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Abstract. Early life cycle risk models can represent the requirements that a de-
velopment group would want to achieve, the risks that could prevent these re-
quirements from being met, and mitigations that could alleviate those risks. Our
task is the selection of the least expensive set of mitigations that achieve the high-
est attainment of requirements.
As these risk models grow larger, the demand for faster optimization methods also
increases, particularly when those models are used by a large room of debating
experts as part of rapid interactive dialogues. Hence, there is a pressing need for
“real-time requirements optimization”; i.e. requirements optimizers that can offer
advice before an expert’s attention wanders to other issues.
One candidate technology for real-time requirements optimization is the KEYS2
search engine. KEYS2 uses a very simple (hence, very fast) novel Bayesian tech-
nique that identifies both the useful succinct sets of mitigations as well as cost-
attainment tradeoffs for partial solutions. This paper reports experiments demon-
strating that KEYS2 runs four orders of magnitude faster than our previous im-
plementations and outperforms standard search algorithms including a classic
stochastic search (simulated annealing), a state-of-the art local search (MaxWalk-
Sat), and a standard graph search (A*).

1 Introduction

Model-based design is a well-accepted software engineering technique. According to
Sendall and Kozacaynski, “using concepts closer to the problem domain ...” via mod-
eling [90] can lead to increased productivity and reduced time-to-market. Hailpern and
Tarr argue that model-based design “imposes structure and common vocabularies so
that artifacts are useful for their main purpose in their particular stage in the life cy-
cle” [6]. Model-based Software Engineering has become the norm at large organization
such as Microsoft [37]; Lockheed Martin [96]; and the Object Management Group [12].

Such models reveal important combinations of options that might otherwise be
missed. For example, at NASA, design teams use “Defect Detection and Prevention”
(DDP) [18, 28] models to find the least costly project options that most increase the
chance to obtain more requirements. DDP is used by teams of experts to display their
(a) current understanding of requirements; (b) the known risks to requirements; as well
as (c) the mitigations that might reduce the risks. A typical DDP session lasts hours to



days. A dozen (or more) experts meet in a large room. In that room, experts either sit
together for large group discussions or break apart into small groups around the room.
In order to assure cohesiveness between all the experts and all the groups, a DDP model
showing the total space of options is continuously updated and displayed on a screen at
one end of the room. For more details on DDP, see §2.

Often, it is not possible for human experts to debate all N options within a DDP
model. Many models contain dozens to hundreds of options and human beings can not
rigorously debate all 2N combinations of those options. Typically, humans focus on
W � N “what-if” scenarios. For example, at JPL, it is common in DDP sessions for
experts to focus on (say) W = 2..10 binary choices within a total space of N > 100
choices. Note that this introduces a “blind-spot” into the requirements analysis of the
N −W issues that is not included in the experts’ debates.

In order to probe those blind spots, we conduct optimization studies. For each of
the 2W scenarios, we impose the constraints of that scenario, then use an automatic
optimizer to explore the other N −W options. This exploration proposes settings to the
other options that most increase the benefits of requirements coverage while minimizing
their associated cost, for more details on that process, see §2. Each of the 2W scenarios
are then ranked via their net effect on benefits and cost. In an interesting number of
cases, our optimization studies offer recommendations from the space of N−W options
in the model that the human experts have overlooked. For example:

– Experts may inappropriately focus on propulsion weight reduction; a better solution
may be to use smarter controlling algorithms, thus requiring fewer thrusters.

– DDP optimization might suggest reducing the weight of a science payload by (say)
smarter software to control the remote sensing, thus requiring fewer instruments.

This ability to explore human blind-spots in requirements models is a key feature of
DDP that adds value to standard design practices.

To best support this blind-spot exploration, our DDP optimization should run fast
enough that humans can get feedback on their models in a timely manner. Previously,
we have proposed various technologies for DDP optimization [28, 30]. For example,
after a Monte Carlo run of 1000 randomly selected options, rule learning can be used
to identify which options were most associated with lower cost and higher attainment
of requirements [30]. The constraints offered by these rules can then be imposed on the
DDP models, followed by another round of Monte Carlo simulation and rule learning.
For a DDP model with 100 variables, it takes ≈ 300 seconds before the rig terminates
(i.e. no improvement is observed in round i + 1 after round i).

The premise of this paper is that our previous solutions to the DDP optimization
problem are too slow. Ideally, we wish for requirements optimization to occur in “real-
time”; i.e. to offer advice before an expert’s attention wanders to other issues. Neil-
son [76, chp5] reports that “the basic advice regarding response times has been about
the same for thirty years; i.e.

– 1.0 second is about the limit for the user’s flow of thought to stay uninterrupted,
even though the user will notice the delay

– 10 seconds is the limit for keeping a user’s attention focused on the dialogue.”
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year #variables
2004 30
2008 100
2010 300
2013 800

Fig. 1. Growth trends: number of variables in DDP’s data dictionary.
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Fig. 2. Estimated time required on contempo-
rary machines in order to handle W what-
if scenarios DDP models in 2013 (when the
models are assumed to be eight times larger
than those currently seen at JPL). The x-axis
represents a range of assumptions on the size
of the exponential scale up factor X8.

In the following calculation, we
will split the difference and demand
five second response time for 2W op-
timizations of W ≤ 10 DDP scenarios.
Figure 1 shows the growth rate (histor-
ical and projected) of variables within
DDP models. Note that by 2013, it is
expected that DDP models will be eight
times larger than today. It is possible to
estimate the required speed of our al-
gorithms on contemporary computers,
such that by the year 2013, DDP op-
timization will terminate in 5 seconds.
Assuming a doubling of CPU speed ev-
ery two years, then by 2013 our com-
puters will run 2(2013−2008)/2 = 560%
faster. However, larger models have
more interconnections, making them
slower to process (DDP optimization
time tends to grow exponentially with
the number of variables).

Figure 2 shows those calculations assuming that we are exploring 2W scenarios in
the space of 1 ≤ W ≤ 10 what-ifs. We assume the larger models are slower to process
by some amount X8 where X is an exponential scale-up factor. Since we do not know
the exact value of X , Figure 2 explores a range of possible values.

These plots show that our current runtimes are orders of magnitude too slow for
real-time requirements optimization. If we run only one what-if query, the W = 1
curve shows that for even modest scale up facts (X ≥ 2), we require runtimes on
contemporary machines of 10−1 seconds; i.e. four orders of magnitude faster than the
rule learning approach described above. Worse, handling multiple what-ifs (e.g. W <=
10) requires response times in the order of 10−2 to 10−3 secs.

The rest of this paper describes our progress towards achieving these runtimes:

– After a discussion of early life cycle ultra-lightweight modeling (such as DDP),
we present various search-based software engineering techniques to optimize DDP
models.
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– Our new KEYS2 algorithm4 will be discussed as well as various experiments that
were conducted to compare these techniques.

In summary, KEYS2 is running in the order of 10−3 seconds, which makes it a candi-
date solution for real-time requirements optimization over 2W scenarios of W ≤ 10.
However, further optimizations are desirable and our future work section offers some
promising directions.

This paper improves over an earlier publication [69] in three significant ways:

– Previously, we explored one search engine (KEYS); this report compares that search
engine against alternatives (KEYS2, Simulated Annealing, A*, MaxWalkSat);

– This paper demonstrates that, at least for the task of optimizing DDP models, KEYS
does better than those state-of-the-art alternatives.

– This paper reports a new version of KEYS that runs two to four times faster than
the previously reported version.

In the spirit of the PROMISE workshop series, all of the models and algorithms
required to repeat our experiments are freely available on-line under an open-source li-
cense5. We welcome other researchers to download and experiment with our code. Also,
we hope that this special issue (including this paper) encourages other researchers to of-
fer their work in a similar manner (i.e. repeatable and/or refutable and/or improbable).

