
ISPA / SCEA 2008 Joint International Conference 

Huis ter Duin, Noordwijk, The Netherlands, 12 – 14 May 2008 

 
 2CEE, A TWENTY FIRST CENTURY EFFORT ESTIMATION METHODOLOGY 

 

 

Jairus Hihn 

Karen Lum 

Jet Propulsion Laboratory/ 

California Institute of Technology 

jhihn@jpl.nasa.gov 

ktlum@jpl.nasa.gov 

 

Tim Menzies 

Dan Baker 

Omid Jalali 

Lane Dept. CSEE 

West Virginia University 

danielryanbaker@gmail.com 

tim@menzies.us 
jalali.omid@gmail.com

 

Abstract
1
 

There exists an extensive academic literature on software cost estimation that explores techniques such as boot 

strapping, assorted analogy methods such as nearest neighbor, and even highly non-linear ‘models’ such as 

decision trees.  However, industry “best practice” virtually ignores the academic literature and continues to 

rely upon standard regression-based algorithms and most often local calibration. Local calibration only 

calibrates or tunes the main intercept and slope in a log-linear regression.  Over the past three years our 

research has been investigating the behavior and performance of these various models and calibration/tuning 

techniques using machine learning methods.  A summary of our preliminary findings was presented in 2006 at 

the 28th Annual Conference of the International Society of Parametric Analysts. While all of the analysis has 

been performed on NASA software project COCOMO data, the results should easily extend to systems and size 

estimation models.  

Our work cautions that current approaches to model specification and calibration can often produce sub-

optimal models, which are likely to be a significant contributor to the cost growth exhibited by most software 

projects.  This paper will provide an overview of the systemic cost estimation issues that have been identified, 

and a description of the best performing tuning techniques. While we have found that COCOMO is a very robust 

model, our results also indicate that local calibration using boot strapping over standard regression, combined 

with variable reduction (column pruning) and stratification (row pruning using nearest neighbor) is in the vast 

majority of experiments the most efficient and effective tuning method.   

Our research findings are captured in what we call the 21
st
 Century Effort Estimation Methodology (2cee).  

2cee has been encoded in a Windows based tool that can be used to both generate an estimate and allow the 

model developer to calibrate and develop models using these techniques.   

I. INTRODUCTION  

In the 21st century, software managers have access to many different estimation tools.  So how does one 

determine what is the right model to use over varying domains and organizations?  How does one determine the 

best way to calibrate or tune their models to a local environment?  Different commercial vendors recommend 

different methods. Whose method is better?  Are they all equally valid?  This is a more serious problem than 

generally recognized because of the underlying large variance problem that is typically found in cost and effort 

data sets [1].  The variance problem causes model brittleness and makes it difficult to distinguish performance 

across various models.  This is a pressing problem since effort estimates are often inaccurate.  Early lifecycle 

effort estimates can be inaccurate by up to 400% [2, p310].  In 2001, the Standish group reported that, 53% of 

U.S. software projects ran over 189% of the original estimate [3].  In a study of NASA software development 

projects, the most frequently identified cause (71%) of cost overrun with the largest impact (35% contribution to 

observed cost growth) was basic failures in planning, estimation & control [4].  So the question becomes, how 

can we stop project managers and sometimes cost estimators from using the wrong (i.e. sometimes the worst) 

method just because it is convenient? 

Clearly, better software estimation techniques are needed.  It became quickly apparent in the early stages of our 

research task that there was a major disconnect between the techniques used by estimation practitioners and the 

numerous ideas being addressed in the research community as has been demonstrated by the wide variety of 

estimation techniques that have been proposed in the academic literature including clustering [5], neural 
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networks [6], and case-based reasoning [7].  However, in industry, the most commonly-used formal techniques 

are parametric model and regression-based techniques such as those used in COCOMO 81 [2], COCOMO II [8], 

SEER-SEM [9], PRICE-S [10], and SLIM [11].   

Unfortunately, there are very few published studies that empirically compare this diverse set of techniques. 

Those that have, such as Briand et al. [12], Smith and Mason [13], Finnie et al. [14], Gray and MacDonnell[15], 

Mair et al. [6], and Shepperd and Kadoda [16] are limited in scope.  In addition, the commonly found studies are 

more narrowly focused, such as those conducted by Kemerer [17], Lum et al. [1], and Ferens and Christensen 

[18] that test linear regression models in different environments. Given the need, why aren’t there more studies 

comparing software effort models?  

It also became clear that many fundamental estimation questions were not being addressed: 

• What is a model’s real estimation uncertainty? 

