

Automated Severity Assessment of Software Defect Reports

Tim Menzies
Lane Department of Computer Science,

West Virginia University
PO Box 6109, Morgantown, WV, 26506

304 293 0405
tim@menzies.us

Andrian Marcus
Department of Computer Science

Wayne State University
Detroit, MI 48202

313 577 5408
amarcus@wayne.edu

Abstract

In mission critical systems, such as those developed
by NASA, it is very important that the test engineers
properly recognize the severity of each issue they
identify during testing. Proper severity assessment is
essential for appropriate resource allocation and
planning for fixing activities and additional testing.
Severity assessment is strongly influenced by the
experience of the test engineers and by the time they
spend on each issue.

The paper presents a new and automated method
named SEVERIS (SEVERity ISsue assessment), which
assists the test engineer in assigning severity levels to
defect reports. SEVERIS is based on standard text
mining and machine learning techniques applied to
existing sets of defect reports. A case study on using
SEVERIS with data from NASA’s Project and Issue
Tracking System (PITS) is presented in the paper. The
case study results indicate that SEVERIS is a good
predictor for issue severity levels, while it is easy to
use and efficient.

1. Introduction
NASA’s software Independent Verification and

Validation (IV&V) Program captures all of its findings
in a database called the Project and Issue Tracking
System (PITS). The data in PITS has been collected
for more than 10 years and includes issues on robotic
satellite missions and human-rated systems.
Nowadays, similar defect tracking systems, such as
Bugzilla1, have become very popular, largely due to the
spread of open source software development. These
systems help to track bugs and changes in the code, to
submit and review patches, to manage quality
assurance, to support communication between
developers, etc.

As compared to newer systems, the problem with
PITS is that there is a lack of consistency in how each

1 http://www.bugzilla.org/

of the projects collected issue data. In most instances,
the specific configuration of the information captured
about an issue was tailored by the IV&V project to
meet its needs. This has created consistency problems
when metrics data is pulled across projects. While
there was a set of required data fields, the majorities of
those fields do not provide information in regards to
the quality of the issue and are not very suitable for
comparing projects.

A common issue among defect tracking systems is
that they are useful for storing day-to-day information
and generating small-scale tactical reports (e.g., “list
the bugs we found last Tuesday”), but difficult to use
for high-end business strategic analysis (e.g., “in the
past, what methods have proved most cost effective in
finding bugs?”). Another issue common to these
systems is that most of the data is unstructured (i.e.,
free text). Specific to PITS is that the database fields
in PITS keep changing, yet the nature of the
unstructured text remains constant. In consequence,
one logical choice in the analysis of defect reports is a
combination of text mining and machine learning.

In this paper we present a new approach for
extracting general conclusions from PITS data based
on text mining and machine learning methods, which
are low cost, automatic, and rapid. We designed and
built a tool named SEVERIS (SEVERity ISsue
assessment) to automatically review issue reports and
alert when a proposed severity is anomalous. The way
SEVRIS is built provides the probabilities that the
assessment is correct. These probabilities can be used
to guide decision making in this process. Assigning
the correct severity levels to issue reports is extremely
important in the process employed at NASA, as it
directly impacts resource allocation and planning of
subsequent defect fixing activities.

NASA uses a five-point scale to score issue
severity. The scale ranges one to five, worst to dullest,
respectively. A different scale is used for robotic and
human-rated missions (see Table 1).

Table 1. NASAʼs severity scores

Severities for robotic missions
Severity 1: Prevent the accomplishment of an essential
capability; or jeopardize safety, security, or other
requirement designated critical.
Severity 2: Adversely affect the accomplishment of an
essential capability and no work-around solution is known;
or adversely affect technical, cost or schedule risks to the
project or life cycle support of the system, and no work-
around solution is known.
Severity 3: Adversely affect the accomplishment of an
essential capability but a work-around solution is known; or
adversely affect technical, cost, or schedule risks to the
project or life cycle support of the system, but a work-around
solution is known.
Severity 4: Results in user/operator inconvenience but does
not affect a required operational or mission essential
capability; or results in inconvenience for development or
maintenance personnel, but does not affect the
accomplishment of these responsibilities.
Severity 5: Any other issues.

