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Abstract

Randomized testing has been shown to be an effective method for testing software units. However,

the thoroughness of randomized unit testing varies widely according to the settings of certain parameters,

such as the relative frequencies with which methods are called. In this paper, we describe a system which

uses a genetic algorithm to find parameters for randomized unit testing that optimize test coverage. We

compare our coverage results to previous work, and report on case studies and experiments on system

options. In order to optimize the system, we used data mining techniques to analyze which genes were

the most useful. We also report on the results of this analysis and optimization.

Index Terms

Software testing, randomized testing, genetic algorithms, data mining.

I. INTRODUCTION

XXX NOT MORE THAN 35 PAGES IN THIS FORMAT

Software testing involves running a piece of software (the software under test, or SUT) on

selected input data, and checking the outputs for correctness. The goals of software testing are
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to force failures of the SUT, and to be thorough. The more thoroughly we have tested an SUT

without forcing failures, the more sure we are of the reliability of the SUT.

Randomized testing is the practice of using randomization for some aspects of test input data

selection. Several independent studies [1]–[4] have found that randomized testing of software

units is effective at forcing failures in even well-tested units. However, there remains a question

of whether randomized testing can be thorough enough. Using various code coverage measures

to measure thoroughness, researchers have come to varying conclusions about the ability of

randomized testing to be thorough [2], [5], [6].

The thoroughness of randomized unit testing is highly dependent on parameters that control

when and how randomization is applied. These parameters include the number of method calls to

make, the relative frequency with which different methods are called, and the ranges from which

numeric arguments are chosen. The manner in which previously-used arguments or previously-

returned values are used in new method calls, which we refer to as the value reuse policy, is

also a crucial factor. It is often difficult to work out the optimal values of the parameters and

the optimal value reuse policy by hand.

In this paper, we describe Nighthawk, a system for generating unit test data. The system

can be viewed as consisting of two levels. The lower level is a randomized unit testing engine

which tests a set of methods according to parameter values specified as genes in a chromosome,

including parameters that encode a value reuse policy. The upper level is a genetic algorithm

(GA) which uses fitness evaluation, selection, mutation and recombination of chromosomes to

find good values for the genes. Goodness is evaluated on the basis of test coverage and number

of method calls performed.

Users can use Nighthawk to find good parameters, and then perform randomized unit testing

based on those parameters. The randomized testing can quickly generate many new test cases

that achieve high coverage, and can continue to do so for as long as users wish to run it.

XXXX why this is great

A. Randomized Unit Testing

Unit testing is variously defined as the testing of a single method, a group of methods, a

module or a class. We will use it in this paper to mean the testing of a group of methods,

called the target methods. A unit test is a sequence of calls to the target methods, with each
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call possibly preceded by code that sets up the arguments and the receiver1, and with each call

possibly followed by code that stores and checks results.

Randomized unit testing is unit testing where there is some randomization in the selection

of the target method call sequence and/or arguments to the method calls. Many researchers [3],

[7]–[9] have performed randomized unit testing, sometimes combined with other tools such as

model checkers.

A key concept in randomized unit testing is that of value reuse. We use this term to refer

to how the testing engine reuses the receiver, arguments or return values of past method calls

when making new method calls. In previous research, value reuse has mostly taken the form of

making a sequence of method calls all on the same receiver object.

In our previous research, we developed a GUI-based randomized unit testing engine called

RUTE-J [2]. To use RUTE-J, users write their own customized test wrapper classes, hand-coding

such parameters as relative frequencies of method calls. Users also hand-code a value reuse policy

by drawing receiver and argument values from value pools, and placing return values back in

value pools. Finding good parameters quickly, however, requires experience with the tool.

The system Nighthawk described in this paper significantly builds on this work by automati-

cally determining good parameters. The lower, randomized-testing, level of Nighthawk initializes

and maintains one or more value pools for all relevant types, and draws and replaces values in the

pools according to a policy specified in a chromosome. The chromosome also specifies relative

frequencies of methods, method parameter ranges, and other testing parameters. The upper,

genetic-algorithm, level performs a search for the parameter setting that causes the lower level

to achieve a high value of a coverage-related measure. Nighthawk uses only the Java reflection

facility to gather information about the SUT, making its general approach robust and adaptable

to other languages.

B. Contributions and Paper Organization

The main contributions of this paper are as follows.

1) We describe the implementation of a novel two-level genetic-random testing system, Nighthawk.

1We use the word “receiver” to refer to the object that a method is called on. For instance, in the Java method call “t.add(3)”,

the receiver is t.
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In particular, we describe how we encode a value reuse policy in a manner amenable to

meta-heuristic search.

2) We compare Nighthawk to other systems described in previous research, showing that it

can achieve the same coverage levels.

3) We describe the results of a case study carried out on real-world units (the Java 1.5.0

Collection and Map classes) to determine the effects of different option settings on the

basic algorithm.

4) We describe how we optimized Nighthawk by systematically analyzing which genes have

the greatest effect on the fitness of a chromosome, and eliminating genes that we found

to have little effect.

We discuss related work in section 2. In section 3, we describe the results of an exploratory

study that suggested that a genetic-random approach was feasible and could find useful parameter

settings. In section 4, we describe the design and use of Nighthawk. Section 5 contains our

comparison to previous work, and section 6 our case study; section 7 contains a discussion of

the threats to validity of the empirical work in the paper.

II. RELATED WORK

A. Randomized Unit Testing

“Random” or “randomized” testing has a long history, being mentioned as far back as 1973

[10]; Hamlet [11] gives a good survey. The key benefit of randomized testing is the ability to

generate many distinct test inputs in a short time, including test inputs that may not be selected by

test engineers but which may nevertheless force failures. There are, however, two main problems

with randomized testing: the oracle problem and and the question of thoroughness.

Since randomized testing depends on the generation of many inputs, it is infeasible to get a

human to check all test outputs; an automated test oracle [12] is needed. There are two main

approaches to the oracle problem. The first is to use general-purpose, “high-pass” oracles that

pass many executions but check properties that should be true of most software. For instance,

Miller et al. [1] judge a randomly-generated GUI test case as failing only if the software crashes

or hangs; Csallner and Smaragdakis [13] judge a randomly-generated unit test case as failing if

it throws an exception; and Pacheco et al. [3] check general-purpose contracts for units, such

as one that states that a method should not throw a “null pointer” exception unless one of its

September 2, 2008 DRAFT



IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 1, NO. 1, SEPTOBER 1999 5

arguments is null. Despite the use of high-pass oracles, all these authors found randomized

testing to be effective in forcing failures.

The second approach to the oracle problem for randomized testing is to write oracles in

order to check properties specific to the software [2], [14]. These oracles, like all formal unit

specifications, are non-trivial to write; tools such as Daikon for automatically deriving likely

invariants [15] could help here.