• How many records are required to calibrate? 

o Answers have varied from 1-20 just for the intercept  

o If we do not have enough data what is the impact on model uncertainty 

• Data is expensive to collect and maintain so minimizing the number of cost drivers and effort 

multipliers is important 

o But what are the right ones to keep? 

o When should we build domain specific models? 

• What are the best functional forms? 

• What are the best ways to tune/calibrate a model? 

 

Data mining techniques provide the rigorous toolset required to explore the many dimensions of the estimation 

model calibration problem in a repeatable manner by supporting the following analysis capabilities: 

• Different calibration and validation datasets 

• Analysis of both standard and non-standard models 

• Exhaustive searches over all parameters and records in order to guide data pruning   

o Pruning rows (stratification) 

o Pruning columns (variable reduction) 

• Multiple measures for evaluating model performance 

o We have even been able to determine what performance measures are best 

This article reports on a five-year study using data mining techniques to identify the best performing models and 

best calibration techniques with an introduction to the estimation  tool (2cee) we developed to incorporate what 

we identified as best practice
2
. This paper consists of the following sections:  

• Data  

• The Conclusion Instability Problem and the Need for Non-Parametric Based Tests 

• Overview of Experiments and Results,   

• Overview of 2cee 

• Conclusion and Summary 

II. DATA  

The data used in the analysis is from the original 63 records in the COCOMO 81 dataset (Coc81) and a 

historical NASA dataset we refer to as Nasa93 as it has 93 flight and ground records form multiple NASA 

Centers that completed from the late 1970’s through the late 1980’s.  The Nasa93 data has been in the public 

domain for many years but few have been aware of it.  It can now be found at the PROMISE (Predictor Models 

in Software Engineering) web site.
3
  PROMISE is an organization of software engineers working to organize 

datasets that can be used to verify existing studies and to make data available for future research.  To participate 

in a PROMISE workshop one must promise to make their data available to the PROMISE repository. 

In this study, we used a data mining techniques to build and validate effort estimation models based on the 

COCOMO model parameters.  Over 150 model variations were studied using all or some part of two COCOMO 

81 data sets (Nasa93 and Coc81).  Each part selected some subset of the total records. The parts and data sets are 

described in more detail in Figure 1 See [19] for a more extensive write up on the data sets.  

 

                                                
2
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Coc81: has 63 records in the COCOMO 81 format

Nasa93:
has 93 NASA records in the COCOMO 81 format

All: selects all records from a particular source; e.g.. "coc81_all" and "nasa93_all"

Category:

is a NASA-specific designation selecting the type of project; e.g. avionics, data capture, etc.

Fg: selects either "f" (flight) of "g" (ground) software

Kind:

selects records relating to the development platform; max = mainframe and mic = microprocessor

Lang: selects records about different development languages

Center: nasa93  designation selecting records relating to where the software was built

Project: nasa93  designation selecting records relating to the name of the project

Mode: selects records relating to different COCOMO 81 development modes; org , sd , and e  are short 

for organic, semi-detached, and embedded (respectively)

Type: selects different COCOMO 81 designations and include "bus" (for business application) or "sys" 

(for system software)

Year: is a nasa93 term that selects the development years, grouped into units of five; e.g. 1970, 1971, 

1972, 1973, 1974 are labeled "1970"

D
a
ta

S
u

b
se

ts
/S

tr
at

if
ic

at
io

n
 C

at
eg

o
ri

es

 
Figure 1. Data and subsets used in this study. 

III. THE CONCLUSION INSTABILITY PROBLEM AND THE NEED FOR NON-PARAMETRIC 

TESTS 

A. Symptoms of Instability  

Throughout the academic literature the issue of how to correctly compare different prediction models is 

increasingly being addressed (Kitchenham et al. [20], Foss et al. [21] and Myrtveit et al. [22]).  Based on an 

analysis of two (non-COCOMO) datasets as well as simulations over artificially generated dataset, Foss et al. 

and Myrtveit et al. concluded that numerous commonly used methods such as the mean MRE (magnitude of 

relative error
4
) are unreliable measures of estimation effectiveness.  Also, the conclusions reached from these 

standard measures can vary wildly depending on which subset of the data is being used for testing [22].  Foss et 

al. comment that it  

“. . . is futile to search for the Holy Grail: a single, simple-to-use, universal goodness-of-fit kind of 

metric, which can be applied with ease to compare (different methods)”. [21, p. 993] 

This inability to compare the performance between different prediction models is what we call conclusion 

instability.  The root cause of conclusion instability is a very small number of estimates with very large errors.  