Severities for human-rated missions
Severity 1: A failure which could result in the loss of the
human rated system, the loss of flight or ground personnel, or
a permanently disabling personnel injury
Severity 1N: A failure which would otherwise be Severity 1
but where an established mission procedure precludes any
operational scenario in which the problem might occur, or the
number of detectable failures necessary to result in the
problem exceeds requirements.
Severity 2: A failure which could result in loss of critical
mission support capability
Severity 2N: A failure which would otherwise be Severity 2
but where an established mission procedure precludes any
operational scenario in which the problem might occur or the
number of detectable failures necessary to result in the
problem exceeds requirements.
Severity 3: A failure which is perceivable by an operator and
is neither Severity 1 nor 2.
Severity 4: A failure which is not perceivable by an operator
and is neither Severity 1 nor 2, nor 3.
Severity 5: A problem which is not a failure but needs to be
corrected such as standards violations or maintenance issues

SEVERIS is particularly useful in the following

scenarios:
• When a less-experienced test engineer has

assigned the wrong severity levels.
• When experienced test engineers are operating

under urgent time pressure demands, they could
use SEVERIS to automatically and quickly audit
their conclusions.

• For agents that can detect severity one and two-
level errors with high probability, SEVERIS could
check for the rare, but extremely dangerous case,
that an IV&V team has missed a high-severity
problem.

The paper presents a case study on using SEVERIS
to assess the severity of reported issues from five
NASA robotic missions. One conclusion from this
case study is that the unstructured text might be a
better candidate for generating severity assessments
than the structured data base fields.

The main contribution of our work is that it
successfully addresses an important problem, which
has been largely ignored by the research community
(i.e., automated defect severity assessment from very
loosely structured text). Much prior work has used
standard data miners, to learn software defect
recognizers from historical records of static code
features [11]. Those data mining methods assume that
the input data is highly structured, which is rarely the
case. In this research, we generate severity predictors
from a data source that is so unstructured that it would
defeat the previously explored data mining methods.

The main finding of this work is the success and
efficiency of the solution stemming from the simplicity
of its components (i.e., the combination of standard
text mining and rule learning methods), which also
make it easy to use and adaptable to other data sets. In
addition, SEVERIS provides good estimates by
analyzing only textual data extracted from defect
reports. This is an important issue, as the severity
scores are assigned based on human judgment (see
Table 1), which reflects how the test engineer
interprets a domain independent scoring guideline in
the context of each project.

2. SEVERIS
SEVERIS is based on the automated extraction and

analysis of textual descriptions from issue reports in
PITS. Text mining techniques are used to extract the
relevant features of each report, while machine
learning techniques are used to assign these features
with proper severity levels, based on the classifications
of existing reports.

While, in its current form is specifically tailored to
work with PITS reports, with little modifications,
SEVRIS can be used with other defect reporting
systems, such as Bugzilla.

Figure 1 depicts how SEVERIS interoperates with
the human analyst or his supervisor. SEVERIS checks
the validity of the severity levels assigned to issues in
the following way:
• After seeing an issue in some artifact, a human

analyst generates some text notes and assigns a
severity level severityX.

• SEVERIS learns a predictor for issue severity
level from logs of {notes, severityX}. A training
module does the followings:

1. Updates the SEVERIS beliefs and

2. Determines how much self confidence a
supervisor might have in the SEVERIS’
conclusions.

• Using the learned knowledge, SEVERIS reviews
the analyst’s text and generates its own severityY
level.

• If SEVERIS’ proposed severityY differs from the
severityX level of the human analyst, then a human
supervisor can decide to review the human
analyst’s severityX. To help in that process, the
supervisor can review the self confidence
information to decide if they trust the SEVERIS’
recommendations.