2 Early Life cycle Models

DDP models are an example of a class of early life cycle ultra-lightweight models. This
section describes ultra-lightweight models and DDP.

2.1 Ultra-Lightweight Models

Informal ultra-lightweight sketches are a common technique for illustrating and sharing
intuitions. For example, in early life cycle requirements engineering, software engineers
often pepper their discussions with numerous hastily-drawn sketches. Kremer argues
convincingly that such visual forms have numerous advantages for acquiring knowledge
[56]. Other researchers take a similar view: “Pictures are superior to texts in a sense that
they are abstract, instantly comprehensible, and universal.” [44].

Normally, hastily-drawn sketches are viewed as precursors to some other, more pre-
cise modeling techniques which necessitate further analysis. Such further formalization
may not always be practical. The time and expertise required to build formal models
does not accommodate the pace with which humans tend to revise their ideas.

4 KEYS2 evolved as follows. Clark and Menzies [16] proposed a support-based Bayesian sam-
pling method to optimizing rule learning. Jalali [69] speculated that a greedy hill-climbing
version of that sampling method could replace, rather than merely augment rule learning. This
resulted in the original KEYS algorithm [69]. Gay and Menzies (this paper) proposed an opti-
mization to that process, called KEYS2, whereby the algorithm starts out greedy but then takes
progressive longer steps into the search space.

5 See http://unbox.org/wisp/tags/ddpExperiment/install
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Also, such further formalization may not be advisable. Goel [35] studied the effects
of diagram formalism on system design. In an ill-structured diagram (such as a free-
hand sketch using pencil and paper), the denotation and type of each visual element is
ambiguous. In a well-structured diagram (such as those created using MacDraw), each
visual element clearly denotes one thing of one class only. Goel found that ill-structured
tools generated more design variants — more drawings, more ideas, more re-use of old
ideas — than well-structured tools.

The value of ultra-lightweight ontologies in early life cycle modeling is widely rec-
ognized, as witnessed by the numerous frameworks that support them. For example:

– Mylopoulos’ soft-goal graphs [74, 75]. represent knowledge about non-functional
requirements. Primitives in soft goal modeling include statements of partial influ-
ence such as helps and hurts.

– A common framework in the design rationale community is a “questions-options-
criteria” (QOC) graph [92]. In QOC graphs:
• questions suggest options and deciding on a certain option can raise other ques-

tions;
• Options shown in a box denote selected options;
• Options are assessed by criteria;
• Criteria are gradual knowledge; i.e. they tend to support or tend to reject op-

tions.
QOCs can succinctly summarize lengthy debates; e.g. 480 sentences uttered in a
debate between two analysts on interface options can be displayed in a QOC graph
on a single page [59]. Saaty’s Analytic Hierarchy Process (AHP) [86] is a variant
of QOC.

– Another widely used framework is Quality Functional Deployment diagrams (QFD) [3]
Where as AHP and QOC propagate influences over hierarchies, QDF (and DDP)
propagate influences over matrices.

2.2 The Defect Detection and Prevention tool

From all the above work, we elect to study real-time requirements optimization in the
context of DDP models (and this section describes DDP). The main reason for this de-
cision is that one of us (Feather) can access larger real-world DDP models than models
created using other frameworks (soft goals, QOC, AHP, QFD, etc). In future work, we
intend to apply AI search to other early early life cycle ultra-lightweight models.

In a typical design session at the NASA Jet Propulsion Lab, a dozen (or more)
designers refine and extend a single evolving design document. These designers are
NASA’s top experts in guidance, propulsion, communication, science, and other fields.
Such an expert is a scarce resource who is needed for many tasks across the NASA
organization. Hence, we must use these experts’ time in the most cost-effective man-
ner possible. Therefore, we seek tools that provide interactive design advice in a timely
manner, ideally in time for the experts to assess multiple options during a single meet-
ing. Such a tool would enable the teams to spend more time exploring a high-level trade
space instead of laboriously elaborating one specific design in order to understand the
consequences of various decisions.
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DDP assertions are either:

– Requirements (free text) describing the objectives and constraints of the mission and its
development process;

– Weights (numbers) associated with requirements, reflecting their relative importance;
– Risks (free text) are events that damage requirements;
– Mitigations: (free text) are actions that reduce risks;
– Costs: (numbers) effort associated with mitigations, and repair costs for correcting Risks

detected by Mitigations;
– Mappings: directed edges between requirements, mitigations, and risks that capture quanti-

tative relationships among them.
– Part-of relations structure the collections of requirements, risks and mitigations;

Fig. 3. DDP’s ontology

The “Defect Detection and Prevention” (DDP) tool [18, 28] provides a succinct
ontology for representing this design process. These models allow for the representa-
tion of the goals, risks, and risk-removing mitigations that belong to a specific project.
DDP might be thought of as a more complicated form of QFD. Like in the QFD ap-
proach, DDP sets a series of requirements or goals. However, DDP sets itself apart with
its basis- a quantitative, probabilistic approach inspired by risk assessment techniques.
This approach is why we believe that DDP is useful for studying the requirements needs
of a wide variety of technologies, including software, hardware and combinations of the
two.

DDP is based on the following principles:

– Earlier is Better: The case for “earlier is better” is well established. Fark et al. [47]
noted that “80% of all design decisions are taken in the first 20% of the design
time.” Design tools that do not operate early in the life cycle can only affect a small
portion of the remaining decisions. Not only is earlier design critical, but rapid
improvement of those designs is also critical. Fixing defect costs exponentially
more the longer those defects remain in the system. Boehm and Papaccioa advise
that reworking software is cheaper earlier in the life cycle “by factors of 50 to 200.”
[10]

– Use Risk-driven SE: In risk-driven SE [9], there are three primary modeling con-
structs. The engineering requirements are mapped to a series of risks, a representa-
tion of any of the factors that could prevent a goal from being reached. Mitigations
are measures that may be implemented in order to alleviate, or at least reduce, risks.
Hence, our DDP tool is a visual editor of a model with node types reflecting these
three constructs. During interactive sessions, DDP projects its model on a screen
where teams and designers review and extend the network. This information can
influence the entire design process and may lead to a more efficient development
cycle.

6



Fig. 4. An example of a model formed by the DDP tool. Red lines connect risks (middle) to
requirements (top). Green lines connect mitigations (bottom) to the risks.

– Use Value-based SE: DDP is also a value-based SE [85] tool where the benefits
of a design variant are weighed against their cost. Each mitigation in DDP has an
associated cost so that DDP can guide and optimize decision making. For example,
on a fixed budget, DDP can find the cheapest mitigations that retire the most risks
and hence allow for the attainment of the most requirements. DDP can repeat this
process for different cost levels to generate a cost-benefit trade-space diagram.

The process by which DDP is employed is as follows:

– A dozen experts, or more, gather together for short, intensive knowledge acquisition
sessions (typically, 3 to 4 half-day sessions). These sessions must be short since it
is hard to gather together these experts for more than a very short period of time.

– The DDP tool supports a graphical interface for the rapid entry of the assertions.
Such rapid entry is essential, time is crucial and no tool should slow the debate.

– Assertions from the experts are expressed using the ontology of Figure 3.

The ontology must be lightweight since:

– Only brief assertions can be collected in short knowledge acquisition sessions.
– If the assertions get more elaborate, then experts may be unable to understand tech-

nical arguments from outside their own field of expertise.

The result of these sessions is an intricate model of influences connecting project
requirements to risks to possible mitigations; see Figure 4. Such models have been
applied to over a dozen applications, including such advanced technologies as:

– a computer memory device;
– gyroscope design;
– software code generation;
– a low temperature experiments apparatus;
– an imaging device;
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– circuit board like fabrication;
– micro electro-mechanical devices;
– a sun sensor;
– a motor controller;
– photonics; and
– interferometry.