Since randomized unit testing does not use any intelligence to guide its search for test

cases, there has always been justifiable concern about how thorough it can be, given various

measures of thoroughness, such as coverage and fault-finding ability. Michael et al. [5] performed

randomized testing on the well-known Triangle program; this program accepts three integers as

arguments, interprets them as sides of a triangle, and reports whether the triangle is equilateral,

isosceles, scalene, or not a triangle at all. They concluded that randomized testing could not

achieve 50% condition/decision coverage of the code, even after 1000 runs. Visser et al. [6]

compared randomized unit testing with various model-checking approaches and found that while

randomized testing was good at achieving block coverage, it failed to achieve optimal coverage

for stronger coverage measures, such as a measure derived from Ball’s predicate coverage [16].

Other researchers, however, have found that the thoroughness of randomized unit testing

depends on how exactly it is implemented. Doong and Frankl [7] tested several units using

randomized sequences of method calls, and found that by varying some parameters of the

randomized testing, they could greatly increase or decrease the likelihood of finding injected

faults. The parameters included number of operations performed, ranges of integer arguments,

and the relative frequencies of some of the methods in the call sequence. Antoy and Hamlet

[8], who checked the Java Vector class against a formal specification using random input,

similarly found that if they avoided calling some of the methods (essentially setting their

relative frequencies to zero), they could cover more code in the class. Andrews and Zhang

[17], performing randomized unit testing on C data structures, found that varying the ranges

from which integer key and data parameters were chosen increased the fault-finding ability of

the random testing.

Finally, the aforementioned research by Pacheco et al. [3] enhances the thoroughness of

randomized testing by doing a partial randomized breadth-first search of the search space of

possible test cases, pruning branches that lead to redundant or illegal values which would cause

September 2, 2008 DRAFT



IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 1, NO. 1, SEPTOBER 1999 6

the system to waste time on unproductive test cases.

Of the cited approaches, the approach described in this paper is most similar to Pacheco et

al.’s. The primary difference is that we achieve thoroughness by generating long sequences of

method calls on different receivers, while they do so by deducing shorter sequences of method

calls on a smaller set of receivers. The focus of our research is also different. Pacheco et al. focus

on identifying contracts for units and finding test cases that violate them. In contrast, we focus

on maximizing code coverage; coverage is an objective measure of thoroughness that applies

regardless of whether failures have been found, for instance in situations in which most bugs

have been eliminated from a unit.

B. Analysis-Based Test Data Generation Approaches

Approaches to test data generation via symbolic execution have existed as far back as 1976

[18], [19]. Such approaches typically attempt to generate a thorough set of test cases by deducing

which combinations of inputs will cause the software to follow given paths. Korel’s TESTGEN

system [20], for example, transforms each condition in the program to one of the form or

, and then searches for values that minimize (resp. maximize) , thus causing the condition

to become true (resp. false).

Other source code analysis-based approaches have used such methods as iterative relaxation

of a set of constraints on input data [21] and generation of call sequences using goal-directed

reasoning [22]. Some recent approaches use model checkers such as Java Pathfinder [23]. These

approaches are sometimes augmented with “lossy” randomized search for paths, as in the DART

and CUTE systems [24], [25], the Lurch system [26], and the Java Pathfinder-based research of

Visser et al. [6].

Some analysis-based approaches are limited in the range of different conditions they consider;

for instance, TESTGEN’s minimization strategy [20] cannot be applied usefully to conditions

involving pointers. In addition, most analysis-based approaches incur heavy memory and pro-

cessing time costs, and are as yet infeasible except for small software units. These limitations

are the primary reason why researchers have explored the use of heuristic and metaheuristic

approaches to test case generation.
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C. Genetic Algorithms for Testing

Genetic algorithms (GAs) were first described by Holland [27]. GAs typically represent a

solution to a problem as a “chromosome”, with various aspects of the solution to the problem

represented as “genes” in the chromosomes. The possible chromosomes form a search space

and are associated with a fitness function, which typically represents how good a solution the

chromosome encodes. Search proceeds by evaluating the fitness of each of a population of

chromosomes, and then performing point mutations and recombination on the most successful

chromosomes. GAs have been found to be superior to purely random search in finding solutions

to many complex problems. Goldberg [28] argues that their power stems from being able to

engage in “discovery and recombination of building blocks” for solutions in a solution space.

Meta-heuristic search methods such as GAs have often been applied to the problem of test suite

generation. In Rela’s review of 122 applications of meta-heuristic search in software engineering

[29], 44% of the applications related to testing. Approaches to GA test suite generation can be

black-box (requirements-based) or white-box (code-based); here we focus on four representative

white-box approaches, since our approach is coverage-based and therefore also white-box.

Pargas et al. [30] represent a set of test data as a chromosome, in which each gene encodes

one input value to the software. Michael et al. [5] represent test data similarly, and conduct ex-

periments comparing various strategies for augmenting the GA search. Both of these approaches

evaluate the fitness of a chromosome by measuring how close the input is to covering some

desired statement or condition direction. Guo et al. [31] generate unique input-output (UIO)

sequences for protocol testing using a genetic algorithm; the sequence of genes represents a

sequence of inputs to a protocol agent, and the fitness function computes a measure related to

the coverage of the possible states and transitions of the agent. Finally, Tonella’s approach to

class testing [32] represents the sequence of method calls in a unit test as a chromosome; the

approach features mutation operators customized to the problem, such as one that inserts method

invocations.

D. Analytic Comparison of Approaches

Once a large community starts comparatively evaluating some technique, then evaluation

methods for different methods become just as important as the generation of new methods.

To place this comment in an historical perspective, we note that evaluation bias is an active
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Fig. 1. Spiky search space resulting from poor fitness function.

research area in the field of data mining [33], [34]. Much of our future work should hence focus

on a meta-level analysis of the advantages and disadvantages of different assessment criteria.

Currently, there are no clear conventions on how this type of work should be assessed. However,

we can attempt some analytic comparisons.

It is clear that there are situations in which a source code analysis-based approach such

as symbolic evaluation or model checking will be superior to any randomized approach. For

instance, for an if statement decision of the form (x==742 && y==113), random search of

the space of all possible x,y pairs is unlikely to produce a test case that executes the decision

in the true direction, while a simple analysis of the source code will be successful. The question

is how often these situations arise in real-world programs. The system Nighthawk of this paper

cannot guess at constants like 742, but is still able to cover the true direction of decisions of

the form x==y because the value reuse policies it discovers will often choose x and y from the

same value pool.

It is therefore likely that randomized testing and analysis-based approaches have comple-

mentary strengths. Groce et al. [4] conclude that randomized testing is a good first step, before

model checking, in achieving high quality software, especially where the existence of a reference

implementation allows differential randomized testing [35].

