsets.

data bag bst log nb rf
median var median var median var median var median var

cm1 0.71 0.0018 0.66 0.0014 0.69 9e-04 0.67 0.0013 0.72 9e-04
jm1 0.72 0 0.71 1e-04 0.71 0 0.69 0 0.72 0
kc1 0.8 3e-04 0.79 3e-04 0.79 3e-04 0.79 2e-04 0.8 2e-04
kc3 0.77 0.0037 0.76 0.0037 0.76 0.0071 0.82 0.0022 0.79 0.0014
kc4 0.67 0.0021 0.66 0.0011 0.53 0.0026 0.55 0.0105 0.63 0.0039
mc1 0.94 0.0046 0.95 1e-04 0.88 0.0017 0.8 0.0046 0.96 0.0012
mc2 0.63 0.0038 0.64 0.0024 0.69 0.0046 0.69 0.0011 0.67 0.002
mw1 0.78 0.0051 0.8 0.0022 0.75 0.0089 0.82 0.002 0.79 0.0024
pc1 0.81 0.0017 0.79 0.0011 0.8 0.0015 0.7 0.0036 0.84 0.001
pc2 0.73 0.0226 0.87 0.0064 0.72 0.0093 0.85 0.0044 0.81 0.007
pc3 0.81 3e-04 0.81 3e-04 0.81 5e-04 0.78 5e-04 0.82 4e-04
pc4 0.91 1e-04 0.91 1e-04 0.84 4e-04 0.77 0.0012 0.92 1e-04
pc5 0.96 0 0.95 0 0.93 1e-04 0.93 0 0.97 0
ar4 0.78 0.0079 0.82 0.0069 0.67 0.0087 0.81 0.0054 0.8 0.0052

rather than the differences between the classification algorithms. Similar variances represent
further evidence.

It is also interesting to note that random forest classifier does not appear to rank well on
design metrics models, although its results belong to the same rank cluster with the other
four algorithms. The number of attributes representing design metrics is lower than the
number of attributes in code and, especially, all models. It is known [10] that the strength
of random forest classifier are the data sets with a large number of attributes and a large
number of instances.

4.4 Discussion

Projects which follow iterative development processes, such as rapid prototyping or even
extreme programming, offer the opportunity for the incremental development of fault pre-
diction models. Our experiments indicate that:

– Fault prediction models from relatively small subsets of project modules (10%, for ex-
ample) achieve meaningful performances.

26

Table 10 Median and variance AUC from all metrics models built from 50% training subsets.

data bag bst log nb rf
median var median var median var median var median var

cm1 0.73 0.001 0.71 0.0019 0.70 0.0024 0.70 0.0011 0.76 8e-04
jm1 0.73 0 0.71 1e-04 0.71 0 0.69 0 0.74 0
kc1 0.8 1e-04 0.79 3e-04 0.79 2e-04 0.79 1e-04 0.81 1e-04
kc3 0.72 0.0052 0.76 0.0027 0.53 0.0166 0.80 0.0023 0.78 0.0015
kc4 0.82 0.0014 0.80 0.0024 0.81 0.0036 0.78 0.0025 0.82 0.0014
mc1 0.96 0.0048 0.95 2e-04 0.94 0.0039 0.80 0.0019 0.98 8e-04
mc2 0.67 0.0032 0.65 0.0047 0.64 0.0049 0.72 0.0014 0.70 0.0031
mw1 0.77 0.0048 0.79 0.0047 0.72 0.0063 0.82 0.0019 0.79 0.003
pc1 0.82 0.0013 0.80 9e-04 0.76 0.0047 0.77 7e-04 0.85 5e-04
pc2 0.74 0.0347 0.85 0.0048 0.65 0.0185 0.87 0.004 0.83 0.0071
pc3 0.81 3e-04 0.81 3e-04 0.82 7e-04 0.78 0.0017 0.83 3e-04
pc4 0.92 2e-04 0.92 1e-04 0.90 3e-04 0.84 3e-04 0.94 1e-04
pc5 0.97 0 0.96 0 0.95 1e-04 0.94 0 0.97 0
ar4 0.78 0.0036 0.84 0.0058 0.68 0.0067 0.80 0.0054 0.81 0.0035

– These early models do not need to be updated frequently. Models built from 50% of the
modules almost always belong to the best performance rank cluster, i.e., their perfor-
mance is statistically indistinguishable from the models that could be built later in the
project development cycle.