Figure 1. The workflow of SEVERIS. Gray nodes

denote humans.

One issue that made the design of SEVERIS
challenging is that standard machine learners work
well for instances that are nearly all fully described
using dozens (or fewer) attributes. On the other hand,
text mining applications (e.g., analyzing PITS detect
reports) must process thousands of unique words, and
any particular paragraph may only mention a few of
them. Therefore, before we can apply machine

learning to the results of text mining, we have to
reduce the number of dimensions (i.e., attributes) in the
problem. To this end, we applied several methods for
dimensionality reduction used in text mining, in the
following order: tokenization, stop word removal,
stemming, tf*idf, and InfoGain.

2.1. Tokenization
A token is a block of text which is considered as a

useful part of the unstructured text. In most of the
cases it is mapped to a word, but a token could be also
represented by a paragraph, a sentence, a syllable or a
phoneme. Tokenization represents the process of
converting a stream of characters into a sequence of
tokens. Tokenization is done by removing
punctuation, brackets, capitals, etc. Given the nature
of the PITS reports, in SEVERIS we replace
punctuation with blank spaces, we remove the non-
printable escape characters, and convert all words to
lowercases. Additional rules can be implemented if
data from other bug reporting systems is used.

2.2. Stop word removal
Stop words are commonly used words that do not

carry relevant information to a specific context. A list
of English stop words, i.e., prepositions, conjunctions,
articles, common verbs, nouns, pronouns, adverbs and
adjectives can be found at:
www.dcs.gla.ac.uk/idom/ir_resources/linguistic_utils/stop_words

Figure 2 shows a sample of the stop list used in this
study. IV&V’s chief engineer, Ken Costello, reviewed
this list and removed “counting words” such as “one”,
“every”, etc., arguing that “reasoning about number of
events could be an important requirement”. SEVERIS
supports the use of a keep list of words we want to
retain (but, in this study, the keep list was empty).

Figure 2. 24 of the 262 stop words used in the study

2.3. Stemming
Stemming is the process for reducing inflected (or

sometimes derived) words to their stem, base or root
form – generally a written word form. For example,
“run”, “runs”, “ran”, and “running”, are all forms of
the same root, conventionally written as “run” and the
role of a stemmer is to attribute all the derived forms to

the root of the lexeme. The stem need not be identical
to the morphological root of the word; it is usually
sufficient that related words map to the same stem,
even if this stem is not in itself a valid root.

In SEVERIS we use an implementation of the
Porter stemmer [12], introduced in 1980 by Martin
Porter. While not perfect, this stemmer is very widely
used and became the defacto standard algorithm used
for English stemming.

2.4. Tf*idf
Tf*idf is shorthand for “term frequency times

inverse document frequency”. The tf*idf weight
defined for a word is often used in information
retrieval and text mining. This weight is a statistical
measure used to evaluate how important a word is to a
document in a collection or corpus. The importance
increases proportionally to the number of times a word
appears in the document but is offset by the frequency
of the word in the corpus. The term frequency in the
given document is simply the number of times a given
term appears in that document. This count is usually
normalized to prevent a bias towards longer documents
(which may have a higher term frequency regardless of
the actual importance of that term in the document) to
give a measure of the importance of the term within a
particular document.

The inverse document frequency is a measure of
the general importance of the term (obtained by
dividing the number of all documents by the number of
documents containing the term, and then taking the
logarithm of that quotient).

If there be Words number of document and each
word I appears Word[I] number of times inside a set of
Documents and if Document[I] be the documents
containing I, then:

Tf*idf = Word[i]/Words*log(Documents/Document[i])

The standard way to use this measure is to cull all
but the k top tf*idf ranked stopped, stemmed tokens.
The case study presented later in the paper used k =
100. The idea is that these are the most important
terms for each document, whereas the rest of them can
be ignored in the analysis. This is a simple form of
noise reduction mechanism.