Genetic algorithms do not perform well when the search space is mostly flat, with steep jumps

in fitness score. Consider the problem of generating two input values and that will cover

the true direction of the decision “ == ”. If we cast the problem as a search for the two values
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Fig. 2. Smooth search space resulting from recasting problem.

themselves, and the score as whether we have found two equal values, the search space is shaped

as in Figure 1: a flat plain of zero score with spikes along the diagonal. Most approaches to GA

white-box test data generation attempt to address this problem by proposing fitness functions that

detect “how close” the target decision is to being true, often using analysis-based techniques. For

instance, Tonella [32] uses a fitness function that specifically takes account of such conditions

by measuring how close x and y are. Watkins and Hufnagel [36] enumerate and compare fitness

functions proposed for GA-based test case generation.

In contrast, in our research, we essentially recast the problem as a search for the best values

of two variables and that will be used as the lower and upper bound for random generation

of and , and the score as the probability of generating two equal values. Seen in this way,

the search space landscape still contains a spiky “cliff”, as seen in Figure 2, but the cliff is

approached on one side by a gentle slope. We further consider not only numeric data, but data

of any type.

In all the approaches to GA-based test input generation that we are aware of, each run of the

GA results in a single test case, which is meant to reach a particular target. A test suite is built

up by aiming the GA at different targets, resulting in a minimal test suite that achieves coverage

of all targets. Herein lies a potential disadvantage of such approaches. Rothermel et al. [37]

have shown that reducing a test suite to a minimal subset that achieves the same coverage can

significantly reduce its fault detection capability. The GA can of course be re-run to generate

more test cases, but there is a potential performance penalty since each run of the GA generates
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only one new test case. In contrast, in our approach, each run of the GA results in a setting for

parameters for randomized testing, which can be applied cheaply many times to generate many

distinct high-coverage test cases.

All analysis-based approaches share the disadvantage of requiring a robust parser and source

code analyzer that can be updated to reflect changes in the source language. These complex

tools are not often provided by language providers. Our approach does not require source

code or bytecode analysis, instead depending only on the robust Java reflection mechanism

and commonly-available coverage tools. For instance, our code was initially written with Java

1.4 in mind, but worked seamlessly on the Java 1.5 versions of the java.util classes, despite

the fact that the source code of many of the units had been heavily modified to introduce

templates. However, model-checking approaches have other strengths, such as the ability to

analyze multithreaded code [38], further supporting the conclusion that the two approaches are

complementary.

III. EXPLORATORY STUDY

To find out whether there was any merit in the idea of a genetic-random system, we conducted

an exploratory study. In this section, we describe the prototype software we developed, the design

of the study and its results.

A. Software Developed

Using code from RUTE-J (see above) and the open-source genetic algorithm package JDEAL

[39], we constructed a prototype two-level genetic-random unit testing system that took Java

classes as its testing units. For each unit under test (UUT) with methods to call, the GA level

constructed a chromosome with integer genes; these genes represented the number of

method calls to make in each test case, the number of test cases to generate, and the relative

weights (calling frequencies) of the methods. All other randomized testing parameters were

hard-coded in the test wrappers.

The evaluation of the fitness of each chromosome proceeded as follows. We got the random

testing level to generate the number of test cases of the length specified in , using the method

weights specified in . We then measured the number of coverage points covered using Cobertura

[40], which measures line coverage. If we had based the fitness function only on coverage,
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however, then any chromosome would have benefitted from having a larger number of method

calls and test cases, since every new method call has the potential of covering more code. We

therefore built in a brake to prevent these values from getting unfeasibly high. We calculated

the fitness function as:

(number of coverage points covered) (coverage factor)

(number of method calls performed overall)

We set the coverage factor to 1000, meaning that we were willing to make 1000 more method

calls (but not more) if that meant covering one more coverage point.

B. Experiment Design

We chose as our subject programs three units taken from the Java 1.4.2 edition of java.util:

BitSet, HashMap and TreeMap. These units were clearly in wide use, and TreeMap had

been used as the basis of earlier experiments by other researchers [23]. For each UUT, we

wrote a test wrapper class containing methods that called selected target methods of the UUT

(16 methods for BitSet, 8 for HashMap and 9 for TreeMap). Each wrapper contained a simple

oracle for checking correctness. We instrumented each UUT using Cobertura.

We ran the two-level algorithm 30 times on each of the three test wrappers, and recorded the

amount of time taken and the parameters in the final chromosome. To test whether the weights

in the chromosomes were useful given the length and number of method calls, for each final

chromosome we created a variant chromosome with the same length and number of method

calls but with all weights equal. We then compared the coverage achieved by and on 30

paired trials. Full results from the experiment are available in [41].

C. Results

We performed two statistical tests to evaluate whether the system was converging on a

reasonable solution. First, we ordered the average weights discovered for each method in each

class, and performed a test with Bonferroni correction between each pair of adjacent columns.

We found that for the HashMap and TreeMap units, the clear method (which removes

all data from the map) had a statistically significantly lower weight than the other methods,

indicating that the algorithm was consistently converging on a solution in which it had a lower
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weight. This is because much of the code in these units can be executed only when there is a

large amount of data in the container objects. Since the clear method clears out all the data,

executing it infrequently ensured that the objects would get large enough.

We also found that for the TreeMap unit, the remove and put methods had a statistically

significantly higher weight than the other methods. This is explainable by the large amount of

complex code in these methods and the private methods that they call; it takes more calls to

cover this code than it does for the simpler code of the other methods. Another reason is that

sequences of put and remove were needed to create data structures via which code in some of

the other methods was accessible.

The second statistical test we performed tested whether the weights found by the GA were

efficient. For this, we used the 30 trials comparing the discovered chromosome and the equal-

weight variant . We found that for all three units, the equal-weight chromosome covered less

code than the original, to a statistically significant level (as measured by a test with ).

This can be interpreted as meaning that the GA was correctly choosing a good combination of

parameters.

In the course of the experiment, we found a bug in the Java 1.4.2 version of BitSet: when a

call to set() is performed on a range of bits of length 0, the unit could later return an incorrect

“length” for the BitSet. We found that a bug report for this bug had already been submitted

to Sun’s bug database. It has been corrected in the Java 1.5.0 version of the library.

In summary, the experiment indicated that the two-level algorithm was potentially useful, and

was consistently converging on similar solutions that were more optimal than calling all methods

equally often.

IV. NIGHTHAWK: SYSTEM DESCRIPTION

The results of our exploratory study encouraged us to expand the scope of the GA to include

method parameter ranges, value reuse policy and other randomized testing parameters. The result

was the Nighthawk system.

In this section, we first outline the lower, randomized-testing, level of Nighthawk, and then

describe the chromosome that controls its operation. We then describe the genetic-algorithm level

and the end user interface. Finally, we describe the use of automatically-generated test wrappers

for precondition checking, result evaluation and coverage enhancement.
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A. Randomized Testing Level

Here we present a simplified description of the algorithm that the lower, randomized-testing,

level of Nighthawk uses to construct and run a test case. The algorithm takes two parameters: a

set of Java methods, and a GA chromosome appropriate to . The chromosome controls

aspects of the algorithm’s behaviour, such as the number of method calls to be made, and will

be described in more detail in the next subsection.