– Models built from design metrics metrics achieve meaningful performance. In principle,
design metrics of reused modules can be utilized to evaluate the designs of new modules
to identify problem areas possibly even before implementation.

– Models which combine design and code metrics attributes typically outperform design
metric based models by a statistically significant margin. Therefore, we conclude that
combining design and code metrics when modeling fault prediction is desirable. The
type of metrics used for modeling impacts model performance more than the selection
of the classification algorithm.

– Using multiple classification algorithms to build fault prediction models should be a rec-
ommended practice. Especially when models are built from smaller subsets of available
modules, different classifiers are likely to offer statistically meaningful performance dif-
ferences.

5 Related Work

Although the choice of software metrics is important in the prediction of fault-proneness,
comparing the effectiveness of design and code metrics received limited attention. To the
best of our knowledge, the paper by Zhao et. al. is unique as it compares the performance
of design and code metrics in the prediction of software fault content. They compared fault
prediction models built from design metrics, code metrics, and the combination of design
and code metrics in the context of a large real-time telecommunication system. Their design
metrics are a modified version of McCabe’s cyclomatic complexity, extracted from Specifi-
cation Description Language (SDL). They used regression equations to fit the three groups
of metrics and R2 statistic to evaluate the performance of the models. Their findings are
similar to ours: (1)the design and code metrics are correlated with the number of faults; (2)
some improvement can be achieved if both design metrics and code metrics are used for
prediction. While their findings are based on the analysis of a single data set, we use 14 data

27

sets and our conclusions, based on sound statistical testing, indicate significant difference
gained from the application of all metrics.

Menzies et. al. [36] select the “best” two or three attributes from 10 MDP data sets
(the same data sets are included in our experiments). Halstead metrics, which we classify as
code metrics, appear on the list of “best” attributes much mode often than McCabe metrics
(which we classify as design metrics). A study conducted by Xu et. al. [55] compare twelve
metrics are extracted from the Large Sky Area Multi Object Spectroscopic Telescope project
in China. They conclude that the most useful individual metrics for fault prediction are
Halstead program difficulty, the number of executable statements, and Halstead program
volume. Cyclomatic complexity and related metrics fared low on their list. In these studies,
Halstead metrics, part of our code metrics suite appear to be better predictors of fault content
than the metrics from the McCabe group.

Requirement metrics have been used to predict fault prone software modules [24,25,
32]. Malaiya et. al. examined the relationship between requirement changes and fault den-
sity and found a positive correlation [32]. Javed et al. [24] investigate the impact of require-
ment instability on software faults. In 4 industrial e-commerce projects and 30 releases they
found: (1) a significant relationship between pre/post release change requests and overall
software faults; (2) insufficient and inadequate client communication during system design
phase cause requirements changes and, consequently, software faults. Jiang and colleagues
[25] found that combining requirements level metrics with code level metrics significantly
improves the performance of fault prediction models.

One of the earliest studies of design metrics was conducted by Ohlsson and Alberg [43].
They predicted fault-prone modules prior to coding in Telephone Switches system of 130
modules at Ericsson Telecom AB. Their design metrics are derived from graphs where func-
tions and subroutines in a module are represented by one or more graphs. These graphs,
called Formal Description Language (FDL) graphs, offer a set of direct and indirect met-
rics based on the measures of complexity. The examples of direct metrics are the number of
branches, the number of graphs in modules, the number of possible connections in a graph,
and the number of paths from input to the output signals etc. The indirect metrics are the
metrics calculated from the direct metrics such as McCabe cyclomatic complexity, etc.

The suite of object oriented (OO) metrics, referred as CK metrics, has been first pro-
posed by Chidamber and Kemerer [15]. They proposed six CK design metrics including
Weight Method Per Class (WMC), Number of Children (NOC), Depth of Inheritance Tree
(DIT), Coupling Between Object class (CBO), Response For a Class (RFC), and Lack of
Cohesion in Methods (LCOM). Basili et. al. [8] were among the first to validate these CK
metrics using 8 C++ systems developed by students. They demonstrated the benefits of CK
metrics over code metrics. In 1998, Chidamber, Darcy and Kemerer explored the relation-
ship between the CK metrics and productivity, rework effort or design effort [14]. They
show that CK metrics have better explanatory power than traditional code metrics.