Clear project improvements have been seen from these DDP sessions. Cost savings
in at least two sessions have exceeded $1 million, while savings of over $100,000 have
resulted in others. Cost savings are not the only benefits of these DDP sessions. Nu-
merous design improvements such as savings of power or mass have come out of DDP
sessions. Likewise, a shifting of risks has been seen from uncertain architectural ones to
more predictable and manageable ones. At some of these meetings, non-obvious signif-
icant risks have been identified and subsequently mitigated. The DDP tool can be used
to document all of this information and the decision making process of these studies.
Because of these reasons, DDP remains in use at JPL:

– not only for its original purpose (group decision support);
– but also as a design rationale tool to document decisions.

It is important to note that DDP is not just a software design tool. Software and
hardware are frequently designed together at JPL. The DDP tool is better viewed as a
software systems engineering tool where the interactions between hardware and soft-
ware, and the possible incompatibilities, can be quickly explored.

3 DDP Inputs/Outputs

The rest of this paper will discuss various algorithms designed to find an optimal so-
lution to the DDP models. This section describes the models processed by these algo-
rithms as well as the functions used to score the output.

3.1 DDP Model Format

A simple knowledge compiler exports the DDP models into a form accessible by our
search engines. Knowledge compilation is a technique whereby certain information is
compiled into a target language. These compiled models are used to rapidly answer a
large number of queries while the main program is running [20, 88].

Knowledge compilation pushes some percentage of the computational overhead into
the compilation phase. This cost is amortized over time as we increase the number of on-
line queries. This is a very useful feature in our application since some of the algorithms
that we use make thousands of calls to these DDP models. Previous work with knowl-
edge compilation has focused on compilation languages utilizing CNF equations, state
machines, or BDD [8, 20]. For this work, a procedural target language was sufficient.
Hence, the DDP models were compiled into a structure used by the C programming
language.

Our knowledge compilation process stores a flattened form of the DDP require-
ments tree. In standard DDP:
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#include "model.h"

#define M_COUNT 2
#define O_COUNT 3
#define R_COUNT 2

struct ddpStruct
{

float oWeight[O_COUNT+1];
float oAttainment[O_COUNT+1];
float oAtRiskProp[O_COUNT+1];

float rAPL[R_COUNT+1];
float rLikelihood[R_COUNT+1];
float mCost[M_COUNT+1];
float roImpact[R_COUNT+1][O_COUNT+1];
float mrEffect[M_COUNT+1][R_COUNT+1];

};

ddpStruct *ddpData;

void setupModel(void)
{

ddpData = (ddpStruct *) malloc(sizeof(ddpStruct));
ddpData->mCost[1]=11;
ddpData->mCost[2]=22;
ddpData->rAPL[1]=1;
ddpData->rAPL[2]=1;
ddpData->oWeight[1]=1;
ddpData->oWeight[2]=2;
ddpData->oWeight[3]=3;
ddpData->roImpact[1][1] = 0.1;
ddpData->roImpact[1][2] = 0.3;
ddpData->roImpact[2][1] = 0.2;
ddpData->mrEffect[1][1] = 0.9;
ddpData->mrEffect[1][2] = 0.3;
ddpData->mrEffect[2][1] = 0.4;

}

void model(float *cost, float *att, float m[])
{

float costTotal, attTotal;
ddpData->rLikelihood[1] = ddpData->rAPL[1] * (1 - m[1] * ddpData->mrEffect[1][1])

* (1 - m[2] * ddpData->mrEffect[2][1]);
ddpData->rLikelihood[2] = ddpData->rAPL[2] * (1 - m[1] * ddpData->mrEffect[1][2]);
ddpData->oAtRiskProp[1] = (ddpData->rLikelihood[1] * ddpData->roImpact[1][1])

+ (ddpData->rLikelihood[2] * ddpData->roImpact[2][1]);
ddpData->oAtRiskProp[2] = (ddpData->rLikelihood[1] * ddpData->roImpact[1][2]);
ddpData->oAtRiskProp[3] = 0;
ddpData->oAttainment[1] = ddpData->oWeight[1] * (1 - minValue(1, ddpData->oAtRiskProp[1]));
ddpData->oAttainment[2] = ddpData->oWeight[2] * (1 - minValue(1, ddpData->oAtRiskProp[2]));
ddpData->oAttainment[3] = ddpData->oWeight[3] * (1 - minValue(1, ddpData->oAtRiskProp[3]));
attTotal = ddpData->oAttainment[1] + ddpData->oAttainment[2] + ddpData->oAttainment[3];
costTotal = m[1] * ddpData->mCost[1] + m[2] * ddpData->mCost[2];

*cost = costTotal;

*att = attTotal;
}

Fig. 5. A trivial DDP model after knowledge compilation
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Model LOC Objectives Risks Mitigations
model1.c 55 3 2 2
model2.c 272 1 30 31
model3.c 72 3 2 3
model4.c 1241 50 31 58
model5.c 1427 32 70 99

Fig. 6. Details of Five DDP Models.

– Requirements form a tree;
– The relative influence of each leaf requirement is computed via a depth-first search

from the root down to the leaves.
– This computation is repeated each time the relative influence of a requirement is

required.

In our compiled form, the computation is performed once and added as a constant to
each reference of the requirement.

For example, here is a trivial DDP model where mitigation1 costs $10,000 to
apply and each requirement is of equal value (100):

$10,000︷ ︸︸ ︷
mitigation1 →︸︷︷︸

0.9

risk1 →

〈 0.1︷︸︸︷→ (requirement1 = 100)
→︸︷︷︸
0.99

(requirement2 = 100)

(The other numbers show the impact of mitigations on risks, and the impact of risks on
requirements).

The knowledge compiler converts this trivial DDP model into setupModel and
model functions similar to those in Figure 5. The setupModel function is called
only once and sets several constant values. The model function is called whenever
new cost and attainment values are needed. The topology of the mitigation network
is represented as terms in equations within these functions. As our models grow more
complex, so do these equations. For example, our biggest model, which contains 99
mitigations, generates 1427 lines of code. Figure 6 compares this biggest model to four
other real-world DDP models.

While not a linear process, knowledge compilation is not the bottleneck in our abil-
ity to handle real-time requirements optimization. Currently it takes about two seconds
to compile a model with 50 requirements, 31 risks, and 58 mitigations. Note that:

– This compilation only has to happen once, after which we will run our 2W what-if
scenarios.

– These runtimes come from an unoptimized Visual Basic implementation which we
can certainly significantly speed up.

– Usually, experts change a small portion of the model then run 2W what-if scenarios
to understand the impact of that change. An incremental knowledge compiler (that
only updates changed portions) would run much faster than a full compilation of
an entire DDP model.
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Initially, it was hoped that knowledge compilation by itself would suffice for real-
time requirements optimization. However, on experimentation, we found that it reduced
our runtimes by only one to two orders of magnitude. While an impressive speed up,
this is still two orders of magnitude too slow to to achieve the 10−3 seconds response
time required for real-time requirements optimization of 2W scenarios for (W ≤ 10)
what-if queries. Hence, in this paper, we combined knowledge compilation with AI
search methods.

Note that knowledge compilation is useful for more than just runtime optimization.
Without it, the collaborative research that led to this paper would have been impossible.
Knowledge compilation allows JPL to retain their proprietary information while at the
same time, allowing outsiders to access these models. For our experiments, JPL ran the
knowledge compiler and passed models like those shown in Figure 5 to West Virginia
University. These models have been anonymized to remove proprietary information
while still maintaining their computational nature. In this way, JPL could assure its
clients that any project secrets would be safe while allowing outside researchers to
perform valuable experiments.