2.5. InfoGain
According to the InfoGain measure, the best words

are those that most simplifies the target concept (in our
case, the distribution of severities). We use
information theory to measure concept “simplicity” in
the case of SEVERIS. Statistical approaches could
also be used to determine concept simplicity.

Suppose a data set has 80% severity=5 issues and
20% severity=1 issues. Then that data set has a class
distribution C0 with classes c(1) = severity5 and c(2) =
severity1 with frequencies n(1) = 0.8 and n(2) = 0.2.
The number of bits required to encode an arbitrary
class distribution C0 is H(C0) defined as follows:

If A is a set of attributes, then the number of bits

required to encode a class after observing an attribute
is:

The highest ranked attribute Ai is the one with the

largest information gain; i.e., the one that most reduces
the encoding required for the data after using that
attribute; i.e.,

InfoGain(Ai) = H(C) – H(C|Ai)

where H(C) comes from Equation 1. For example,
in the case study, we used InfoGain to find the top N =
{100, 50, 25, 12, 6, 3} most informative tokens.

Once again, the assumption was that the most
informative terms are enough to fully describe their
corresponding documents from our application point of
view. SEVERIS uses InfoGain to re-order the top k
words selected from each issue report based on tf*idf.

By using InfoGain to rank all the terms in the data
set, a significant dimensionality reduction is achieved.
Another popular approach to dimensionality reduction
in text retrieval is based on Singular Value
Decomposition (SVD) [17] of the tf*idf matrix (i.e.,
word x document matrix) and its most popular
implementation is known as Latent Semantic Indexing
(LSI) [9]. Since LSI is based on statistical
dimensionality reduction, it requires large data set to
have good results and SVD is computationally
expensive. This motivates our choice of using
InfoGain over LSI, which is fairly popular in Software
Engineering text retrieval tasks.

2.6. Rule learning
We used a data miner in SEVERIS to learn rules

that predict for the severity attribute using the terms
found above. The learner used here was a JAVA
version of Cohen’s RIPPER rule learner [7]. RIPPER
is useful for generating very small rule sets. The
generated rules are of the form if → then:

RIPPER, is a covering algorithm that runs over the
data in multiple passes. Rule covering algorithms
learns one rule at each pass for the majority class. All
the examples that satisfy the conditions are marked as
covered and removed from the data set. The algorithm
then recurses on the remaining data. The output of a
rule covering algorithm is an ordered decision list of
rules where rulej is only tested if all conditions in
rulei<j fail.

One way to visualize a covering algorithm is to
imagine the data as a table on a piece of paper. If there
exists a clear pattern between the features and the
class, define that pattern as a rule and cross out all the
rows covered by that rule. As covering recursively
explores the remaining data, it keeps splitting the data
into:
• what is easiest to explain, and
• any remaining ambiguity that requires a more

detailed analysis.

In the case of SEVERIS the rules inferred from the
reports connect the most informative tokens (which
form the condition) of each report with its severity
level (which forms the conclusion) – see Figure 4.

An alternative approach would be to employ an
unsupervised clustering mechanism and cluster the
document space (i.e., the reports) into five groups
corresponding to each severity level. Such an
approach is popular when used for topic discovery in
large corpora, but its main problem relies on the use of
textual similarity measures between documents as
distance metrics for clustering. Our approach
eliminates the need to compute such measures between
all possible pairs of documents.

3. Case Study
We conducted a case study on real NASA PITS

data to evaluate SEVERIS. The goal of the study was
to see how well SEVERIS approximates the human
evaluation captured by existing reports.

PITS is an extensible issue tracking system and
users are free to add fields as needed for their own
applications. From a generic standpoint, PITS allow
for several different field types. These include pre-
defined fields, free-form fields, attachments and
context fields (dependencies). Pre-defined fields are
those that captured information supplied by the
database itself or that has a limited list of input such as
the severity ratings shown in Table 1.