Predicting fault-prone software modules using metrics from design phase has recently
received increased attention [46,57,37,48]. In these studies, metrics are either extracted
from design documents or, like in our work, by mining the source code using the reverse en-
gineering techniques. Subramanyam and Krishnan predict faults from three design metrics:
Weight Method Per Class (WMC), Coupling Between Object Class (CBO), and Depth of
Inheritance Tree (DIT) [48]. The system they study is a large B2C e-commerce application
suite developed using C++ and Java. They showed that these design metrics are significantly
related to defects and that defects are strongly related to the language used. Nagappan, Ball
and Zeller [37] predict component failures using OO metrics in five Microsoft software
systems. Their results show that these metrics are suitable to predict software defects. They

28

also show that the predictors are project specific, the suggestion also mentioned by Menzies
et. al. [35].

Recovering design from source code has been a hot topic in software reverse engineering
[12,6,5]. Systa [49] recovered UML diagrams from source code using static and dynamic
code analysis. Tonella and Potrich [50] were able to extract sequence diagrams from source
code. Briand et. al. demonstrated sequence diagrams, conditions and data flow can be re-
verse engineered from Java code through transformation techniques [11].

Recently, Schroter, Zimmermann, and Zeller [46] applied reverse engineering to recover
design metrics from source code. They used 52 ECLIPSE plug-ins and found usage rela-
tionships between these metrics and past failures. The relationship they investigate is the
usage of import statements within a single release. The past failure data represents the num-
ber of failures for a single release. They collected the data from version archives (CVS)
and bug tracking systems (BUGZILLA). They built predictive models using the set of im-
ported classes of each file as independent variables to predict the number of failures of the
file. The average prediction accuracy of the top 5% is approximately 90%. Zimmermann,
Premraj and Zeller [57] further investigate ECLIPSE open source, extract object oriented
metrics along with static code complexity metrics and point out their effectiveness to pre-
dict fault-proneness. Their data set is now posted in the PROMISE [9] repository. Neuhaus,
Zimmermann, Holler and Zeller examine Mozilla code to extract the relationship of imports
and function calls to predict software components’ vulnerabilities [41].

Besides requirement metrics, design metrics, and code metrics, various other measures
have been used to predict fault prone software modules. Historical project characteristic,
developer information and social networks have all been reported as effective predictors.
Ostrand, Weyuker, and Bell [44] predict the files most likely to contain the largest numbers
of faults in the next release using modification history from previous release and the code
in the current release. Illes-Seifert and Paech investigate the relationship between software
history characteristics and the number of defects [23]. After analyzing 9 open source Java
projects, they conclude that some history characteristics, such as the number of changes and
the number of distinct authors performing changes to a file, highly correlate with faults.
Code churn, defined as the amount of code change taking place within a software unit [39],
also called cached history [29], was also reported as an effective predictor of faults.

The role of developer social networks is currently receiving significant attention . Weyuker,
Ostrand, and Bell [52] found that the addition of developer information improves the
accuracy of fault prediction models. Li et. al. analyzed 139 metrics collected from soft-
ware product, development, deployment, usage, software and hardware configurations in
OpenBSD [31]. They found that the number of messages to the technical discussion mailing
list during the development period is the best predictor of the number of field defects. Na-
gappan et. al. [40] collect 8 organizational structure complexity metrics which relate code
binary to the organizational social networks, i.e, the number of engineers, the number of
ex-engineers, edit frequency of source code, and organization intersection factors to predict
failure-proneness. They compare this model to models which use five groups of traditional
metrics (code churn, code complexity, code coverage, dependency, and pre-release bugs).
The use of organizational structure complexity metrics appears to hold a significant promise
for fault prediction.

