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Abstract. Most process models calibrate their internal settings using historical
data. Collecting such data collection is an expensive, tedious, and often incom-
plete process. Hence, we seek an alternative to calibration from historical data.
Formally, historical data offers constraints to a set of model options. An alterna-
tive methods of generating those constraints is to augment a process model with a
search engine (simulated annealing plus variable ranking) that finds options that
improve the process model outputs. The improvements can be dramatic: in one of
the studies in this paper, the search engine found process options that reduced the
median and variance of the effort estimates by a factor of 20. In ten case studies,
we show that the estimates generated in this manner can be quite accurate, despite
being generated without using historical data.

1 Introduction

Without precise knowledge from an organization, it is difficult to make precise estimates
about software processes at that site. For example, initial development effort estimates
may be incorrect by a factor of four [4] or even more [12].

It can be very difficult to find relevant data within a single organization to fully
specify all the internal parameters inside a process model. For example, after 26 years of
trying, we have only collected less than 200 sample projects for the COCOMO database.
There are many reasons for this, not the least being the business sensitivity associated
with the data. Therefore, in this paper, we explore what can be decided from process
models without local data.

? This research was conducted at WVU, USC, and NASA’s Jet Propulsion Laboratory partially
under a NASA sub-contract. Reference herein to any specific commercial product, process, or
service by trade name, trademark, manufacturer, or otherwise, does not constitute or imply its
endorsement by the United States Government.



For this experiment, we adopt the following framework. We say that a process model
P yields estimates from a combination of Project and Model variables:

estimates = P (Project, Model)

P describes the space of influences between variables. and may take many forms in-
cluding discrete-event models [11, 14]; system dynamics models [1]; state-based mod-
els [2,8,18]; rule-based programs [22]; standard programming constructs such as those
used in Little-JIL [6, 25]; or the linear models used in COCOMO [4, 5], PRICE-S [23]
and SEER-SEM [10]. The strength of each influence is controlled by the Model vari-
ables. Taken together, the process model P and the Model variables store what we’ve
leaned from the past. The Project variables, on the other had, represent some new
situation that should be analyzed using the past knowledge. For example, P could as-
sert that “effort ∝ pcap” (programmer skills is proportional to development effort)
while Model could contain the precise proportionality constant of -0.7 (i.e. “effort =
−0.7pcap”). Finally, Project could assert that programmer skills are “in the upper
range”; e.g. for a COCOMO model “pcap ∈ {4, 5}”.

We say Project and Model variables can be:

– fixed to one value such as “programmer capability (pcap) is nominal”;
– free to take on any legal value. In COCOMO, if pcap is free, then it can takes

values

{veryLow = 1, low = 2, nominal = 3, high = 4, veryHigh = 5}

– or float to some subset of the whole range. For example, a manager might declare
that “our programmers are in the upper ranges”; i.e. this pcap floats in a particular
part of the entire pcap range (pcap ∈ {4, 5}).

The range of legal values for variables increases from fixed to float to free:

(|fixed| = 1) < |float| < |free|

This paper reports an experiment that frees both the Model and Project variables.
At first glance, such an experiment may seem perverse, particularly if the goal is to
reduce uncertainty. Free variables range over a larger space than fixed variables: the
more free variables, the wider the range of Estimates. If we free both Model and
Project variables then, surely, this will result in greater Estimate uncertainty?

However, our analysis is not just some passive observer of a large space of options.
Instead, it is an active agent that seeks parts of the options space where predictions can
be made with greater certainty. We augment a Monte Carlo analysis with two tools.
SA is a simulated annealing algorithm that minimizes Estimates. RANKER is a vari-
able pruning algorithm, that seeks the smallest number of Project variables that most
reduce the Estimates. The combination of SA+RANKER is called STAR4.Since it
knows the most influential Project ranges, STAR can discover (and then constrain) the
factors that most most impact Estimates.

4 The name is a geek joke. In regular expressions, the star meta-character “*” matches any
characters. That is, just like STAR, it can be used to search a wide range of options.
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Monte Carlo STAR
case study SCAT STAR

flight 712 44
ground 389 18
OSP 629 68
OSP2 84 31

Fig 1a: variance, in months.

Monte Carlo STAR
case study SCAT STAR

flight 1357 86
ground 737 38
OSP 1951 410

OSP2 297 182

Fig 1b: median, in months.