3.2 Scoring Outputs

When the model function is called, a pairing of the total cost of the selected miti-
gations and the number of reachable requirements (attainment) is returned. All of our
algorithms then use that information to obtain a “score” for the current set of mitiga-
tions. The two numbers are normalized to a single score that represents the distance to
a sweet spot of maximum requirement attainment and minimum cost:

score =
√

cost
2 + (attainment− 1)2 (1)

Here, x is a normalized value 0 ≤ x−min(x)
max(x)−min(x) ≤ 1. Hence, our scores ranges

0 ≤ score ≤ 1 and higher scores are better.

Scoring Partial Solutions The search methods presented below divide into two groups.

– One group proposes settings to all variables, at each step of their search. For such
full solutions, scoring is a simple matter: just call the DDP model (e.g. Figure 5)
then execute Equation 1 on the returns cost and attainment values.

– Another group of search methods proposes settings to some subset of the variables.
For such partial solutions, the scoring procedure must be modified. Given fixed
settings to some of the variables, and free settings to the rest, call the DDP model
and Equation 1 N times (each time with randomly selected settings to the free
variables) and report the median of the generated scores.

In the following work, the following observation will be important. Scoring partial
solutions requires N calls to the models while scoring full solutions requires only one
call.
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4 Algorithms

Discrete models (like DDP) are generally not suitable for numeric optimization. The
non-continuous nature of these models leads to ‘cliffs” where the behavior of a system
can change dramatically.

Optimization of discrete models can be implemented by AI search algorithms such
as Simulated Annealing, A*, MaxWalkSat, KEYS, and KEYS2.

4.1 SimpleSA: Simulated Annealing

Simulated Annealing is a classic stochastic search algorithm. It was first described in
1953 [72] and refined in 1983 [54]. The algorithm’s namesake, annealing, is a technique
from metallurgy, where a material is heated, then cooled. The heat causes the atoms in
the material to wander randomly through different energy states and the cooling process
increases the chances of finding a state with a lower energy than the starting position.

1. Procedure SimpleSA
2. MITIGATIONS:= set of mitigations
3. SCORE:= score of MITIGATIONS
4. while TIME < MAX_TIME && SCORE < MIN_SCORE //minScore is a constant score (threshold)
5. find a NEIGHBOR close to MITIGATIONS
6. NEIGHBOR_SCORE:= score of NEIGHBOR
7. if NEIGHBOR_SCORE > SCORE
8. MITIGATIONS:= NEIGHBOR
9. SCORE:= NEIGHBOR_SCORE
10. else if prob(SCORE, NEIGHBOR_SCORE, TIME, temp(TIME, MAX_TIME)) > RANDOM)
11. MITIGATIONS:= NEIGHBOR
12. SCORE:= NEIGHBOR_SCORE
13. TIME++
14. end while
15. return MITIGATIONS

Fig. 7. Pseudocode for SimpleSA

For each round, SimpleSA “picks” a neighboring set of mitigations. To calculate this
neighbor, a function traverses the mitigation settings of the current state and randomly
flips those mitigations (at a 5% chance). If the neighbor has a better score, SimpleSA
will move to it and set it as the current state. If it isn’t better, the algorithm will decide
whether to move to it based on the mathematical function:

prob(w, x, y, temp(y, z)) = e
((w−x)∗ y

temp(y,z) ) (2)

temp(y, z) =
(z − y)

z
(3)

If the value of the prob function is greater than a randomly generated number, Sim-
pleSA will move to that state anyways. This randomness is the very cornerstone of the
Simulated Annealing algorithm. Initially, the “atoms” (current solutions) will take large
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random jumps, sometimes to even sub-optimal new solutions. These random jumps al-
low simulated annealing to sample a large part of the search space, while avoiding being
trapped in local minima. Eventually, the “atoms” will cool and stabilize and the search
will converge to a simple hill climber.

As shown in line 4 of Figure 7, the algorithm will continue to operate until the
number of tries is exhausted or a score meets the threshold requirement.

4.2 MaxFunWalk

The design of simulated annealing dates back to the 1950s. In order to benchmark
our new search engine (KEYS) against a more recent state-of-the-art algorithm, we
implemented the variant of MaxWalkSat described below.

WalkSat is a local search method designed to address the problem of boolean satis-
fiability [52]. MaxWalkSat is a variant of WalkSat that applies weights to each clause in
a conjunctive normal form equation [89]. While WalkSat tries to satisfy the entire set of
clauses, MaxWalkSat tries to maximize the sum of the weights of the satisfied clauses.

In one respect, both algorithms can be viewed as a variant of simulated annealing.
Whereas simulated annealing always selects the next solution randomly, the WalkSat
algorithms will sometimes perform random selection while, other times, conduct a local
search to find the next best setting to one variable.

We have adapted MaxWalkSat to the DDP problem as follows. Our MaxFunWalk
algorithm is a variant of MaxWalkSat:

– Like MaxWalkSat, MaxFunWalk makes decisions about settings to variables.
– Unlike MaxWalkSat, MaxFunWalk scores those decisions by passing those settings

to some function. In the case of DDP optimization, that function is the scoring
function of Equation 1.

1. Procedure MaxFunWalk
2. for TRIES:=1 to MAX-TRIES
3. SELECTION:=A randomly generate assignment of mitigations
4. for CHANGED:=1 to MAX-CHANGES
5. if SCORE satisfies THRESHOLD return
6. CHOSEN:= a random selection of mitigations from SELECTION
7. with probability P
8. flip a random setting in CHOSEN
9. with probability (P-1)
10. flip a setting in CHOSEN that maximizes SCORE
11. end for
12. end for
13. return BESTSCORE

Fig. 8. Pseudocode for MaxFunWalk

The MaxFunWalk procedure is shown in Figure 8. When run, the user supplies an
ideal cost and attainment. This setting is normalized, scored, and set as a goal threshold.
If the current setting of mitigations satisfies that threshold, the algorithm terminates.
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MaxFunWalk begins by randomly setting every mitigation. From there, it will at-
tempt to make a single change until the threshold is met or the allowed number of
changes runs out (100 by default). A random subset of mitigations is chosen and a ran-
dom number P between 0 and 1 is generated. The value of P will decide the form that
the change takes:

– P≤ α: A stochastic decision is made. A setting is changed completely at random
within subset C.

– P> α: Local search is utilized. Each mitigation in C is tested until one is found that
improves the current score.

The best setting of α is a domain-specific engineering decision. For this study, we
used α = 0.3.

If the threshold is not met by the time that the allowed number of changes is ex-
hausted, the set of mitigations is completely reset and the algorithm starts over. This
measure allows the algorithm to avoid becoming trapped in local maxima. For the DDP
models, we found that the number of retries has little effect on solution quality.

If the threshold is never met, MaxFunWalk will reset and continue to make changes
until the maximum number of allowed resets is exhausted. At that point, it will return
the best settings found.

As an additional measure to improve the results found by MaxFunWalk, a heuristic
was implemented to limit the number of mitigations that could be set at one time. If too
many are set, the algorithm will turn off a few in an effort to bring the cost factor down
while minimizing the effect on the attainment.

4.3 A* (ASTAR)

A* is a best-first path finding algorithm that uses distance from origin (G) and estimated
cost to goal (H) to find the best path [42]. The algorithm has been proven to be optimal
for a given scoring heuristic [21], and has seen widespread use in multiple fields [45,
79, 84, 94].

A* is a natural choice for DDP optimization since the scoring function described
above is actually a Euclidean distance measure to the desired goal of maximum attain-
ment and minimum costs. Hence, for H, we can make direct use of Equation 1.