29

6 Summary

The experiments reported in this paper have been motivated by the hypothesis that combin-
ing software metrics from different stages in the development benefits the accuracy of fault
prediction models. This motivation includes the utilization of different metrics types, those
available from software design or code, as well as the proactive use of measurements from
software modules for the development of fault prediction models when they become avail-
able during project development. Publicly available NASA MDP and Promise repositories
offer a substantial number of data sets, 14 of which we have used in the experiments. The
large number of project data sets and a rigorous statistical test procedures we applied offer
strong evidence in support of our conclusions, presented below.

The starting position for our analysis of the relative strengths of design and code metrics
in building fault prediction models comes from Zhao et. al. [56]. They claimed that design
and code models perform comparatively well and that little improvement can be achieved
if design and code metrics are jointly used in fault prediction. Our results confirm that the
performance of design and code models, measured through the area under the ROC curve, is
typically statistically indistinguishable. In other words, although code metrics based models
outperform design metrics models, the performance margin is not statistically significant. On
the other hand, the performance of models built from all metrics (which include design and
code metrics) typically outperform design models by a statistically significant margin. Our
experiments, therefore, offer support for utilizing a combination of design and code metrics
in building fault prediction models. However, if design metrics are available earlier, design
models should not be discarded as they offer meaningful fault prediction performance.

The impact the size of the fault data set used for training has on model performance is
also significant and interesting. One of the basic questions regarding the practicality of fault
prediction is: When does the project have sufficient amount of data to build a model? Before
we describe our recommendations, it is necessary to mention that in many organizations
fault information from early (or earlier) product releases has been successfully used for fault
prediction for the new release [44,52]. In organizations which practice software product
lines or those where upgrades form the majority of project releases, data sufficiency is not
a major problem. But there are many other organizations and projects which develop one-
of-a-kind systems. Thirteen out of 14 data sets we analyzed come from such environments.
These organizations must rely on the metrics from reused modules and those delivered and
tested early in the development life cycle for building fault prediction models.

Most results from our experiments which test the impact of the training data size on
the fault prediction performance are not surprising. When derived from a larger data set,
model performance improves. The interesting aspect of our results comes from statistical
hypothesis testing. In simple terms, the performance margin between models derived from
50% data subsets and those derived from just 10% is not statistically significant. Further,
models built from 50% data subsets and 90% data subsets typically belong the the same
performance cluster too (but models built from 10% and 90% do not). The implication of
this result is, we believe, very positive. Models developed from small data sets, presumably
early in the project life time, offer fault prediction capability comparable with models that
can only be developed much later. Therefore, while updating the fault prediction model is a
good idea, it does not have to be practiced often. This conclusion offers the real chance to
optimize the cost of fault prediction model development. Fault prediction models, in turn,
optimize the cost of verification and validation activities.

We believe the results from both experiments support the general hypothesis: defect
detectors can be improved by increasing the information content of the training set. There-

30

fore continuing to explore the effects of combining the attributes from multiple phases of
the development life cycle, process and business related attributes, appears to be the most
promising research direction [25,40,52].

In the third group of experiments, we examined the impact of the selection of the clas-
sification algorithm in fault prediction modeling. In the recent paper, Lessmann [30] offers
convincing arguments that most classification algorithms offer statistically the same perfor-
mance (i.e., their performance differences are not significant). One limitation of Lessmann’s
analysis is the uniform use of 2

3 of the data for model training. In our experiments we varied
the size of the training subset and the type of metrics used for training. We observed that
statistically significant differences between classification algorithms do occur when models
are developed from smaller training subsets. Further, significant differences are more likely
to occur when training from all and code metrics then from design metrics. Consequently,
we recommend experimentation with several classification algorithms, recommended in the
literature (for example [30]) for fault prediction modeling.

Combined, the outcomes of our experiments provide a good guidance for an incremental
process for software fault prediction modeling. Models can be built early, from design met-
rics and/or from relatively small subsets of available fault data. Updating such early models
is recommended. The frequency of such updates can be optimized as model performance
gains justify intermittent (sporadic) upgrades, rather than recurring ones.