Fig. 1. Effort estimates seen in 1000 simulations of the Project ranges found by STAR. “Vari-
ance” (left hand side) shows the difference between the 75th and 50th percentile. “Median” (right
hand side) shows the 50th percentile estimate.

When compared to state-of-the-art process models, the effects of a STAR-style anal-
ysis are quite dramatic. Figure 1 compares STAR’s estimates to those generated by
SCAT [15–17], a COCOMO-based tool used at NASA’s Jet Propulsion Laboratory.
SCAT fixes Model and perform a Monte Carlo simulation of the Project ranges. Each
row of Figure 1.A is one case study:

– flight and ground systems software from NASA’s Jet Propulsion Laboratory;
– OSP is the GNC5 for NASA’s Orbital Space Plane (prototype);
– OSP2 is a newer version of OSP.

Note that, for all four case studies, STAR reduces the variance and median estimates to
a small fraction of SCAT’s estimates, sometimes as much as a factor of 20 (in Figure
1a: 712

44 ≈ 20; in Figure 1b: 737
38 ≈ 20).

The rest of this paper describes STAR. We extend prior work in two ways. Prior
reports on STAR [20] were based on limited case studies; here we report ten new case
studies showing that our main effect (reduced median and variance) holds in a wide
range of cases. Also, prior reports on Figure 1 [19] failed to check the validity of those
results. The ten case studies discussed below show that STAR’s estimated are quite
accurate, despite being generated from a large space of Project and Model options.
This validity check greatly increases our confidence in the STAR method.

2 STAR

STAR’s current implementation explores three software process models:

– The COQUALMO software defect predictor [5, p254-268].
– The COCOMO software effort predictor [5, p29-57].
– The THREAT predictor for project effort & schedule overrun [5, 284-291].

COQUALMO models two processes (defect introduction and defect removal) for
three phases (requirements, design, coding). COCOMO assumes that effort is expo-
nentially proportional to some scale factors and linearly proportional to some effort

5 GNC= guidance, navigation, and control
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multipliers. COCOMO estimates are development months (225 hours) and includes all
coding, debugging, and management activities. The THREAT model contains a large
set of two-dimensional tables representing pairs of variable settings are problematic.
For example, using the rely vs sced table, the THREAT model would raise an alert if
our tool decides to build a system with high rely (required reliability) and low sced
(schedule available to the development).

STAR samples the space of possibles models inside COCOMO and COQUALMO
using the following technique. Internally, COCOMO and COQUALMO models contain
many linear relationships. Nominal values of x = 3 change some estimate by a factor
of one. These COCOMO lines can hence be modeled as a straight line y = mx + b
passing through the point x, y = 3, 1. Such a line has a y-intercept of b = 1 − 3m.
Substituting this value of b into y = mx + b yields y = m(x − 3) + 1. COCOMO’s
effort slopes are either positive or negative, denoted m+, m− (respectively):

– The positive slopes m+ represents the variables that are proportional to effort; e.g.
increasing required reliability also increases the development effort.

– The negative slopes m− represents the variables that are inversely proportional to
effort; e.g. increasing analyst capability decreases the development effort.

Based on decades of experiments with calibrating COCOMO models, we have iden-
tified variables with different slopes. These following COCOMO variables have m+

slopes: cplx, data, docu, pvol, rely, ruse, stor, and time. Also, these variables have m−

slopes acap, apex, ltex, pcap, pcon, plex, sced, and site (for an explanation of those
terms, see Figure 2). Further, based on decades of calibration of COCOMO models, we
assert that effort estimation, m+ and m− have the ranges:

−0.178 ≤ m− ≤ −0.078

0.073 ≤ m+ ≤ 0.21
(1)

Using an analogous procedure, it is possible to derive similar equations for the CO-
COMO scale factors, the COQUALMO scale factors/effort multipliers/ defect removal
variables (for full details, see [20]).

With the above machinery, it is now possible to define a Monte Carlo procedure
to sample the space of possible THREAT/COCOMO/COQUALMO Models: just ran-
domly selecting {m−,m+}. As to sampling the space of possible THREAT models,
this is achieved by adding random variables to the cells of THREAT’s tables.