If these outliers fall into some of the subsets, then those subsets will have dramatically different performance 

results; i.e. will exhibit conclusion instability.  In other words, finding the best model is context sensitive – 

depending on the sample, the project being estimated and the evaluation criteria.   

Figure 2 demonstrates conclusion instability.  It shows two experimental runs.  In each run, 30 times, effort 

estimate models were built for our 19 subsets using two methods.  Each time, an effort model was built from a 

randomly selected 90% of the data.  Results are expressed in terms of the difference in mean magnitude of 

relative error (MMRE
5
) between the two subsets; e.g. in Run#1, method2 had a much larger mean error than 

method1. 
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Figure 2. Results of 2 different runs comparing two methods using mean 

magnitude of relative error (MMRE) values. Points on the Y-axis show the 

difference in MMRE between method1 and method2. Lower values endorse 

method2, since method2 has a lower error than method1when such values 

occur.  

 

After Run#1, the results endorse method2 since that method either (a) did better (lower errors) as method1 or (b) 

had similar performance to method1.  However, that conclusion is not stable.  Observe in Run#2 that:  

• in subsets 1, 2, 3, 7, and 11 the improvement of method2 over method1 disappeared; and  

• worse, in subsets 1, 2 and 11, method1 performed dramatically better than method2.  

The deviations seen in 30 repeats of the above procedure were quite large: within each dataset, the standard 

deviation on the MMREs was {median, max} = {150%, 649%} [19].  Port and Korte [23] have proposed a 

bootstrapping method to determine the true performance distributions of our data mining rig’s methods.  That 

method would require 102 to 103 re-samples and, given the current runtimes of our tool, it would take 102 to 

103 days to terminate.  

One troubling result from the Figure 2 study is that the number of training examples was not connected to the 

size of standard deviation.  A pre-experimental intuition was that the smaller the training set, the worse the 

prediction instability.  On the contrary, we found minor and major instability issues (i.e. MMRE standard 

deviation) for both small and large training sets [19].  That is, instability cannot be tamed by further data 

collection.  Rather, the data must be processed and analyzed in some better fashion (e.g. U-test described 

below).  

These large instabilities explain the contradictory results in the effort estimation literature.  As an illustration of 

this point Jorgensen [24] reviews fifteen studies that compare model-based to expert-based estimation.  Five of 

those studies found in favor of expert-based methods; five found no difference; and five found in favor of 

model-based estimation.  Such diverse conclusions are to be expected if models exhibit large instabilities in their 

performance as documented above.  

 

B. Diagnosing the Cause  

 

The thin line of Figure 3 is drawn by sorting the relative error
6
 (RE) seen in four of the subsets studied in Figure 

2.  Observe that while most of the actual RE values are nearly zero, an infrequent number (on the right hand 

side) are extremely large (up to 8000 in the second plot).  Such large spikes in RE result when the predicted 

values are much larger than the actual values and result from (1) noise in the data or (2) a training set that learns 

an overly steep exponential function for the effort model.  Large and infrequent outliers explain conclusion 

instability:  

• Large outliers can make mean calculations highly misleading. A single large outlier can make 

                                                
6
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the mean value far removed from the median. 

• For data sets with only a small number of outliers (e.g. Figure 3), the conclusions reached 

from different subsets can be very different, depending on the absence or presence of the 

infrequent outliers.  

 

 

re_coc81_langftn  re_nasa93_year_1975  

re_nasa93_fg_g  re_nasa93_mode_embedded  

 
Figure 3. Relative errors seen in experiments on four data sets. Thin lines show the actual 

values. Thick lines show a Gaussian distribution that uses mean and standard deviation of the 

actual values. From top to bottom, the plots are of: (top) NASA ground systems; NASA 

software written around 1975; NASA embedded software (i.e. software developed within tight 

hardware, software, and operational constraints); (bottom) some FORTRAN-based software 

systems.  

Figure 3 also illustrates how poorly standard methods assess the performance of effort estimation data.  

Demsar [25] offers a definition of standard methods in data mining.  In his study of four years of 

proceedings from the International Conference on Machine Learning, Demsar found that the standard 

method of comparative assessment were t-tests over some form of repeated sub-sampling such as cross-

validation, separate subsets, or randomized re-sampling.  Such t-tests assume that the distributions being 

studied are Gaussian and, as shown by the thick line of Figure 3, effort estimation results can be highly non-

Gaussian. These thick lines show a Gaussian cumulative distribution function computed from the means 

and standard deviations of the actual RE values (the thin lines). Observe how poorly Gaussian distributions 

model our RE results:  

• There are great differences between the actual plots (the thin lines) and the Gaussian 

approximations (the thick lines).   