Free-form fields are usually used to capture
information about the issue itself along with describing
the potential impact of the issue and suggested issue
resolution. Other free-form fields include the title of
the issue and a field for capturing a chronology of the

resolution of the issue. PITS also provides for the
inclusion of attachments to the issue records. This
includes copies of emails, snippets of code or other text
documents, or even application specific documents.

Context fields become available depending upon
the current state or condition of other fields. For
example, a nominal PITS records captures the test
engineering task being performed when the defect was
found. These tasks are defined according to a NASA
test engineering work breakdown structure that is
broken down into 3 levels: Process, Task and Activity.
There are two processes, which have a different set of
tasks and each task generally has a different set of
activities. So for example, if the task being performed
was “Validate Safety Requirements”, the user would
first have to select “Validate” in the process field in
order to make the task field active. The task field
would then only allow for the selection of tasks that
fall under the “Validate” process, not tasks under the
“Verification” process. The user would then select
“Validate Requirements” as the task followed by the
selection of “Validate Safety Requirements” in the
activity field.

3.1. Objects of the case study
SEVERIS was applied to {pitsA, pitsB, pitsC,

pitsD, pitsE}, five anonymous PITS projects supplied
by NASA's Independent Verification and Validation
Facility (see Table 2). The data is available at
http://promisedata.org/. All these systems were
robotic. Note that this data has no severity one issues
(these are quite rare) and few severity five issues (these
often not reported since they have such a low priority).

Table 2. The five data sets used in the case study.
Each cell indicates the number of reports with each

severity level in the corresponding data set.

 Sev. 1 Sev. 2 Sev. 3 Sev. 4 Sev. 5
pitsA 0 311 356 208 26
pitsB 0 23 523 382 59
pitsC 0 0 132 180 7
pitsD 0 1 167 13 1
pitsE 0 24 517 243 41

The data sets are quite rich, as they contain in

average 775 reports with about 79,000 words. Table 3
shows the size of each data set in terms of number of
reports and total word count.

Table 3. The size of the data sets in number of
reports and word count

 pitsA pitsB pitsC pitsD pitsE
Reports 901 1,650 319 182 825
Words 155,165 104,052 23,799 15,517 93,750

3.2. Evaluation
It is a methodological error to assess the rules

learned from a data miner using the data used in
training. Such a self-test can lead to an over-estimate
of the value of that model.

Cross-validation, on the other hand, assesses a
learned model using data not used to generate it. The
data is divided into, say, 10 buckets. Each bucket is set
aside as a test set and a model is learned from the
remaining data. This learned model is then assessed
using the test set. Such cross-validation studies are the
preferred evaluation method when the goal is to
produce predictors intended to predict future events
[13].

Mean results from a 10-way cross-validation can be
assessed via a confusion matrix (see Table 4). In Table
4, some rule learner has generated predictions for
classes {a, b, c, d}, which denote, for example, issues
of severity {1, 2, 3, 4} (respectively). As shown top
left of this matrix, the rules correctly classified issue
reports of severity=1 as severity=1 321 times (mean
results in 10-way cross-validation). However, some
severity=1 issues were incorrectly classified as
severity=2 and severity=3 in 12 and 21 cases
(respectively).

Table 4. Sample 10-way classification results.

Classified as tn fn fp tp
a, severity=1 321 12 21 0
b, severity=2 157 41 8 0
c, severity=3 49 3 259 0
d, severity=4 21 1 2 2

Confusion matrices can be summarized as follows.

Let {tn, fn, fp, tp} denote the true negatives, false
negatives, false positives, and true positives
(respectively). When predicting for class “a”, then for
Table 4:
• tn - are all the examples where issues of

severity=1 were classified as severity=1; i.e.,
tn=321.

• fn - are all the examples where lower severity
issues were classified as severity=1; i.e.,
fn=157+49+21;

• fp - are all the examples where severity=1 issues
were classified as something else; i.e., fp=21+12;

• tp - are the remaining examples; i.e.,
tp=41+8+0+3+259+0+1+2+2.