We refer to as the set of “target methods”. We define the set of types of interest

corresponding to as the union of the following sets of types2:

All types of receivers, parameters and return values of methods in .

All primitive types that are the types of parameters to constructors of other types of interest.

Each type is associated with an array of value pools, and each value pool for contains

an array of values of type . Each value pool for a range primitive type (a primitive type other

than boolean and void) has bounds on the values that can appear in it. The number of value

pools, number of values in each value pool, and the range primitive type bounds are specified

by the chromosome .

The algorithm first chooses initial values for primitive type pools, and then moves on to non-

primitive type pools. We define a constructor method to be an initializer if it has no parameters,

or if all its parameters are of primitive types. We define a constructor to be a reinitializer if it

has no parameters, or if all its parameters are of types in . We define the set of callable

methods to be the methods in plus the reinitializers of the types of . The callable methods

are the ones that Nighthawk calls directly.

A call description is an object representing one method call that has been constructed and

run. It consists of the method name, an indication of whether the method call succeeded, failed

or threw an exception, and one object description for each of the receiver, the parameters and

the result (if any). A test case is a sequence of call descriptions, together with an indication of

whether the test case succeeded or failed.

Nighthawk’s randomized testing algorithm is referred to as constructRunTestCase, and is
described in Figure 3. It takes a set of target methods and a chromosome as inputs. It begins

by initializing value pools, and then constructs and runs a test case, and returns the test case. It

2In this paper, the word “type” refers to any primitive type, interface, or abstract or concrete class.
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Input: a set of target methods; a chromosome .

Output: a test case.

Steps:

1) For each element of each value pool of each primitive type in , choose an initial value

that is within the bounds for that value pool.

2) For each element of each value pool of each other type in :

a) If has no initializers, then set the element to null.

b) Otherwise, choose an initializer method of , call tryRunMethod , and place

the result in the destination element.

3) Initialize test case to the empty test case.

4) Repeat times, where is the number of method calls to perform:

a) Choose a target method .

b) Run algorithm tryRunMethod , and add the call description returned to .

c) If tryRunMethod returns a method call failure indication, return with a failure

indication.

5) Return with a success indication.

Fig. 3. Algorithm constructRunTestCase.

uses an auxiliary method called tryRunMethod, described in Figure 4, which takes a method
as input, calls the method and returns a call description. In the algorithm descriptions, the word

“choose” is always used to mean specifically a random choice which may partly depend on the

chromosome .

tryRunMethod considers a method call to fail if and only if it throws an AssertionError.
It does not consider other exceptions to be failures, since they might be correct responses to

bad input parameters. A separate mechanism is used for detecting precondition violations and

checking correctness of return values and exceptions; see Section IV-E.

For conciseness, the algorithm descriptions omit some details which we now fill in. These

concern the treatment of nulls, the treatment of String, and the treatment of Object.

The receiver of a method call cannot be null, and no parameter can be null unless tryRun-
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Input: a method ; a chromosome .

Output: a call description.

Steps:

1) If is non-static and not a constructor:

a) Choose a type which is a subtype of the receiver of .

b) Choose a value pool for .

c) Choose one value from to act as a receiver for the method call.

2) For each argument position to :

a) Choose a type which is a subtype of the argument type.

b) Choose a value pool for .

c) Choose one value from to act as the argument.

3) If the method is a constructor or is static, call it with the chosen arguments. Otherwise,

call it on with the chosen arguments.

4) If the method call threw an AssertionError, return a call description with a failure

indication.

5) Otherwise, if the method call threw some other exception, return a call description with

an exception indication.

6) Otherwise, if the method return type is not void, and the return value is non-null:

a) Choose a type which is a supertype of the type of the return value.

b) Choose a value pool for .

c) If is not a primitive type, or if is a primitive type and does not violate the

bounds on , then choose an element of and replace it by .

d) Return a call description with a success indication.

Fig. 4. Algorithm tryRunMethod.

Method chooses it to be. If tryRunMethod fails to find a non-null value when it is looking
for one, it reports failure of the attempt to call the method. constructRunTestCase tolerates a
certain number of these attempt failures before terminating the test case generation process.

java.lang.String is treated as if it is a primitive type, the values in the value pools
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being initialized with “seed strings”. Some default seed strings are supplied by the system, and

the user can supply more.

Formal parameters of type java.lang.Object stand for some arbitrary object, but it is

usually sufficient to use a small number of specific types as actual parameters; Nighthawk uses

only int and String by default. A notable exception to this rule is the parameter to the

equals() method, which can be treated specially by test wrapper objects (see Section IV-E).

B. Chromosomes

Aspects of the test case execution algorithms are controlled by the genetic algorithm chro-

mosome given as an argument. A chromosome is composed of a finite number of genes. Each

gene is a pair consisting of a name and an integer, floating-point, or BitSet value. Figure 5

summarizes the different types of genes that can occur in a chromosome. We refer to the receiver

(if any) and the return value (if non-void) of a method call as quasi-parameters of the method

call. Parameters and quasi-parameters have candidate types:

A type is a candidate type for a receiver if it is a subtype of the type of the receiver. These

are the types from whose value pools the receiver can be drawn.

A type is a candidate type for a parameter if it is a subtype of the type of the parameter.

These are the types from whose value pools the parameter can be drawn.

A type is a candidate type for a return value if it is a supertype of the type of the return

value. These are the types into whose value pools the return value can be placed.

Note that the gene types candidateBitSet and valuePoolActivityBitSet essentially

encode a value reuse policy by determining the pattern in which receivers, arguments and return

values are drawn from and placed into value pools.

It is clear that different gene values in the chromosome may cause dramatically different

behaviour of the algorithm on the methods. We illustrate this point with two concrete examples.