• The Gaussian goes negative while none of our effort estimation methods assume that it takes less 

than no time to build software.  

C. Fixing Instability  

In the cost estimation literature, model performance between two linear regression models is compared by 

Pred(30)
7
 and then sometimes combined with the results of an F-test.  Another approach is to compare the 

MMRE and do a t-test to compare the two means.  It is well established that when the underlying distributions 

are approximately normal, then the F-test and MMRE have known properties for comparing models and provide 

accurate evaluation criteria.  However, comparing different effort estimation models correctly is fundamentally 

                                                
7
 Pred(30) is the percentage of estimates whose MRE’s were within 30% of the actual value 
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difficult because the underlying distributions have very large variances and tend to be heavily skewed.   We 

typically deal with this by assuming our models are multiplicative and working with the natural logarithms (ln) 

of the variables, which will make the normality assumptions more tenable.  However, how often do we really 

test our assumptions? If the underlying assumptions are violated, then the standard statistical tests are 

invalidated.  The problem becomes significantly worse if we want to compare non-linear models or compare 

very different types of models such as nearest neighbor with a regression-based prediction model.  Pred(30) 

which can be viewed as a variant of a rank order statistic is intuitively attractive and it is easy to compute but it 

has no known properties.  The unanswered question is how do we know if a Pred(30) of 50% is significantly 

better then a Pred(30) of 60%?  We currently do not.  The textbook response from the statistics literature is that 

non-parametric tests need to be used because non-parametric tests make no assumptions about the population or 

sample distributions.  Non-parametric tests are typically derived from computing statistics from the rank order 

of the data.  A median (fiftieth percentile) is an example of a non-parametric statistic, where the mean is not.   

Mann and Whitney’s 1947 modification [26] to the Wilcoxon rank-sum test (proposed along with his signed-

rank test) is the test we prefer because:  

• The Mann-Whitney U-test does not require that the sample sizes be the same. So, in a single U-test, 

learner L1 can be compared to all its rivals.  

• The U-test does not require any post-processing (such as the Friedman test) to conclude if the median 

rank of one population (say, the L1 results) is greater than, equal to, or less than the median rank of 

another (say, the L2, L3, .., Lx results).  

The following simple example illustrates how to apply the Mann Whitney U-test to compare two models.  In 

Figure 4 we assume that two models are being compared based on relative error in estimating data in a test set. 

Comparing the means it appear that Model A is better then Model B.  As can be seen there are different number 

of observations and that Model B has what would typically be considered an outlier.  If one were to throw out 

the outlier then the Models become equivalent based on a comparison of the means
8
. As an alternative the Mann 

Whitney U-test provides consistent results and does not tempt one to ‘arbitrarily’ discard data points.   

A B

1 -4 -2

2 -2 -1

3 0 0

4 1 2

5 3 3

6 8

Mean -0.4 1.7

Observation
Model

 
 

Figure 4: Example observed relative errors from two models that 

need to be compared to determine which is the better predictor. 

The Mann Whitney test requires that one rank order the data from both samples.  This is illustrated in Figure 5.  

The computations for the test are displayed in Figure 6.  The test concludes that these models have the same 

ranked values (at the 95% significance level).   

Model

Ordered 

Values Rank 

A -4 1

A -2 2.5

B -2 2.5

B -1 4

B 0 5.5

A 0 5.5

A 1 7

B 2 8

B 3 9.5

A 3 9.5

B 5 11  

Figure 5: Ranked Order Relative Errors from Models A and B 

                                                
8
 For this simple example the variances are very large and the mean of the two models are not significantly 

different based on at-test.  In the more complex examples described above the sample sizes are large enough that 

this problem does not arise and mean based test are a major contributor to conclusion instability. 
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Figure 6. An example of the Mann-Whitney U-test. 

 

IV. OVERVIEW OF EXPERIMENTS AND RESULTS 

A brief description of the main research results are described below. For a detailed description of the data 

mining techniques used, the experiments run and the results see [27 and 28].  In [27] we primarily documented 

the conclusion instability problem as it arose in our data sets. We used multiple evaluation techniques including 

comparing MMRE, Pred(30), along with other criteria. Sometimes local calibration was best, sometimes column 

pruning (variable reduction) helped, sometimes row pruning or stratification helped.  The best effort estimation 

model was totally context sensitive and required a comprehensive data mining rig to find the best model.  A 

major breakthrough occurred when we moved to the Mann Whitney U-test as our primary evaluation criteria, as 

reported in [28].  The best performing model is still context sensitive but the number of methods that needed to 

be considered was greatly reduced.   