We believe the results reported here have been obtained following a valid experimental
methodology, using publicly available data sets. As any other experimental study we are
aware of potential validity threats too. For example, we mentioned that the design metrics
used in the experiments have been reengineered from the code. While in principle similar
metrics can (and have been) extracted from design documentation, it is likely that the metrics
used in our experiments reflect the code more faithfully than the metrics collected at the
design stage would. Had design models demonstrated better fault prediction performance
than code models, one could argue that any reduction in the code-level details from attributes
would have a tendency to improve performance. But, design models in our experiments do
not perform as well as code models. Therefore, it seems logical that if design metrics do not
reflect code structure as close as they do in our data sets, this would likely deteriorate the
performance even further. Without additional research, we cannot offer further assurances.

It is also worth repeating here that the data sets we analyzed do not contain information
about when in the project development life time modules became available. To advocate in-
cremental model development, we made the assumption that random selection of data subset
used for training (repeated 10 times in each experiment) represents a valid sample of mod-
ules as if they became available before the modules we used for model evaluation. We are
aware that software modules that become available early might suffer from quality deficien-
cies which projects reduce as their processes mature. If fault introduction is reduced over the
life time of the project, our results about the suitability of fault prediction models built from
smaller data subsets may be overly optimistic. Also, this might imply that updating models
more frequently during the project’s life time is warranted. Unfortunately, the data sets we
use do not allow us to study this problem further.

Lastly, we did not investigate the impact of feature selection on model performance.
Feature selection algorithms minimize the number of attributes used in model development
based on some measure of their information content. Our experience with MDP datasets
indicates that a smaller number of attributes (metrics), typically a dozen or less, could offer
models that perform almost as well as the models which use the entire set of attributes
[36]. This could have an impact on the effort invested in metrics collection. But, we have
never been able to develop a model from a reduced set of attributes which outperforms

31

models developed from comprehensive attribute sets. For this reason, we believe that feature
selection is not likely to impact the validity of our results.

References

1. The R Project for Statistical Computing, available http://www.r-project.org/.
2. Do-178b and McCabe IQ. available in http://www.mccabe.com/iq_research_
whitepapers.htm.

3. Metric data program. NASA Independent Verification and Validation facility, available from http:
//MDP.ivv.nasa.gov.

4. S. H. Aljahdali, A. Sheta, and D. Rine. Prediction of software reliability: a comparison between regression
and neural network non-parametric models. ACS/IEEE International Conference on Computer Systems and
Applications, pp: 25–29, June 2001.

5. G. Antoniol, G. Canfora, G. Casazza, A. D. Lucia, and E. Merlo. Recovering tracebility links between
code and documentation. IEEE Transactions on Software Engineering, 28(10):970–983, 2002.

6. G. Antoniol, G. Casazza, M. Penta, and R. Fiutem. Object-oriented design patterns recovery. Journal of
Systems and Software, 59(2):181–196, 2001.

7. E. J. Barry, T. Mukhopadhyay, and S. A. Slaughter. Software Project Duration and Effort: An Empirical
Study. Inf. Tech. and Management,vol.3(1-2):113–136, 2002.

8. V. R. Basili, L. C. Briand, and W. L. Melo. A validation of object-oriented design metrics as quality
indicators, 1996.

9. G. Boetticher, T. Menzies and T. Ostrand. PROMISE Repository of empirical software engineering data.
Available from http://promisedata.org/, 2007.

10. L. Breiman. Random forests. Machine Learning, 45:5–32, 2001.
11. L. Briand, Y. Labiche, and J. Leduc. Toward the reverse engineering of uml sequence diagrams for

distributed java software. IEEE Transactions on Software Engineering, 32(9):642–663, 2006.
12. G. CanforaHarman and M. D. Penta. New frontiers of reverse engineering. In FOSE ’07: 2007 Future

of Software Engineering, pages 326–341, Washington, DC, USA, 2007. IEEE Computer Society.
13. V. U. Challagulla,F. B. Bastani, and I-Ling Yen, A Unified Framework for Defect Data Analysis Using

the MBR Technique. Proc. of the IEEE International Conference on Tools with Artificial Intelligence
(ICTAI’06), pages 39–46, 2006,

14. S. R. Chidamber, D. P. Darcy, and C. F. Kemerer. Managerial use of metrics for object-oriented software:
An exploratory analysis. IEEE Trans. Softw. Eng., 24(8):629–639, 1998.