Consider the “triangle” unit from [5]. If the chromosome specifies that all three parameter

values are to be taken from a value pool of 65536 values in the range -32768 to 32767, then the

chance that the algorithm will ever choose two or three identical values for the parameters (needed

for the “isosceles” and “equilateral” cases) is very low. If, on the other hand, the value pool

contains only 30 integers each chosen from the range 2 to 5, then the chance rises dramatically
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Gene type Occurrence Type Description

numberOfCalls One for whole chromosome int the number of method calls

to be made
methodWeight One for each method int The relative weight of the

method, i.e. the likelihood

that it will be chosen
numberOf-

ValuePools

One for each type int The number of value pools

for that type
numberOfValues One for each value pool of

each type except for

boolean

int The number of values in the

pool

chanceOfTrue One for each value pool of

type boolean

int The percentage chance that

the value true will be chosen

from the value pool
lowerBound,

upperBound

One for each value pool of

each range primitive type

int or

float

The lower and upper bounds

on values in the pool; initial

values are drawn uniformly

from this range
chanceOfNull One for each argument posi-

tion of non-primitive type of

each method

int The percentage chance that

null will be chosen as the

argument
candidateBitSet One for each parameter

and quasi-parameter of each

method

BitSet Each bit represents one can-

didate type, and signifies

whether the argument will be

drawn from the value pools of

that type
valuePool-

ActivityBitSet

One for each candidate type

of each parameter and quasi-

parameter of each method

BitSet Each bit represents one value

pool, and signifies whether

the argument will be drawn

from that value pool

Fig. 5. Nighthawk gene types.
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due to reuse of previously-used values. The amount of additional coverage this would give would

vary depending on the UUT, but is probably nonzero.

Consider further a container class with put and remove methods, each taking an integer

key as its only parameter. If the parameters to the two methods are taken from two different

value pools of 30 values in the range 0 to 1000, there is little chance that a key that has been

put into the container will be successfully removed. If, however, the parameters are taken from

a single value pool of 30 values in the range 0 to 1000, then the chance is very good that added

values are removed, again due to value reuse. A remove method for a typical data structure

executes different code for a successful removal than it does for a failing one.

C. Genetic Algorithm Level

We take the space of possible chromosomes as a solution space to search, and apply the GA

approach to search it for a good solution. We chose GAs over other metaheuristic approaches such

as simulated annealing because of our belief that recombining parts of successful chromosomes

would result in chromosomes that are better than their parents. However, other metaheuristic

approaches may have other advantages and should be explored in future work.

The parameter to Nighthawk’s GA is the set of target methods. The GA performs the

usual steps of chromosome evaluation, fitness selection, mutation and recombination. The GA

first derives an initial template chromosome appropriate to , constructs an initial population of

size as clones of this chromosome, and mutates the population. It then performs a loop, for the

desired number of generations, of evaluating each chromosome’s fitness, retaining the fittest

chromosomes, discarding the rest, cloning the fit chromosomes, and mutating the genes of the

clones with probability % using point mutations and crossover (exchange of genes between

chromosomes). The fitness function for a chromosome is calculated in a manner identical to the

exploratory study (Section III).

Nighthawk uses default settings of . These settings are different

from those taken as standard in GA literature [42], and are motivated by a need to do as few

chromosome evaluations as possible (the primary cost driver of the system). The settings of

other variables, such as the retention percentage, are consistent with the literature.

To enhance availability of the software, Nighthawk uses the popular open-source coverage tool

Cobertura [40] to measure coverage. Cobertura can measure only line coverage (each coverage
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point corresponds to a source code line, and is covered if any code on the line is executed) 3.

However, Nighthawk’s algorithm is not specific to this measure; indeed, our empirical studies

(see below) show that Nighthawk performs well when using other coverage measures.

D. Top-Level Application

The Nighthawk application takes several switches and a set of class names as command-line

parameters. The default behaviour is to consider the command-line class names as a set of “target

classes”. If, however, the “--deep” switch is given to Nighthawk, the public declared methods

of the command-line classes are explored, and all non-primitive types of parameters and return

values of those methods are added to the set of target classes. The set of target methods is

computed as all public declared methods of the target classes. Intuitively, therefore, the --deep

switch performs a “deep target analysis” by getting Nighthawk to call methods in the layer of

classes surrounding the command-line classes.

Nighthawk runs the GA, monitoring the chromosomes and retaining the most fit chromosome

ever encountered. This most fit chromosome is the final output of the program.

After finding the most fit chromosome, a test engineer can perform the randomized testing

that it specifies. To do this, they run a separate program, RunChromosome, which takes the

chromosome description as input and runs test cases based on it for a user-specified number of

times. Randomized unit testing generates new test cases with new data every time it is run, so if

Nighthawk finds a parameter setting that achieves high coverage, a test engineer can automatically

generate a large number of distinct, high-coverage test cases with RunChromosome.

E. Test Wrappers

We provide a utility program that, given a class name, generates the Java source file of a “test

wrapper” class for the class. Running Nighthawk on an unmodified test wrapper is the same

as running it on the target class; however, test wrappers can be customized for precondition

checking, result checking or coverage enhancement.

A test wrapper for class X is a class that contains one private field of class X (the “wrapped

object”), and one public method with an identical declaration for each public declared method

of class X. Each wrapper method simply passes the call on to the wrapped object.

3Cobertura (v. 1.8) also reports what it calls “decision coverage”, but this is coverage of lines containing decisions.
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To customize a test wrapper for precondition checking, the user can insert a check in the

wrapper method before the target method call. If the precondition is violated, the wrapper

method can simply return. To customize a test wrapper for test result checking, the user can

insert any result-checking code after the target method call; examples include normal Java

assertions and JML [43] contracts. We provide switches to the test wrapper generation program

that cause the wrapper to check commonly-desired properties, such as that a method throws no

NullPointerException unless one of its arguments is null. The switch --pleb generates

a wrapper that checks all the Java Exception and Object contracts from Pacheco et al. [3].

To customize a test wrapper for coverage enhancement, the user can insert extra methods that

cause extra code to be executed. We provide two switches for commonly-desired enhancements.

The switch --checkTypedEquals adds a method to the test wrapper for class X that takes

one argument of type X and passes it to the equals method of the wrapped object. This is

distinct from the normal wrapper method that calls equals, which has an argument of type

Object and would therefore by default receive arguments only of type int or String (see

Section IV-A). For classes X that implement their own equals method, the typed-equals method

is likely to execute more code.

Tailored serialization is accomplished in Java via specially-named private methods that are in-

accessible to Nighthawk. The test wrapper generation program switch --checkSerialization

adds a method to the test wrapper that writes the object to a byte array and reads it again from

the byte array. This causes Nighthawk to be able to execute the code in the private serialization

methods.

V. COMPARISON WITH PREVIOUS RESULTS

We compared Nighthawk with two well-documented systems in the literature by running it

on the same software and measuring the results.

A. Pure GA Approach

To compare the results of our genetic-random approach with those of the purely genetic

approach of Michael et al. [5], we adapted their published C code for the Triangle program to

Java, transforming each decision so that each condition and decision direction corresponded to
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Instr Blk Cov Time Line Cov

UUT JPF RP NH (sec) Restr Full

BinTree .78 .78 .78 .58 .84 1

BHeap .95 .95 .95 4.1 .88 .92

FibHeap 1 1 1 5.1 .74 .92

TreeMap .72 .72 .72 5.4 .76 .90

Fig. 6. Comparison of results on the JPF subject units.

an executable line of code measurable by Cobertura. We then ran Nighthawk 10 separate times

on the resulting class.