The ASTAR algorithm keeps a closed list in order to prevent backtracking. We
begin by adding the starting state to the closed list. In each “round”, a list of neighbors
is populated from the series of possible states reached by making a change to a single
mitigation. If that neighbor is not on the closed list, two calculations are made:

– G = Distance from the start to the current state plus the additional distance between
the current state and that neighbor.

– H = Distance from that neighbor to the goal (an ideal spot, usually 0 cost and a
high attainment determined by the model). For DDP models, we use Equation 1 to
compute H.

The best neighbor is the one with the lowest F=G+H. The algorithm “travels” to that
neighbor and adds it to the closed list. Part of the optimality of the A* algorithm is that
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1. Procedure ASTAR
2. CURRENT_POSITION:= Starting assignment of mitigations
3. CLOSED[0]:= Add starting position to closed list
4.
5. while END:= false
6. NEIGHBOR_LIST:=list of neighbors
7. for each NEIGHBOR in NEIGHBOR_LIST
8. if NEIGHBOR is not in CLOSED
9. G:=distance from start
10. H:=distance to goal
11. F:=G+H
12. if F<BEST_F
13. BEST_NEIGHBOR:=NEIGHBOR
14. end for
15. CURRENT_POSITION:= BEST_NEIGHBOR
16. CLOSED[++]:=Add new state to closed list
17. if STUCK
18. END:= true
19. end while
20. return CURRENT_POSITION

Fig. 9. Pseudocode for ASTAR

the distance to the goal is underestimated. Thus, the final goal is never actually reached
by ASTAR. Our implementation terminates once it stops finding better solutions for a
total of ten rounds. This number was chosen to give ample time for ASTAR to become
“unstuck” if it hits a corner early on.

4.4 KEYS

A*, MaxWalkSat, and simulated annealing are standard search engines. In our study, we
benchmarked the performance of these standard search engines against our new method
(KEYS) [69].

The premise of KEYS is that within the space of possible decisions, there exist a
small number of key decisions that determine all others [68]. As discussed in the related
work section, there is much evidence that keys can be found in many domains.

If a model contains keys, then a general search through a large space of options
is superfluous. A better (faster, simpler) approach would be to just explore the keys.
KEYS uses support-based Bayesian sampling to quickly find these important variables.

What are “keys”? Before explaining the KEYS algorithm, we must first explore the
general concept of “keys”.

Within a model, there are chains of reasons that link inputs to the desired goals.
As one might imagine, some of the links in the chain clash with others. Some of those
clashes are most upstream; they are not dependent on other clashes. In the following
chains of reasoning the clashes are {e,¬e}, {g,¬g} & {j,¬j}; the most upstream
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clashes are {e¬e}, & {g¬g},

a −→ b −→ c −→ d −→ e
input1 −→f −→ g −→ h −→ i −→ j −→ goal
input2 −→k → ¬g −→ l −→ m → ¬j −→ goal

n −→ o −→ p −→ q −→ ¬e

In order to optimize decision making about this model, we must first decide about these
upstream clashing reasons. We refer to these decisions as the collars as they have the
most impact on the rest of the model.

Returning to the above reasoning chains, any of {a, b, ..q} are subject to discussion.
However, most of this model is completely irrelevant to the task of inputi ` goal. For
example, the {e,¬e} clash is unimportant to the decision making process as no reason
uses e or¬e. In the context of reaching goal from inputi, the only important discussions
are the clashes {g,¬g, j,¬j}. Further, since {j,¬j} are dependent on {g,¬g}, then the
core decision must be about variable g with two disputed values: true and false.

We call g the collar since it restricts the entire model. The collar may be internal to
a model and may not be directly controllable. We refer to the controllable variables that
can influence the collar as the keys In the previous example, those keys are inputi.

Using the keys to set the collars reduces the number of reachable states within the
model. Formally, the reachable states reduce to the cross-product of all of the ranges of
the collars. We call this the clumping effect. Only a small fraction of the possible states
are actually reachable. The effects of clumping can be quite dramatic. Without knowl-
edge of these chains and the collar, the above model has 220 > 1, 000, 000 possible con-
sistent states. However, in the context of inputi ` goal, those 1,000,000 states clumps
to just the following two states: {input1, f, g, h, i, j, goal} or {input2, k,¬g, l, m,¬j, goal}.

The KEYS Algorithm There are two main components to KEYS - a greedy search
and the BORE ranking heuristic.

The greedy search explores a space of M mitigations over the course of M “eras”.
Initially, the entire set of mitigations is set randomly. During each era, one more mitiga-
tion is set to Mi = Xj , Xj ∈ {true, false}. In the original version of KEYS [69], the
greedy search fixes one variable per era. This paper experimented with a newer version,
called KEY2, that fixes an increasing number of variables as the search progresses (see
below for details).

For both KEYS and KEYS2, each era e generates a set < input, score > as fol-
lows:

1: MaxTries times repeat:
– Selected[1. . .(e− 1)] are settings from previous eras.
– Guessed are randomly selected values for unfixed mitigations.
– Input = selected ∪ guessed.
– Call model to compute score = ddp(input);

2: The MaxTries scores are divided into β% “best” while the remainder are sent to
“rest”.

3: The mitigation values in the input sets are then scored using BORE (described
below).
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4: The top ranked mitigations (the default is one, but the user may fix multiple miti-
gations at once) are fixed and stored in selected[e].

The search moves to era e + 1 and repeats steps 1,2,3,4. This process stops when ev-
ery mitigation has a setting. The exact settings for MaxTries and β must be set via
engineering judgment. After some experimentation, we used MaxTries = 100 and
β = 10. For full details, see Figure 10.

1. Procedure KEYS
2. while FIXED_MITIGATIONS != TOTAL_MITIGATIONS
3. for I:=1 to 100
4. SELECTED[1...(I-1)] = best decisions up to this step
5. GUESSED = random settings to the remaining mitigations
6. INPUT = SELECTED + GUESSED
7. SCORES= SCORE(INPUT)
8. end for
9. for J:=1 to NUM_MITIGATIONS_TO_SET
10. TOP_MITIGATION = BORE(SCORES)
11. SELECTED[FIXED_MITIGATIONS++] = TOP_MITIGATION
12. end for
13. end while
14. return SELECTED

Fig. 10. Pseudocode for KEYS

KEYS ranks mitigations by combining a novel support-based Bayesian ranking
measure. BORE [16] (short for “best or rest”) divides numeric scores seen over K runs
and stores the top 10% in best and the remaining 90% scores in the set rest (the best set
is computed by studying the delta of each score to the best score seen in any era). It then
computes the probability that a value is found in best using Bayes theorem. The theo-
rem uses evidence E and a prior probability P (H) for hypothesis H ∈ {best, rest}, to
calculate a posteriori probability P (H|E) = P (E|H)P (H) / P (E). When applying
the theorem, likelihoods are computed from observed frequencies. These likelihoods
(called ”like” below) are then normalized to create probabilities. This normalization
cancels out P (E) in Bayes theorem. For example, after K = 10, 000 runs are divided
into 1,000 best solutions and 9,000 rest, the value mitigation31 = false might appear
10 times in the best solutions, but only 5 times in the rest. Hence:

E = (mitigation31 = false)

P (best) = 1000/10000 = 0.1

P (rest) = 9000/10000 = 0.9

freq(E|best) = 10/1000 = 0.01

freq(E|rest) = 5/9000 = 0.00056

like(best|E) = freq(E|best) · P (best) = 0.001

like(rest|E) = freq(E|rest) · P (rest) = 0.000504

P (best|E) =
like(best|E)

like(best|E) + like(rest|E)
= 0.66 (4)

17



Previously [16], we have found that Bayes theorem is a poor ranking heuristic since it
is easily distracted by low frequency evidence. For example, note how the probability
of E belonging to the best class is moderately high even though its support is very low;
i.e. P (best|E) = 0.66 but freq(E|best) = 0.01.