15. S. R. Chidamber and C. F. Kemerer. A metrics suite for object oriented design. IEEE Trans. Softw. Eng.,
20(6):476–493, 1994.

16. W. J. Conover. Practical Nonparametric Statistics. John Wiley and Sons, Inc., 1999.
17. J. Demsar. Statistical comparisons of classifiers over multiple data sets. Journal of Machine Learning

Research, 7, 2006.
18. N. E. Fenton and M. Neil, A Critique of Software Defect Prediction Models. IEEE Transactions on

Software Engineering, vol.25(5),pp 675–689,1999.
19. N. E. Fenton, and S. L. Pfleeger, Software Metrics: A Rigorous & Practical Approach. PWS Publishing

Company,International Thompson Press, 1997.
20. L. Guo, Y. Ma, B. Cukic, and H. Singh. Robust prediction of fault-proneness by random forests. In Proc.

of the 15th International Symposium on Software Relaibility Engineering ISSRE’04, pages 417–428, 2004.
21. M. H. Halstead. Elements of Software Science. Elsevier, North-Holland, 1975,
22. Y. Higo, K. Murao, S. Kusumoto, and K. Inoue. Predicting fault-prone modules based on metrics transi-

tions. DEFECTS ’08: Proceedings of the 2008 workshop on Defects in large software systems, pages:6–10,
Seattle, Washington, 2008.

23. T. Illes-Seifert, B. Paech, Exploring the relationship of history characteristics and defect count: an
empirical study. DEFECTS, pp 11-15, 2008.

24. T. Javed, M. E. Maqsood, and Q. S. Durrani. A study to investigate the impact of requirements instability
on software defects. SIGSOFT Softw. Eng. Notes,29(3),pages 1–7, 2004.

25. Y. Jiang, B. Cukic, and T. Menzies. Fault prediction using early lifecycle data. The 18th IEEE Interna-
tional Symposium on Software Reliability, ISSRE ’07.,pages 237–246, Nov. 2007.

26. Y. Jiang, B. Cukic, and Y. Ma. Techniques for Evaluating Fault Prediction Models. Empirical Software
Engineering, accepted for publication, 2008.

27. . Jiang, B. Cukic, and T. Menzies. Cost Curve Evaluation of Fault Prediction Models. The 19th IEEE
International Symposium on Software Reliability, ISSRE ’08., Nov. 2007, (in print).

32

28. T. Khoshgoftaar, An Application of Zero-Inflated Poisson Regression for Software Fault Prediction.
Proceedings of the 12th International Symposium on Software Reliability Engineering, ISSRE’01,pages
66–73, Hong Kong, Nov. 2001.

29. S. Kim, T. Zimmermann, E. J. Whitehead Jr., and A. Zeller. Predicting Faults from Cached History. the
29th International Conference on Software Engineering,ICSE’07,pages 489–498, May, 2007.

30. S. Lessmann, B. Baesens, C. Mues, and S. Pietsch. Benchmarking classification models for software
defect prediction: a proposed framework and novel findings. IEEE Trans. Softw. Eng., vol.34(4), July-Aug.
pages:485–496, 2008.

31. P. L. Li, J. Herbsleb, and M. Shaw. Finding Predictors of Field Defects for Open Source Software
Systems in Commonly Available Data Sources: A Case Study of OpenBSD. METRICS ’05: Proceedings
of the 11th IEEE International Software Metrics Symposium, pages:32, Sept. 19-22, 2005.

32. Y. Malaiya and J. Denton. Requirement volatility and defect density. Proc. International Symposium on
Software Reliability Engineering ISSRE’99, pages 285–294, Nov. 1999.

33. T. J. McCabe. A Complexity Measure. IEEE Trans. Softw. Eng., vol.2(4):308–320, Dec. 1976.
34. T. Menzes, B. Turhan, A. Bener, G. Gay, B. Cukic, and Y. Jiang. Implications of ceiling effects in defect

predictors. PROMISE 2008.
35. T. Menzies, J. DiStefano, A. Orrego, and R. Chapman. Assessing predictors of software defects. In

Proceedings, workshop on Predictive Software Models, Chicago, 2004.
36. T. Menzies, J. Greenwald, and A. Frank. Data mining static code attributes to learn defect predic-

tors. IEEE Transactions on Software Engineering, 33(1):2–13, January 2007. Available from http:
//menzies.us/pdf/06learnPredict.pdf.