We found that Nighthawk reached 100% of feasible condition/decision coverage on average

after 8.5 generations, in an average of 6.2 seconds of clock time 4. Michael et al. had found

that a purely random approach could not achieve even 50% condition/decision coverage. The

discrepancy between the results may be due to Nighthawk being able to find a setting of the

randomized testing parameters that is more optimal than the one Michael et al. were using.

Inspection revealed that the chromosomes encoded value reuse policies that guaranteed frequent

selection of the same values.

B. Model-Checking and Feedback-Directed Randomization

To compare our results with those of the model-checking approach of Visser et al. [6] and the

feedback-directed random testing of Pacheco et al. [3], we downloaded the four data structure

units used in those studies. The units had been hand-instrumented to record coverage of the

deepest basic blocks in the code.

We first wrote restricted test wrapper classes that called only the methods called by the previous

researchers. We ran Nighthawk giving these test wrapper classes as command-line classes, and

observed the number of instrumented basic blocks covered, and the number of lines covered as

measured by Cobertura.

4All empirical studies in this paper were performed on a Sun UltraSPARC-IIIi running SunOS 5.10 and Java 1.5.0 11.
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Number of cond value combinations

UUT Total Reachable Covered

BinTree 34 28 28 (.82, 1.0)

BHeap 75 75 70 (.93, .93)

FibHeap 57 47 44 (.77, .94)

TreeMap 157 126 107 (.68, .85)

Fig. 7. Multiple condition coverage of the subject units.

Figure 6 shows the results of the comparison. We show the block coverage ratio achieved by the

best Java-Pathfinder-based technique from Visser et al. (JPF), by Pacheco et al.’s tool Randoop

(RP), and by Nighthawk using the restricted test wrappers. Nighthawk was able to achieve

the same coverage as the previous tools. The Time column shows the clock time in seconds

needed by Nighthawk to achieve its greatest coverage. For BHeap and FibHeap, Nighthawk runs

faster than JPF, but for the other two units it runs slower than both JPF and Randoop. This

difference in run times may be in part because Nighthawk relies on general-purpose Cobertura

instrumentation, which slows down programs, rather than the efficient, but application-specific,

hand instrumentation that the other methods used. It may also be in part due to the fact that our

experiments were run on a different machine architecture than that of Pacheco et al.

We then ran Nighthawk giving the target classes themselves as command-line classes (by-

passing the test wrappers), and observed the number of lines covered. The “Line Cov” columns

show the line coverage ratio achieved when using the restricted wrappers and on the full target

classes. When using the full target classes, Nighthawk was able to cover significantly more lines

of code, including all the blocks covered by the previous studies.

Visser et al. and Pacheco et al. also studied a form of predicate coverage [16] whose im-

plementation is linked to the underlying Java Pathfinder code, and is difficult for Nighthawk to

access. While this predicate coverage is an interesting assessment criterion, there is no consensus

in the literature on the connection of this criterion to other measures. For comparison, we

therefore studied multiple condition coverage (MCC), a standard coverage metric which is, like

predicate coverage, intermediate in strength between decision/condition and path coverage. We
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instrumented the source code so that every combination of values of conditions in every decision

caused a separate line of code to be executed. We then ran Nighthawk on the test wrappers, thus

effectively causing it to optimize MCC rather than just line coverage.

The results are in Figure 7. We list the total number of valid condition value combinations in

all the code, and the number that were in decisions reachable by calling only the methods called

by the other research groups. We also list the number of combinations covered by Nighthawk,

both as a raw total and as a fraction of the total combinations and the reachable combinations.

Nighthawk achieved between 68% and 93% of MCC, or between 85% and 100% when only

reachable condition combinations were considered. These results are very good, since “code

coverage of 70-80% is a reasonable goal for system test of most projects with most coverage

metrics” [44].

In summary, the comparison suggests that Nighthawk was achieving good coverage with

respect to the results achieved by previous researchers, even when strong coverage measures

such as decision/condition and MCC were taken into consideration.

VI. CASE STUDY

In order to study the effects of different test wrapper generation and command-line switches

to Nighthawk, we studied the Java 1.5.0 Collection and Map classes; these are the 16 concrete

classes with public constructors in java.util that inherit from the Collection or Map

interface. The source files total 12137 LOC, and Cobertura reports that 3512 of those LOC

contain executable code. These units are ideal subjects because they are heavily used and contain

complex code, including templates and inner classes.

For each unit, we generated test wrappers of two kinds: plain test wrappers (P), and enriched

wrappers (E) generated with the --checkTypedEquals and --checkSerializable

switches (see Section IV-E). We studied two different option sets for Nighthawk: with no

command-line switches (N), and with the --deep switch (see Section IV-D) turned on (D).

For each UUT, test wrapper, option set triple, we ran Nighthawk for 50 generations and saved

the best chromosome it found. For each triple, we then executed RunChromosome (see Section

IV-D) specifying that it generate 10 test cases with the given chromosome, and we measured

the coverage achieved.

Figure 8 shows the results of this study. The column labelled SLOC shows the total number of
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Source file SLOC PN EN PD ED

ArrayList 150 111 140 109 140 (.93)

EnumMap 239 7 9 10 7 (.03)

HashMap 360 238 265 305 347 (.96)

HashSet 46 24 40 26 44 (.96)

Hashtable 355 205 253 252 325 (.92)

IHashMap 392 156 196 283 333 (.85)

LHashMap 103 27 37 28 96 (.93)

LHashSet 9 6 6 7 9 (1.0)

LinkedList 227 156 173 196 225 (.99)

PQueue 203 98 123 140 155 (.76)

Properties 249 101 102 102 102 (.41)

Stack 17 17 17 17 17 (1.0)

TreeMap 562 392 415 510 526 (.94)

TreeSet 62 44 59 41 59 (.95)

Vector 200 183 184 187 195 (.98)

WHashMap 338 149 175 274 300 (.89)

Total 3512 1914 2194 2487 2880

Ratio .54 .62 .71 .82

Fig. 8. Coverage achieved by configurations of Nighthawk on the java.util Collection and Map classes.

source lines of code reported by Cobertura (including inner classes) in the source file associated

with the class. Column PN shows the SLOC covered by Nighthawk with the plain test wrappers

and no Nighthawk switches; columns EN, PD and ED show the other combinations, and column

ED also shows the coverage ratio with respect to total SLOC. The second last line shows the

totals for each column, and the last line shows the coverage ratio attained.