STAR tries to minimize defects (D), threats (T ), and development effort (E). This
is a non-linear optimization function: e.g. reducing costs can introduce more defects.
For this reason, we use simulated annealing (SA) to explore trade-offs between models.
SA is best explained in comparison to the Metropolis algorithm.

A Metropolis Monte Carlo algorithm [21] improves on basic Monte Carlo as fol-
lows. New solutions are created by small mutations to some current solutions. In the
case of STAR, an “solution” is some randomly selected part of the space of possi-
ble Projects. If a new solution is “better” (as assessed via an energy function), it be-
comes the new current solution used for future mutations. STAR’s energy function is

E =
√

E
2

+ D
2

+ T
2
/
√

3 where x is a normalized value 0 ≤ x−min(x)
max(x)−min(x) ≤ 1.

Energy ranges 0 ≤ E ≤ 1 and lower energies are better. If a new solution does not
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strategic? tactical?
scale prec: have we done this before? 3
factors flex: development flexibility 3
(exponentially resl: any risk resolution activities? 3
decrease team: team cohesion 3
effort) pmat: process maturity 3
upper acap: analyst capability 3
(linearly pcap: programmer capability 3
decrease pcon: programmer continuity 3
effort) aexp: analyst experience 3

pexp: programmer experience 3
ltex: language and tool experience 3
tool: tool use 3
site: multiple site development 3

sced: length of schedule 3
lower rely: required reliability
(linearly data: secondary memory storage requirements 3
increase cplx: program complexity 3
effort) ruse: software reuse 3

docu: documentation requirements 3
time: runtime pressure
stor: main memory requirements 3

pvol: platform volatility
COQUALMO auto: automated analysis 3 3
defect removal execTest: execution-based testing tools 3 3
methods peer: peer reviews 3 3

Fig. 2. The variables of COCOMO, COQUALMO, and the THREAT model.

have lower energy, a Boltzmann acceptance criteria is used to probabilistically decide
to assess the new state: the worse the new state, the less likely that it becomes the new
current state.

A simulated annealer (SA) [13] adds a “temperature” variable to the Boltzmann
accept criteria such that, at high temperatures, it is more likely that the algorithm will
jump to a new worst current state. This allows the algorithm to jump out of local minima
while sampling the space of options. As the temperature cools, such jumps become less
likely and the algorithm reverts to a simple hill climber.

Our RANKER algorithm instruments the internals of SA. Whenever a solution is
assigned some energy, that energy is added to a counter maintained for each variable
setting in Projects. When SA terminates, RANKER sorts all variable ranges by the
sum of the energies seen during their use. The ranges that are lower in the sort order
are associated with lower energy solutions; i.e. lower defects, efforts, threats. RANKER
then conducts experiments where it fixes the first N ranked ranges and lets the remain-
ing variables float. N is increased till some minimum energy point is reached. A policy
are the project settings that achieve that minimum energy point.

The last two columns of Figure 2 show the results of Delphi panel session at JPL
where the COCOMO variables were separated into those tactical variables that can be
changed within the space of one project, and those strategic variables that required
higher-level institutional change (and so may take longer to change). For example, the
panel declared that pmat (process maturity) is hard to change within the space of a
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float fixed
project variable low high variable setting

prec 1 2 data 3
OSP flex 2 5 pvol 2

resl 1 3 rely 5
team 2 3 pcap 3
pmat 1 4 plex 3
stor 3 5 site 3
ruse 2 4
docu 2 4
acap 2 3
pcon 2 3
apex 2 3
ltex 2 4
tool 2 3
sced 1 3
cplx 5 6
KSLOC 75 125
prec 3 5 flex 3

OSP2 pmat 4 5 resl 4
docu 3 4 team 3
ltex 2 5 time 3
sced 2 4 stor 3
KSLOC 75 125 data 4

pvol 3
ruse 4
rely 5
acap 4
pcap 3
pcon 3
apex 4
plex 4
tool 5
cplx 4
site 6

float fixed
project variable low high variable setting

rely 3 5 tool 2
data 2 3 sced 3

flight cplx 3 6
time 3 4
stor 3 4
acap 3 5
apex 2 5
pcap 3 5
plex 1 4
ltex 1 4
pmat 2 3
KSLOC 7 418
rely 1 4 tool 2
data 2 3 sced 3

ground cplx 1 4
time 3 4
stor 3 4
acap 3 5
apex 2 5
pcap 3 5
plex 1 4
ltex 1 4
pmat 2 3
KSLOC 11 392

Fig. 3. Four case studies.

single JPL project. In the sequel, all our RANKER experiments will be divided into
those that just use the strategic variables and those that just use the tactical variables6.