 

Our final results still found that the best model was context sensitive. But more significantly it was found that 

the best methods consisted of the most commonly used techniques by cost modelers.  The experiments indicated 

that 

1.   a single linear model always beats all other models; 

2.  The best model was always produced by local calibration, column pruning, and/or row pruning  

a. Sometime a single method was best but most of the time it is a combination of methods that is 

best; and  

3.   Row pruning based on nearest neighbor search was better than manual stratification. 

The implications for cost model developers is that  

1.   we need to do our work more systematically and not heuristically ; 

2.   our core models should be tuned for each estimate based on one’s pre-defined systematic method; and 

3.   stratification should be based on a nearest neighbor distance algorithm and not a domain classification, 

such as flight software. 
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V. OVERVIEW OF 2CEE 

All of the methods described in this paper have been implemented in the software estimation tool 2cee
9
 (21

st
 

Century Effort Estimation Methodology).   2cee has been encoded in a Windows based tool that can be used to 

both generate an estimate and allow the model developer to calibrate and develop models using these techniques 

for COCOMO II data sets.   

 

 

 
Figure 7. 2cee High-Level Design 

 

The high-level design for 2cee is shown in Figure 7. A detailed description of 2cee and its performance can be 

found in D. Baker’s Masters Thesis [29].  2cee contains a number of elements some that are similar to standard 

models and others that are unique.  The unique elements arise because 2cee is both an estimation tool as well as 

a model calibration and analysis tool. 2cee stores your historical data. It allows one to both manually prune rows 

and columns and then run the automated column and nearest algorithms on the remaining records.  The 

automated algorithms allow various combinations of local calibration, column pruning, and row pruning based 

on nearest neighbor, which the results of the Mann Whitney U-test determined would produce the best models. 

Another key feature of 2cee is that it randomly divides the data to be used for tuning into a calibration set and a 

test set.  This step is performed thousands of times so that the model that performs best under the full range of 

the data can be identified.  

VI.  CONCLUSION AND SUMMARY 

Five years ago, we set out to bridge the gap between academia and the cost estimation practitioner communities. 

A wide array of academic and practitioner approaches to model development and calibration were evaluated to 

try to determine what methods were ‘best’. To achieve this goal, data mining or machine learning techniques 

were used to systematically analyze the various approaches to cost model development and tuning.  The analysis 

reported here was performed on a COCOMO 81 data set with 93 records collected from 1986 through 1996 

from software projects across NASA. A discrete internal analysis over a larger COCOMO II data set was also 

performed which supports the conclusions as reported.    

                                                
9
 2cee is available for free to US universities, US government agencies and corporations whose employees who are working on a project 

directly funded by the US government.   
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Traditional approaches to model development and tuning is to develop a simple regression model for internal 

use or to use a commercial tool that can estimate across a large number of domains. The result in the latter case 

is models with a large number of inputs.  Typically tuning to local data is done very infrequently and consists of 

adjusting some combination of the intercept, slope and range of possible values for a model input.   When using 

these models, estimators tend to provide values for all inputs even when they are not really relevant to one’s 

local domain. From a research perspective, the existing general purpose models do provide a parameter set that 

fully spans the possible space of parameters that one should consider.  

Academics derive whole new models from their data and try to compare very different models, such as analogy 

models versus regression models.  Because they approach the estimation problem from a much broader 

perspective they have run into a different set of problems – some of which are red herrings but some would 

improve the state of practice in the cost estimation community.   

The most important results with respect to how we as estimation practitioners do business are 

Use non-parametric tests more often 

From the academic literature we learned that there were difficulties determining what model is best 

because of the existence of large outliers as well as kurtosis in the underlying population distributions.  

We also ended up rediscovering that non-parametric tests, like the Mann Whitney U-test, are the more 

robust tests under these conditions. The implication is that in industry we are misusing standard Gaussian 

based tests, such as the t-test.     

Tune or calibrate our models more frequently and with a larger set of methods 

We find what is the best tuning for a model is context sensitive so that every time one estimates, a local 

tuning should be performed, but one need only consider a small number of basic methods.  These basic 

methods are a simple extension of the heuristic techniques we commonly use: local calibration, 

stratification, and column pruning.  Stratification is most effective by accounting for similarities in the 

model parameter values, not just assuming that all software projects fall in a common type (e.g. flight or 

ground data systems).  
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