With enriched test wrappers and deep target class analysis, Nighthawk performs well, achieving

over 90% coverage on 11 out of the 16 classes, and 82% coverage overall. Paired tests with

Bonferroni correction (corrected ) on each pair of columns in the table indicate that
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Source file PN EN PD ED RC

ArrayList 75 91 29 48 15

EnumMap 3 9 6 5 8

HashMap 63 37 136 176 30

HashSet 25 29 27 39 22

Hashtable 8 110 110 157 25

IHashMap 31 41 59 134 34

LHashMap 1 5 4 129 25

LHashSet 1 4 6 24 16

LinkedList 32 61 41 53 17

PQueue 23 40 242 103 13

Properties 104 19 49 47 18

Stack 5 10 5 26 8

TreeMap 80 131 231 106 26

TreeSet 110 93 98 186 26

Vector 106 83 156 176 20

WHashMap 37 35 92 110 21

Total 704 798 1291 1519 324

Fig. 9. Time in seconds taken by configurations of Nighthawk to achieve highest coverage on the java.util Collection and

Map classes.

there are statistically significant differences between every pair except the (EN, PD) pair.

Nighthawk performed poorly on the EnumMap class because the main constructor to EnumMap

expects an enumerated type as one of the parameters. Nighthawk had no facility for supplying

such a type, and so only a few lines of error code in constructors were executed. When we

customized the test wrapper class so that it used a fixed enumerated type, Nighthawk with the

ED configuration covered 204 lines of code (coverage ratio .85), raising the total coverage ratio

for all classes to .88.

Table 9 shows the amount of time taken by Nighthawk on the various configurations. In
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columns PN-ED, we report the number of seconds of clock time taken for Nighthawk to first

achieve its best coverage. tests showed that the only pairs of columns that were different

to a statistically significant level were (PN, ED) and (EN, ED). This suggests that generating

the enriched wrappers allowed Nighthawk to cover significantly more code without running

significantly longer; the deep target class analysis also caused Nighthawk to cover significantly

more code, but took significantly longer (though still less than 100 seconds per unit on average).

In column RC of Table 9, we report the number of CPU seconds needed for the RunChromo-

some program to create and run the 10 new test cases with the parameters chosen by Nighthawk

in the ED configuration. This time includes JVM startup time. The results show that with the

parameters chosen by Nighthawk, RunChromosome can automatically generate many new test

cases that achieve high coverage, in an average of approximately 2 seconds per test case.

VII. THREATS TO VALIDITY

Here we discuss the threats to validity of the empirical results in this paper.

The representativeness of the units under test is the major threat to external validity. We

studied Java collection classes because these are complex, heavily-used units that have high

quality requirements. However, other units might have characteristics that cause Nighthawk to

perform poorly. Randomized unit testing schemes in general require many test cases to be

executed, so they perform poorly on methods that do a significant amount of disk I/O or thread

generation.

Nighthawk uses Cobertura, which measures line coverage, a weak coverage measure. The

results that we obtained may not extend to stronger coverage measures. However, the Nighthawk

algorithm does not perform special checks particular to line coverage. The comparison studies

suggest that it still performs well when decision/condition coverage and MCC are simulated.

The question of whether code coverage measures are a good indication of the thoroughness of

testing is still, however, an area of active debate in the software testing community, making this

a threat to construct validity.

Time measurement is also a threat to construct validity. We measured time using Java’s

systemTimeInMillis, which gives total wall clock time rather than CPU time. This may

give run time numbers that do not reflect the actual cost to the user of the testing.
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VIII. DATA MINING-BASED OPTIMIZATION

It is recognized that the design of genetic algorithms is a “black art” [45], and that very little

is known about why GAs work when they do work and why they do not work when they do not.

In the initial design of Nighthawk, we got the GA to control many aspects of the randomized

testing algorithm, as reflected by the ten gene types listed in Figure 5. This was the result of

our expectation that any of them might turn out to be crucial to the success of the system, and

our inability to predict which.

However, for a genetic algorithm, every gene that is not useful results in time wasted: time

is spent mutating genes that do not lead to better solutions, and time is also spent extracting

values from genes instead of simply using constant values. This effect is especially pronounced

for Nighthawk, since some genes control code inside the innermost loops of the randomized

testing algorithm. We were therefore motivated to find whether we could speed up Nighthawk

by eliminating gene types that did not lead to better performance.

In this section, we describe how we used feature subset selection (FSS) to analyze data from

Nighthawk runs, in order to systematically examine the usefulness of each gene type. We also

describe how we optimized the system by eliminating the least useful genes, resulting in a system

that achieved the same results in less time.

A. Feature Subset Selection

A repeated result in the data mining community is that simpler models with equivalent or

higher performance can be built via feature subset selection, algorithms that intelligently prune

useless features [46]. Features may be pruned for several reasons:

They may be noisy, i.e. contain spurious signals unrelated to the target class;

They may be uninformative, e.g. contain mostly one value, or no repeating values;

They may be correlated to other variables, in which case they can be pruned since their

signal is also present in other variables.

The reduced feature set has many advantages:

Miller has shown that models generally containing fewer variables have less variance in

their outputs [47].
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The smaller the model, the fewer are the demands on interfaces (sensors and actuators) to

the external environment. Hence, systems designed around small models are easier to use

(less to do) and cheaper to build.

In terms of this article, the most important aspect of learning from a reduced features set

is that it produces smaller models. Such smaller models are easier to explain (or audit).

The literature lists many feature subset selectors. In the Wrapper method, a target learner is

augmented with a pre-processor that used a heuristic search to grow subsets of the available

features. At each step in the growth, the target learner is called to find the accuracy of the model

learned from the current subset. Subset growth is stopped when the addition of new features

did not improve the accuracy. Kohavi and John [48] report experiments with Wrapper where,

83% (on average) of the measures in a domain could be ignored with only a minimal loss of

accuracy.

The advantage of the Wrapper approach is that, if some target learner is already implemented,

then the Wrapper is simple to implement. The disadvantage of the wrapper method is that each

step in the heuristic search requires another call to the target learner. Since there are many steps

in such a search ( features have subsets), Wrappers may be too slow.

Another feature subset selector is Relief. This is an instance based learning scheme [49],

[50] that works by randomly sampling one instance within the data. It then locates the nearest

neighbors for that instance from not only the same class but the opposite class as well. The

values of the nearest neighbor features are then compared to that of the sampled instance and

the feature scores are maintained and updated based on this. This process is specified for some

user-specified number of instances. Relief can handle noisy data and other data anomalies by

averaging the values for nearest neighbors of the same and opposite class for each instance

[50]. For data sets with multiple classes, the nearest neighbors for each class that is different

from the current sampled instance are selected and the contributions are determined by using

the class probabilities of the class in the dataset.

The experiments of Hall and Holmes [46] reject numerous feature subset selection methods.

Wrapper is their preferred option, but only for small data sets. For larger data sets, the stochastic

nature of Relief makes it a natural choice.

Another reason to prefer Relief is that it can take advantage of Nighthawk’s stochastic search.

Currently, Relief is a batch process that is executed after data generation is completed. However,
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it may not be necessary to wait till the end of data generation to gain insights into which features

are most relevant. Given the stochastic nature of the algorithm, we can see feature work where

Relief and a genetic algorithm work in tandem. Consider the random selection process at the core

of Relief: a genetic algorithm exploring mutations of the current set of parents is an excellent

stochastic source of data. In the future, we plan to apply Relief incrementally and in parallel to

our GAs.