To avoid the problem of unreliable low frequency evidence, we augment Equation 4
with a support term. Support should increase as the frequency of a value increases,
i.e. like(best|E) is a valid support measure. Hence, step 3 of our greedy search ranks
values via

P (best|E) ∗ support(best|E) =
like(best|E)2

like(best|E) + like(rest|E)
(5)

KEYS2 For each era, KEYS samples the DDP models and fixes the top N = 1 settings.
The following observation suggested that N = 1 is, perhaps, an overly conservative
search policy.

At least for the DDP models, we have observed that the improvement in costs and
attainments generally increase for each era of KEYS. This lead to the speculation that
we could jump further and faster into the solution space by fixing N ≥ 1 settings per
era. Such a jump policy can be implemented as a small change to KEYS:

– Standard KEYS assigns the value of one to NUM MITIGATIONS TO SET (see the
pseudo-code of Figure 10);

– Other variants of KEYS assigns larger values.

We experimented with several variants before settling on the following: in this variant,
era i sets i settings. We call this variant “KEYS2”. Note that, in era 1, KEYS2 behaves
exactly the same as KEYS while in (say) era 3, KEYS2 will fix the top 3 ranked ranges.
Since it sets more variables at each era, KEYS2 terminates earlier than KEYS.

4.5 Scoring Costs

Return now to the issue of scoring full versus partial solutions, we note that:

– At each era, KEYS and KEYS2 generate partial solutions that fix 1, 2, 3, ..|V | vari-
ables (where V is the set of variables).

– Simulated Annealing, MaxWalkSat, and MaxFunWalk work with full solutions
since, at each step, they offer settings to all v ∈ V variables.

– ASTAR could produce either full or partial solutions. If implemented as a full so-
lution generator, algorithm, each member of the closed list will contain a solution
with fixed settings for all v ∈ V variables. If implemented as a partial solution
generator, then the open list will contain the current list of free variables and each
step of the search will fix one more setting.

As mentioned above, such a partial solution generator will require N calls to the model
in order to score the current solution; for example, KEYS and KEYS2 calls the models
100 times in each era. Since our concern is with runtimes, for this study, we used a
full solution generator for ASTAR. Later in this paper, we will further discuss this
implementation choice.
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5 Results

Each of the above algorithms was tested on the five models of Figure 6. Final attainment
and costs, runtimes, and (for KEYS/KEYS2), the convergence towards the final result
were recorded. That information is shown below.

Note that:

– Models one and three are trivially small and we used them to debug our code. We
report our results using models two, four and five since they are large enough to
stress test real-time optimization.

– Model 4 was discussed in [70] in detail. The largest, model 5 was optimized previ-
ously in [30]. As mentioned in the introduction, on contemporary machines, model
5 takes 300 seconds to optimize using our old, very slow, rule learning method.

5.1 Attainment and Costs

We ran each of our algorithms 1000 times on each model. This number was chosen
because it yielded enough data points to give a clear picture of the span of results. At
the same time, it is a low enough number that we can generate a set of results in a fairly
short time span.
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Fig. 11. 1000 results of running four algorithms on three models (12,000 runs in all). The y-axis shows cost and the x-axis
shows attainment. The size of each model is measured in number of mitigations. Note that better solutions fall towards the
bottom right of each plot; i.e. lower costs and higher attainment. Also better solutions exhibit less variance, i.e. are clumped
tighter together.
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The results are pictured in Figure 11. Attainment is along the x-axis and cost (in
thousands) is along the y-axis. Note that better solutions fall towards the bottom right
of each plot; i.e. lower costs and higher attainment. Also better solutions exhibit less
variance, i.e. are clumped tighter together.

These graphs give a clear picture of the results obtained by our four algorithms. Two
methods are clearly inferior:

– SimpleSA exhibit the worst variance, lowest attainments, and highest costs.
– MaxFunWalk is better than SimpleSA (less variance, lower costs, higher attain-

ment) but it is clearly inferior to the other methods.

As to the others:

– On smaller models such as model2, ASTAR produces higher attainments and lower
variance than the KEYS algorithms. However, this advantage disappears on the
larger models.

– On larger models such as model4 and model5 KEYS and KEYS2 exhibit lower
variance, lower costs, higher attainments than ASTAR.

Model 2 Model 4 Model 5
(31 mitigations) (58 mitigations) (99 mitigations)

SimpleSA 0.577 1.258 0.854
MaxFunWalk 0.122 0.429 0.398

ASTAR 0.003 0.017 0.048
KEYS 0.011 0.053 0.115
KEYS2 0.006 0.018 0.038

Fig. 12. Runtimes in seconds, averaged over 100 runs, measured using the ”real time” value from
the Unix times command. The size of each model is measured in number of mitigations (and
for more details on model size, see Figure 6).

5.2 Runtime Analysis

Measured in terms of attainment and cost, there is little difference between KEYS and
KEYS2. However, as shown by Figure 12, KEYS2 runs twice to three times as fast
as KEYS. Interestingly, Figure 12 ranks two of the algorithms in a similar order to
Figure 11:

– SimpleSA is clearly the slowest;
– MaxFunWalk is somewhat better but not as fast as the other algorithms.

As to ASTAR versus KEYS or KEYS2:

– ASTAR is faster than KEYS;
– and KEYS2 runs in time comparable to ASTAR.
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Measured in terms of runtimes, there is little to recommend KEYS2 over ASTAR. How-
ever, the two KEYS algorithms offer certain functionality which, if replicated in AS-
TAR, would make that algorithm much slower. To understand that functionality, we
return to the issue of solution stability within the full versus partial solutions discussed
in §3.2.

5.3 Stability and Partial Solutions

Software projects differ in many ways including the extent to which managers can con-
trol and monitor the development process:

– In small in-house projects, it may be possible to rigorously control and monitor all
process options.

– In larger projects where much of the development is performed by contractors and
sub-contractors (and sub-sub-contractors), it may be very difficult to monitor and
control all process options. For example, in government contracts, it is common
for contractors to minimize the amount of contact government personnel have with
the contractors. Such contractors rigorously define a minimum set of monitoring
and control points. Once enabled, it can be difficult (perhaps even impossible) to
change that list.

– In any project, there is some expense associated with changing the current organi-
zation of a project.

Consequently, when discussing early life cycle requirements mitigations, it is useful
to discover the minimum set of mitigations that most reduce cost and increase require-
ments attainment:

– Smaller solutions make fewer changes to a project than larger solutions and so may
be cheaper and quicker to implement.

– For larger projects involving sub-contractors, such minimal sets can be used to
define a contracts most informative set of monitoring and control points.

For all the above reasons, we prefer search engines that generate solutions recommend-
ing a subset of the available options. If a search engine recommends 10 out of the (e.g.)
90 possible mitigations then we need to know the stability of the costs/attainments as-
sociated with that recommendation. This is particularly true with discrete models like
DDP since such models may be brittle; i.e. a single change may push the model into a
new part of the state space with radically different properties.

KEYS and KEYS2 offer partial solutions and stability guarantees. Figure 13 shows
the effects of the decisions made by KEYS and KEYS2. For KEYS and KEYS2, at
x = 0, all of the mitigations in the model are set at random. During each subsequent
era, more mitigations are fixed (KEYS sets one at a time, KEYS2 sets one or more at a
time). The lines in each of these plots show the median and spread seen in the 100 calls
to the model function during each round. We define median as the 50th percentile and
spread (the measure of deviation around the median) as (75th percentile - median).

The plots for KEYS and KEYS2 are nearly identical:
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Figure 13a: Internal Decisions on Model 2.
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Figure 13b: Internal Decisions on Model 4.
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Figure 13c: Internal Decisions on Model 5.