37. N. Nagappan, T. Ball, and A. Zeller. Mining metrics to predict component failures. In ICSE ’06:
Proceeding of the 28th international conference on Software engineering, pages 452–461, New York, NY,
USA, 2006. ACM Press.

38. N. Nagappan, T. Ball, and B. Murphy. Using Historical Data and Product Metrics for Early Estimation
of Software Failures. ISSRE’06, Raleigh, NC, pages 62–71, 2006.

39. N. Nagappan, and T. Ball. Use of Relative Code Churn Measures to Predict System Defect Density. the
27th International Conference on Software Engineering, ICSE’05, pages 284–292, May, 2005.

40. N. Nagappan, B. Murphy, and V. Basili. The influence of organizational structure on software quality: an
empirical case study. ICSE ’08: Proceedings of the 30th international conference on Software engineering,
Leipzig, Germany, 2008.

41. S. Neuhaus, T. Zimmermann, C. Holler, and A. Zeller. Predicting vulnerable software components.
Alexandria, Virginia, USA, 2007. CCS’07.

42. U. of Waikato. Weka software package. The University of Waikato, available http://www.cs.
waikato.ac.nz/ml/weka/.

43. N. Ohlsson and H. Alberg. Predicting fault-prone software modules in telephone switches. IEEE Trans-
actions on Software Engineering, 22(12):886–894, 1996.

44. T.J. Ostrand, E.J. Weyuker, and R. M. Bell. Predicting the location and number of faults in large software
systems. IEEE Trans. Softw. Eng. 31(4):340–355, 2005.

45. N. F. Schneidewind, Investigation of Logistic Regression as a Discriminant of Software Quality. Pro-
ceedings of the 7th International Software Metrics Symposium, pages 328–337, London,Apr. 2001.

46. A. Schröter, T. Zimmermann, and A. Zeller. Predicting component failures at design time. In ISESE ’06:
Proceedings of the 2006 ACM/IEEE international symposium on International symposium on empirical
software engineering, pages 18–27, New York, NY, USA, 2006. ACM Press.

47. S. Siegel. Nonparametric Satistics. New York: McGraw- Hill Book Company, Inc., 1956.
48. R. Subramanyam and M. S. Krishnan. Empirical analysis of ck metrics for object-oriented design com-

plexity: Implications for software defects. IEEE Trans. Softw. Eng., 29(4):297–310, 2003.
49. T. Systa. Static and dynamic reverse engineering techniques for Java software systems. PhD thesis,

2000.
50. P. Tonella and A. Potrich. Reverse engineering of object oriented code. Springer-Verlag, Berlin, Heidel-

berg, New York, 2005.
51. A. V. Lamsweerde. Requirements engineering in the year 00: a research perspective. International

Conference on Software Engineering, pages 5–19, 2000.
52. E. J. Weyuker, T. J. Ostrand, and R. M. Bell. Using Developer Information as a Factor for Fault Predic-

tion. PROMISE ’07: Proceedings of the Third International Workshop on Predictor Models in Software
Engineering,Washington, DC, USA, pages:8,2007

53. Chadd C. Williams, Jeffrey K. Hollingsworth. Automatic Mining of Source Code Repositories to Im-
prove Bug Finding Techniques. IEEE Trans. Softw. Eng., 31(6):466–480,2005.

54. I. H. Witten and E. Frank. Data Mining: Practical machine learning tools and techniques. Morgan
Kaufmann, Los Altos, US, 2005.

33

55. Z. Xu, X. Zheng, and P. Guo. Empirically Validating Software Metrics for Risk Prediction Based on
Intelligent Methods. ISDA (1), pages 1049–1054,2006.

56. M. Zhao, C. Wohlin, N. Ohlsson, and M. Xie. A comparison between software design and code metrics
for the prediction of software fault content. Information and Software Technology, 40(14):801–809, 1998.

57. T. Zimmermann, R. Premraj, and A. Zeller. Predicting defects for eclipse. In PROMISE’07: International
Workshop on ICSE Workshops 2007, pages 9–9, May 2007.