B. Data Collection and Analysis

We instrumented Nighthawk so that every time a chromosome was evaluated, it printed the

current value of every gene and the final fitness function score. (For the two BitSet gene types,

we printed only the cardinality of the set.) For each of the 16 collection and map classes

from java.util, we ran Nighthawk for 40 generations. Each class therefore yielded 800

observations of gene value and score.

Relief assumes discrete data and Nighthawk’s performance scores are continuous. To enable

feature subset selection, we first discretized Nighthawk’s output. A repeated pattern across all

our experiments is that the Nighthawk scores fall into three regions.

The 65% majority of the scores are within 30% of the top score for any experiment. We

call this the high plateau.

A 10% minority of scores are less than 10% of the maximum score. We call this region

the hole.

After the high plateau there is a slope of increasing gradient that falls into the hole. This

slope accounds for 25% of the results.

Accordingly, to select our features, we sorted the results and divided them into three classes:

bottom 10%, next 25%, remaining 65%. Relief then found the subset of features that distinguished

these three regions.

Using the above discretization policy, we ran Relief 10 times in a 10-way cross-validation

study. The data set was divided into buckets. Each bucket was (temporarily) removed and

Relief was run on the remaining data. This produced a list of “merit” figures for each feature (this

“merit” value is an internal heuristic measure generated from Relief, and reflects the difference

ratio of neighboring instances that have different regions). We took the maximum merit ( )
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Gene type Best avg ranks Best merit

candidateBitSet 18 106 1, 1, 1 0.373

chanceOfNull 0 3 24.1, 24.3, 25.4 0.166

chanceOfTrue 2 7 1, 3.9, 5.7 0.150

lowerBound 1 9 4.1, 5.6, 7.2 0.129

methodWeight 0 11 7.5, 7.8, 10.6 0.144

numberOfCalls 0 1 7.2, 8.4, 16.7 0.195

numberOfValuePools 0 6 14.1, 17.9, 20 0.186

numberOfValues 0 28 5.2, 5.2, 7.4 0.160

upperBound 8 16 1, 1, 1 0.267

valuePoolActivityBitSet 10 252 1, 1.4, 2 0.267

Fig. 10.

and generated a Selected list. A feature was Selected if its merit was (e.g. at

then we selected all features that score at least half the maximum merit).

The following table shows the number of features that were Selected in our 19 examples,

using different values for . Note that as increases, we selected fewer and fewer features.

0.5 439

0.6 217

0.7 112

0.8 62

0.9 39

That is, this method allowed us to discover the genes that were most important

in selecting for the high plateau and not the slope or hole.

Since our goal was to identify gene types that were not useful and that could therefore possibly

be eliminated from chromosomes, we tabulated the properties of each of the different types of

genes. Figure 10 shows the result. The three most useful types of genes for the software under test

were clearly candidateBitSet, valuePoolActivityBitSet, and upperBound, since

genes of these types sometimes had merit 90% or more of the maximum merit, often were ranked

first or second in merit, and were the only gene types such that some genes of that type had merit
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greater than on some runs. This result confirms our intuition that changing the value reuse

policy encoded in the genes of type candidateBitSet and valuePoolActivityBitSet

is an important way of improving the performance of a Nighthawk chromosome. The good

performance of upperBound is attributable to the fact that for all the hash table-related units,

adjusting this parameter caused a “load factor” parameter in some of the constructors to be able

to take on values that led to the table being reallocated frequently.

Just as clearly, the two least useful gene types for the software under test were chance-

OfNull and numberOfValuePools, since neither were ranked better than than 14th in merit

for any run. This does not indicate that null values and multiple value pools for each type were

not important, only that changing the default values of these genes (3% chance of choosing null,

and two value pools) did not usually result in improved performance.

C. Optimization and Performance Comparison

In order to see whether our analysis was useful, we optimized the Nighthawk code. We

decided to retain the four gene types with the highest maximum merit (candidateBitSet,

valuePoolActivityBitSet, upperBound, and numberOfCalls), and also two other

gene types: lowerBound, because it was paired with upperBound; and numberOfValues,

because it had the highest maximum merit of the remaining well-ranked gene types.

Accordingly, we adjusted Nighthawk’s code to delete all references to the other four gene types

(chanceOfNull, numberOfValuePools, chanceOfTrue, and methodWeight). We

changed the code that depended on the values stored for such genes in the current chromosome,

so that it instead used the default initial values for those gene types.

On each of the 16 Collection and Map classes, we performed one run of the original Nighthawk,

and one run of the new, optimized version. For each version of Nighthawk, we then performed

the same analysis that is reflected in Figures 8 and 9; that is, we asked RunChromosome to run

10 test cases with the winning chromosome and measured the coverage, and we calculated the

clock time taken by Nighthawk to achieve the highest coverage it achieved. We then compared

the original and optimized Nighthawk.

The chromosomes resulting from the optimized Nighthawk achieved slightly higher coverage

than those from the original, though a test concluded that the difference was not statistically

significant ( ). However, the optimized Nighthawk was faster to a statistically significant
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degree ( ). The time ratio between the original and optimized systems was 1.46, i.e.

the optimized system was 46% faster. We can therefore say that the process of analyzing the

usefulness of the genes resulted in a system that ran substantially faster but achieved the same

high coverage of the SUT.

D. Discussion

The feature subset selection and optimization procedure worked well for us when we collected

data from a set of classes and then optimized Nighthawk for those classes. This does not mean

that the optimized Nighthawk would necessarily work well for other classes. For instance, for

some classes there might be a great deal of code that is accessible only by giving null pointers

as parameters; we could expect our newly optimized version of Nighthawk to perform poorly

on such classes, since there would be a fixed 3% chance of choosing null.

However, the results of the optimization exercise indicate that FSS-based analysis is a valuable

adjunct to the GA in this application. It is for this reason that we envision in the future integrating

FSS into a genetic-random testing algorithm, so that the algorithm can improve its performance

dynamically, while GA mutation and recombination is going on.

IX. CONCLUSIONS AND FUTURE WORK

Randomized unit testing is a promising technology that has been shown to be effective, but

whose thoroughness depends on the settings of test algorithm parameters. In this paper, we have

described Nighthawk, a system in which an upper-level genetic algorithm automatically derives

good parameter values for a lower-level randomized unit test algorithm. We have shown that

Nighthawk is able to achieve high coverage of complex Java units. The code is available by

writing to the first author.

XXXX why this is great

Future work includes the integration into Nighthawk of useful facilities from past systems,

such as failure-preserving or coverage-preserving test case minimization, and further experiments

on the effect of program options on coverage and efficiency.
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