Fig. 13. Median and spread of partial solutions learned by KEYS and KEYS2. X-axis shows the
number of decisions made. “Median” shows the 50-th percentile of the measured value seen in
100 runs at each era. “Spread” shows the difference between the 75th and 50th percentile.

– On termination (at maximum value of x), KEYS and KEYS2 arrive at nearly iden-
tical median results (caveat: for model2, KEYS2 attains slightly more requirements
at a slightly higher cost than KEYS).

– The spread plots for both algorithms are almost indistinguishable (exception: in
model2, the KEYS2 spread is less than KEYS).
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Since these results are so similar, and KEYS2 runs faster than KEYS, we recommend
KEYS2 over KEYS.

Note that, for both KEYS and KEYS2, the cost improvements are dramatic for about
20 rounds, after which they tend to stabilize. Interestingly, as we can see in the plots, the
spread is generally quite small compared to the median, particularly after 20 decisions.
This indicates that our median estimates are good descriptions of the tendencies of the
models. Software development managers can use Figure 13 to explore trade offs in how
they adjust their projects. If they lack sufficient resources to implement all of KEYS2’s
recommendations, they can consider the merits of partial solutions. For example, in
model4 and model5, most of the improvement comes making just 20 decisions. Hence,
for these models, managers might decide to implement a succinct partial solution (i.e.
all the recommendations 1 ≤ x ≤ 20).

The version of ASTAR used in this study generated full solutions. That is, a man-
ager seeking parsimonious solutions would not be supported by ASTAR. As mentioned
above (end of §3), ASTAR could be modified to produce partial solutions but this would
increase the runtimes of that algorithm since it would require multiple calls to the scor-
ing function.

6 Related Work

§2 discussed the connection of DDP to other early life cycle modeling tools and §4
discussed KEYS in the context of alternative search engines. The rest of this section
discusses other related work.

6.1 Qualitative Compartmental Models

Historically, this work began with Feldman & Compton [31, 32] who studied the val-
idation of topoi (statements of gradual effects between model variables [23]), which
they called qualitative compartmental models. Menzies worked on the optimization of
their validation process and offered an implementation that was orders of magnitude
faster than the system built by Feldman & Compton. However, he could not reduce the
exponential upper-bound on the runtimes [62–64].

Assuming a certain restriction on topoi edge types, Cohen, Menzies, Waugh and
Goss showed that the cost of checking temporal properties of a topoi-based simulation
is bounded by a function of the number of time-ticks in the query [66, 67]. However,
those restrictions are quite onerous. In this paper, we left the model in whatever form
the experts wanted to use, and explored AI search engines for optimization.

6.2 Keys

KEYS and KEYS2 were designed under the assumption that that the behavior of a large
system is determined by a very small number of collar variables. Recalling the above
discussion in §4.4, we said that controllable inputs that effect the collars are called keys.
For a system with collars, the state space within the model clumps to a small fraction of
the possible reachable states.
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Our reading of the literature is that keys, collars, clumps have been discovered and
rediscovered many times. Elsewhere [71], we have documented dozens of papers that
have reported this effect under different names including narrows, master-variables,
back doors, and feature subset selection:

– Amarel [5] observed that search problems contain narrow sets of variables or col-
lars that must be used in any solution. In such a search space, what matters is not so
much how you get to these collars, but what decision you make when you get there.
Amarel defined macros encoding paths between narrows, effectively permitting a
search engine to jump between them.

– Druzdel [27] represented a model as the product of distributions of the model’s vari-
ables. Given enough variance in the individual priors and conditional probabilities
of the variables, the frequency of model states will exhibit a log-normal distribu-
tion. Such a system would show the clumping effect; a small fraction of the states
would cover a large portion of the total probability space, with the remaining states
being negligible. He studied one piece of software where the reached states were
a vanishingly small fraction of the set of possible states. In one diagnosis system
with a total of 525,312 possible internal states, he found that there were a total of
49 states that were reached 91% of the time and only one state was ever reached
52% of the time.

– In a similar theoretical analysis, Menzies & Singh [71] computed the odds of a
system selecting solutions to goals using complex, or simpler, sets of preconditions.
In their simulations, they found that a system will naturally select for tiny sets of
preconditions (a.k.a. the keys) at a very high probability.

– Numerous researchers have examined feature subset selection; i.e. what happens
when a data miner deliberately ignores some of the variables in the training data.
For example, Kohavi and John [55] showed in numerous datasets that as few as 20%
of the variables are key - the remaining 80% of variables can be ignored without
degrading a learner’s classification accuracy.

– Williams et.al. [97] discuss how to use keys (which they call “back doors”) to opti-
mize search. Constraining these back doors also constrains the rest of the program.
So, to quickly search a program, they suggest imposing some set values on the key
variables. They showed that setting the keys can reduce the solution time of certain
hard problems from exponential to polytime, provided that the keys can be cheaply
located, an issue on which Williams et.al. are curiously silent.

– Crawford and Baker [19] compared the performance of a complete TABLEAU
prover to a very simple randomized search engine called ISAMP. Both algorithms
assign a value to one variable, then infer some consequence of that assignment
with forward checking. If contradictions are detected, TABLEAU backtracks while
ISAMP simply starts over and re-assigns other variables randomly. Incredibly, ISAMP
took less time than TABLEAU to find more solutions using just a small number of
tries. Crawford and Baker hypothesized that a small set of master variables set the
rest and that solutions are not uniformly distributed throughout the search space.
TABLEAU’s depth-first search sometimes drove the algorithm into regions con-
taining no solutions. On the other hand, ISAMP’s randomized sampling effectively
searches in a smaller space.
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In summary, the core assumption of KEYS and KEYS2 are supported in many domains.
Hence, we hope in the future to apply KEYS and KEYS2 to more areas than just DDP-
like models.

6.3 Model-Driven Software Engineering

DDP is a model-driven requirements engineering tool. Within the field of model-driven
SE, DDP is a comparatively ultra-lightweight modeling approach; i.e. atomic propo-
sitions are divided into risks/ mitigations/ requirements and connected together as an
acyclic forest. This section offers some brief notes on the boarder field of model-drive
SE.

Anthropologists have argued that the ability to build abstract models is what gives
homo sapiens their competitive edge. For almost as long as software engineering has
existed, software engineers have developed models in order to gain insight about a
concept. In his article, “What Models Mean” [87], Seidewitz describes the interactions
and relationships between the concepts of a model. He asserts that “a model’s meaning
has two aspects: the model’s relationship to what’s being modeled and to other models
derivable from it. Carefully considering both aspects can help us to understand how to
use models to reason about the systems we build...”. These are the aspects of a model’s
meaning that are focused on in model-based software engineering.

Model-based Software Engineering is becoming increasingly important. The Object
Management Group (OMG) has recently adopted a model-driven architecture frame-
work with goals of “portability, interoperability, and reusability through architectural
separation of concerns.” [77] OMG uses the established standards of UML, the Com-
mon Warehouse Metamodel, and the Meat-Object Factory to provide system interoper-
ability in a vendor-neutral form [12]. Microsoft has been developing a Software Fac-
tory that utilizes models in order to automate the software development process [37].
At Lockheed Martin, engineers have developed an integrated modeling method called
Model Centric Software Development that uses “automated generation of partial imple-
mentation artifacts,” reverse engineering to integrate legacy assets, and model verifica-
tion and checking” [96]

The importance of the model-driven approach is not limited to software design and
UML. Many tools exist for modeling, some examples include distributed agent-based
simulations [15], discrete-event simulations [41, 53, 57, 80, 81], continuous simulation
(also called system dynamics) [1, 93], state-based simulation (including petri net and
data flow approaches) [4, 38, 61], hybrid-simulation (combining discrete event simula-
tion and systems dynamics) [26,60,91], logic-based and qualitative-based methods [11,
chapter 20] [46], and rule-based simulations [73].