3 Experiments

Figure 3 shows various Projects expressed in term of floating and fixed variables.
For example, with JPL’s flight systems, the rely (required reliability) can float anywhere
in the upper range; i.e. rely ∈ {3, 4, 5}. However, for flight systems, sced (schedule
pressure) is tightly defined (so sced is fixed to the value 3).

Figure 4 and Figure 5 shows the results of STAR. The variable ranges are sorted
along the x-axis according the order generated by RANKER. At any x value we see the
results of fixing the ranges 1..x, letting all ranges x + 1...max float, then running 1000
Monte Carlo simulations. In the results, “median” refers to the 50th percentile band

6 Note that these definitions of strategic and tactical choices are not hard-wired into STAR.
If a user disagrees with our definitions of strategic/tactical, they can change a simple configu-
ration file.
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Fig.4.A: controlling only strategic Project variables
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Fig.4.B: controlling only tactical Project variables

Fig. 4. Some RANKER results on OSP. The settings shown under the plots describe the policy
that leads to the policy point.
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Fig.5.A: controlling only strategic Project variables
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Fig. 5. Some RANKER results on JPL ground systems. The settings shown under the plots. de-
scribe the policy that leads to the policy point.
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and “spread” refers to the difference between the 75th and 50th percentile in the 1000
generate estimates.

For this paper, we ran SA+RANKER on the four case studies of Figure 3, plus a
fifth study called “ALL”” that used the entire COCOMO ranges, unconstrained by a
particular project. Each study was repeated twice- one for controlling just the strate-
gic variables and once for controlling just the tactical variables. This resulted in ten
experiments.

Some of the results from four of those experiments are shown in Figure 4 and Fig-
ure 5 (space restrictions prevent us from showing all the results). In those four experi-
ments (and in the other six, not shown) the same effect was observed. Minimum effort
and defects was achieved after fixing a small number of Project variables (in Fig-
ure 4.A, Figure 4.B, Figure 5.A, and Figure 5.B, that number was at X={9,12,13 7}
respectively). At these minimum points, the median and spread estimates were greatly
reduced. We call this minimum the policypoint and use the term policy to refer to the
intersection of the case study defined in Figure 3, and the ranges found in the range
between {1 ≤ x ≤ policypoint}.

In terms of controlling uncertainty, the reduction in the spread estimates at the pol-
icy point is particularly interesting. Note that this reduction in model uncertainty was
achieved by only controlling a few of the Project variables while letting all other
Project and Model variables float free. That is, in these case studies, projects could
be controlled (development effort and defects reduced) without using historical data to
constrain the Model variables.

Figure 7 compares the policy point estimates with the estimates generated by stan-
dard methods. For each of our ten experiments, a set of random Projects were gener-
ated, consistent with the policies; i.e.

– If the policy fixes a value, then the Project contains that value;
– Otherwise, if the variable is found Figure 3, it is drawn from those constraints;
– Otherwise, the variable’s value is selected at random from background knowledge

of the legal range of the Figure 2 variables.

For each set, the following procedure was repeated 20 times. Ten examples were re-
moved at random and Boehm’s local calibration (LC) procedure [4, p526-529] was
used to train a COCOMO model on the remaining Project examples7. LC’s estimates
were then compared to the estimates generated by STAR’s simulation at the policy point
(i.e. floating over both the policy and the Model ranges). Values were compared using
δ = (estimate(lc) − estimate(STAR))/estimate(LC). The differences found in
this way are called ∆1 =

∑
δ and are summarized in Figure 6.

The median ∆1 values of Figure 6 is around 0.5; i.e. a STAR estimate of 100 months
could really range for 50 to 150 months. Compared to the effort estimate reductions
shown in the introduction, ∆1 is quite small. Recall that STAR reduced effort estimates
to a small part of the initial values, sometimes a factor of 20; i.e by a factor that is much

7 LC was chosen since, in extensive experiments, we have found this decades old procedure
to be remarkably competitive with current data mining methods [9] including bagging and
boosting [3].
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median δ case study control method
29 OSP strategic
33 OSP2 tactical
36 flight tactical
41 OSP tactical
41 flight tactical
46 All strategic
47 OSP2 strategic
55 ALL tactical
56 ground strategic
65 ground tactical

Fig. 6. Median difference between effort estimates generated by conventional means (LC) and
STAR.