One can find these models being used in the requirements phase(i.e. the DDP tool
described earlier), design refactoring using patterns [34], software integration [22],
model-based security [49], and performance assessment [7].

Models are useful because humans can review, audit, and improve an explicit rep-
resentation of their systems. However, as models grow in complexity, it becomes diffi-
cult for a manual analysis to reveal all their subtleties. Hence, many researchers have
proposed support environments to help explore the increasingly complex models that
engineers are developing. Gray et al [36] have developed the Constraint-Specification
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Aspect Weaver (C-Saw), which uses aspect-oriented approaches [33] to help engineers
in the process of model transformation. Cai and Sullivan [13] describe a formal method
and tool called Simon that “supports interactive construction of formal models, derives
and displays design structure matrices... and supports simple design impact analysis.”
Other tools of note are lightweight formal methods such as ALLOY [48] and SCR [43]
as well as various UML tools that allow for the execution of life cycle specifications
(e.g. the CADENA scenario editor [14]).

Algorithms like KEYS and KEYS2 are candidate tools for exploring and optimizing
SE models, providing that there there exists some automatic oracle that can comment
on the output of a particular run. Such a combination of model-based SE plus an AI
optimizer would be an example of search-based software engineering.

6.4 Search-based Software Engineering

Search-based Software Engineering augments model-based SE with meta-heuristic tech-
niques like genetic algorithms, simulated annealing, and others to explore a model. Such
heuristic methods are not complete; however, as Clarke et al remark, “...software engi-
neers face problems which consist, not in finding the solution, but rather, in engineering
an acceptable or near-optimal solution from a large number of alternatives.” [17]

Search-based SE is most often used to optimize software testing [50, 51, 78, 95],
but it has had applications in numerous other areas. We have used search-based SE for
requirements analysis [29, 30, 69]. Other researchers [39, 58] use genetic algorithms to
examine ways of modularizing software [17] or develop effort estimators [2, 24, 25].
In all, Rela [82] lists 123 publications where search-based methods have been applied
to the above applications as well as others such as automatic synthesis of software
defect predictors, assisting in component design, developing multiprocessor schedules,
re-engineering old systems into better ones, and searching for compiler optimizations.

To use a search-based approach, software engineers have to reformulate their prob-
lem by:

– Finding a representation of the problem that can be symbolically manipulated (e.g.
simulated or mutated). Such representations always exist with model-based SE. In
our work, DDP is the representation of the problem.

– Defining a fitness function (a.k.a. “utility function” or “objective function”); i.e.
an “oracle” that scores a model configuration. Current model-based SE methods
rarely offer such a function (exception: formal methods that generate temporal con-
straints). In our experience, generating such a fitness function is usually possible,
albeit requiring days of work with the domain experts [65]. Our fitness function is
the calculation of cost and attainment from Equation 1.

– Determining an appropriate set of manipulation operators to select future searches
based on the prior searches [40]. Our manipulation operators are the various algo-
rithms that we employ such as SimpleSA, ASTAR, MaxFunWalk, KEYS, KEYS2.

Inspired by the search-based SE literature, our initial experiments with requirements
optimization used simulated annealing. As shown above, this simulated annealing al-
gorithm is out-performed by every other algorithm studied here. Perhaps researchers in
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search-based SE might find it advantageous to look beyond standard search algorithms
(even supposedly state-of-the-art algorithms like MaxWalkSat).

7 Conclusion

Real-time requirements optimization is the task of generating solutions from require-
ments models before an expert’s attention wanders to other issues. Neilson states that
such solutions must be available in one to ten seconds.

DDP is a requirements/risks/mitigation tool used by groups of experts at NASA’s Jet
Propulsion Laboratory. Our prior work on optimizing DDP models searched for subsets
of the mitigations that most reduced cost and increased requirements attainment. Using
rule learning technologies, our optimizers took hundreds of seconds to run. This is far
too slow since it (a) it is expected that DDP models will grow much larger in the near
future; and (b) human experts often want to run the DDP models 2W times (once for
each subset of W what-if options).

In order to handle such what-if queries on larger models, a back-of-the-envelope
calculation (presented in the introduction) advised that that real-time requirements op-
timization of current DDP models running on contemporary machines must terminate
in time 10−2 to 10−3 seconds. Two other goals for real-time optimization are:

– Partial solutions, since software project managers may be unable or unwilling to
precisely control all aspects of a project; and

– Stability results commenting on the brittleness of that solution.

For real-time optimization of DDP-like requirements models, we recommend knowl-
edge compilation and KEYS2:

– Knowledge compilation speeds up optimization by one to two orders of magnitude.
While this is not enough by itself to support the DDP models of the kind we ex-
pect to see in the near future, it is certainly useful when combined with AI search
algorithms.

– KEYS2 runs faster than KEYS and four orders of magnitude faster than our previ-
ous rule-learning based approach (for model5, 300 seconds from rule learning [30]
to 0.038 seconds for KEYS2). That is, KEYS2 is fast enough for real-time require-
ments optimization. We attribute much of the success of KEYS2 to the presence
of keys in the DDP models, those variables that control everything else. These
key variables were exploited by KEYS2 using two methods: BORE finds promis-
ing keys with high probabilistic support; and KEY2’s greedy search sets the most
promising key, before exploring the remaining options.

– As to other search algorithms, SimpleSA and MaxFunWalk run slower than KEYS2
and result in solutions with much larger variance. Also, unlike ASTAR, KEYS and
KEYS2 offer stability results for partial solutions. As more and more variables get
locked down, KEYS2 finds itself unable to make a decision that could throw off the
results.
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8 Future Work

DDP is an example of a class of ultra-lightweight early life cycle requirements engineer-
ing frameworks. In future work, we plan to explore real-time requirements optimization
using other frameworks such as soft-goals, QOC, AHP, and QFD.

As to further improvements for DDP, in terms of attainment and cost, it may be hard
to improve over the KEYS2 (and KEYS) results. Observe in Figure 11 how the results
from these algorithms are very close to maximum attainment and minimum cost (the
lower right-hard corner of these plots). Further improvements in real-time optimization
of DDP models may be restricted to issues of speed and stability.

While KEYS2 is fast enough for real-time requirements optimization of 1 ≤ W ≤ 10
what-ifs over DDP-like models, further optimizations would enable the processing of
more what-ifs or more complex models. For example, our current implementation runs
over binary variables and many problems require variables with larger ranges.

The stochastic nature of KEYS2 lends itself naturally to optimization by paral-
lelism. We are currently exploring grid computing methods, with each node in the grid
running its own version of KEYS2. In this scheme, at random time intervals, results are
dispatched from the nodes to a centralized learner. This learner reports back to the grid
on how to best bias future simulations. Preliminary analysis suggests that this approach
may be quite promising.

Another possible project would be to improve ASTAR. If ASTAR could be given
the stability guarantee of KEYS while maintaining its runtime advantage, we could
potentially address far more complex models. For example, we could enhance ASTAR
with the BORE heuristic found in KEYS2; e.g. BORE could be used as a sub-routine
that biases ASTAR’s selection of where to search next.

More generally, KEYS2 could be a useful sub-routine for improving the random
selections made by other algorithms. Stochastic SAT solvers such as MaxWalkSat or
the Markov Logic reasoning within ALCHEMY [83] could be biased by KEYS2 to
find key variables within the CNF clauses. The effects of such an optimization could be
dramatic- recall from the above discussion that Williams et.al. [97] reported that setting
“back doors” (the keys) can reduce the solution time of hard problems from exponential
time to polytime.
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