Group 1: no difference Group 2: some difference
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Fig. 7. Results. Divided by Mann-Whitney tests (95 and 99% confidence level). In Group 1 (left-
hand-side), Mann-Whitney reports that the two sets δ is each plot are not statistically different.
In Group 2 (right hand side), Mann-Whitney reports that δ are different. For a precise statistical
comparison, see Figure 8.
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search bias
strategic tactical

ground 66% ◦ • 63% ◦ •
all 91% • ◦ 75% • ◦

cast study OSP2 99% • ◦ 125%
OSP 112% 111%
flight 101% 121%

Fig. 8. Differences between the sum of MREs seen with LC and STAR: table shows the calcu-

lation
∑

δ(LC)∑
δ(STAR)

. The symbols “◦” and “•” denote a statistical difference at the 95 and 99%

confidence level (Mann-Whitney).

larger than 0.5. Clearly, even if STAR is wrong by ±50%, then the overall benefits to
be gained from applying STAR’s policies are still dramatically large.

Also, the ∆1 values need to be baselined against some other method ∆0. Without
such a baseline, we don’t know if a difference of (say) 0.5 is larger, smaller, or similar to
the errors seen via other methods. Figure 7 sorts all the deltas seen in ∆1 and compares
those to the sorted deltas seen when local calibration trained and tested on the data used
to compute ∆1. Visually, the plots seem very similar.

Statistical tests confirm the visual intuition of Figure 7 that the δ figures generated
by STAR and conventional methods are very similar. In five of our ten cases, there
was no significant difference between the two populations. In two of the remaining, the
differences were very similar (within 91% to 99%) of each other. In the remaining cases,
the difference in the discrepancy between predicted and expected was 63%, 66%,and
75%. Once again:

– Given all the randomized exploration STAR performs over the space of possible
Models, this discrepancy is very small.

– These discrepancies are dwarfed by the much larger effort reductions of Figure 1.

4 Conclusion

In studies with one widely-used suite of effort/ detect/ threat predictors for software
systems, we have shown that:

– Estimation median values can be greatly reduced (see Figure 1). In comparisons
with other effort estimation tools, the reduction can quite dramatic. In the best case
our tools found Project ranges that yields estimates that were 5% of estimates
found by other means.

– Estimation variance can be reduced by only floating the Project values and leav-
ing the Model values free (see Figure 4 and Figure 5).

– Within the space of Project options that most reduce Estimation median and
variance, the predictions made by our process models are remarkably similar to
those made by conventional methods (see Figure 6 and Figure 8).
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The first result suggests that it may be highly advantageous to use STAR. Projects
designed around STAR’s recommendations will be delivered sooner and have fewer
bugs or threats.

The second result is of much practical importance since it means we do not require
calibration data to tune the Model variables. If process models can be deployed without
calibration, then they can be used with much greater ease and without the requirement
for an expensive and time-consuming period of data collection.

The third result is showing that (a) this method can find and remove the major
sources of uncertainty in a project; (b) in the reduced space, it is possible to make
accurate Estimates.

Finally, we comment on the external validity of these results. Compared to many
other process models8 this combination of effort/threat/defect models is relatively sim-
ple. As model complexity grows, then the space of possible Estimates can grow ex-
ponentially and STAR’s controlling effect may disappear. Therefore it is clear that we
can not claim that, for all process models, that Estimate variance can be controlled by
just constraining Project, not Model, variance.

On the other hand, researchers in planning and theorem proving have recently shown
that as model complexity grows, other constraining effects may appear such as “master
variables”; i.e. a small number of settings that control all other settings [7, 24]. Such
master variables can greatly reduce the search space within large models.

In summary, it is an open issue if our results apply to other process models. Never-
theless, data collection for the purposes of model calibration is an expensive, tedious,
and often incomplete process. Our results suggest that such data collection may be, for
some process models, an optional activity (caveat: provided that a process model exists
that specifics the general relationships between concepts in a domain). Our hope is that
the results of this paper encouraging enough that other software process researchers
might try STAR’s stochastic search on their seemingly more complex models.
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