{tn, fn, fp, tp} can be combined in many ways.

Two of the most common measures used in
Information Retrieval (IR) and statistical classification

are recall and precision. We use these two measures
here in a manner akin to the one in statistical
classification. The precision for a class is the number
of true positives (i.e., the number of items correctly
labeled as belonging to the class) divided by the total
number of elements labeled as belonging to the class
(i.e., the sum of true positives and false positives,
which are items incorrectly labeled as belonging to the
class). Recall in this context is defined as the number
of true positives divided by the total number of
elements that actually belong to the class (i.e., the sum
of true positives and false negatives, which are items
that were not labeled as belonging to that class but
should have been).

In our example, recall (or rec) comments on how
much of the target was found.

rec = recall = tp/(fn+tp)

Precision (or pre) comments on how many of the
instances that triggered the detector actually containing
the target concept.

pre = precision = tp/(tp+fp)

In a classification task, a precision score of 1.0 for
a class C means that every item labeled as belonging to
class C does indeed belong to class C (but says nothing
about the number of items from class C that were not
labeled correctly) whereas a recall of 1.0 means that
every item from class C was labeled as belonging to
class C (but says nothing about how many other items
were incorrectly also labeled as belonging to class C).

Often, there is an inverse relationship between
precision and recall, where it is possible to increase
one at the cost of reducing the other. Depending on the
application, recall may be favored over precision, or
vice versa. A classification system for deciding
whether or not, say, a report has severity1, can achieve
high precision by only classifying reports with the
exact right words as severity1, but at the cost of low
recall due to the number of false negatives from reports
that did not quite match the specification.

Usually, precision and recall scores are not
discussed in isolation. Instead, either values for one
measure are compared for a fixed level at the other
measure (e.g., precision at a recall level of 0.75) or
both are combined into a single measure, such as the F-
measure, which is the weighted harmonic mean of
precision and recall. It has the property that if either
precision or recall is low, then the f-measure is
decreased. We use in this case study the F1 measure,
with recall and precision are evenly weighted:

f-measure = 2*pre*rec/(pre+rec)

The larger these values, the better the model. Table
5 shows the precision, recall, and f-measure values for
the data in Table 4.

Table 5. Precision, recall, and f-measures for the
data in Table 4.

severity precision recall f-measure
1 0.91 0.59 0.71
2 0.20 0.72 0.31
3 0.83 0.89 0.86
4 0.08 1.00 0.14

3.3. Results and discussion
After stemming and stopping, the top 100 terms,

based on tf*idf, were selected for each of the five data
sets. The top 25 terms are shown in Figure 3, ranked
by InfoGain..

Figure 3. The top 25 terms in each data set, sorted

by InfoGain

We have shown these lists to domain experts but, to
date, we have not found any particular domain insights
from these words. For example, one would expect that
words related to the “softwar” stem would be
ubiquitous through these reports. Yet the term appears
in top 100 for each data set, even on the top position
for data set PITSC. We expected that the top ranked
terms would provide a good (i.e., human readable and
comprehensible) conceptual approximation for each
data set. While this was not achieved at data set level,
as shown below, these terms can be used very
effectively for the task of predicting issue severity.

The issue reports for each data set were then
rewritten as frequency counts for those top 100 tokens
(with the severity value for each record written to the

end of line). This rewriting is similar to the vector
space model (VSM) representation of documents in IR
[15]. Each report becomes a vector with 100 values
corresponding to the tf*idf scores of each terms that
appears in the report. Even so, the resulting data sets
are quite sparse; 10% of the cells have a frequency
count of one, and frequency counts higher than 10
occur in only 1/100% of cells, or less. Obviously,
choosing less than 100 terms would yield a less sparse
data set, but the approximation would be less precise.
An acceptable level of approximation can be
determined and adjusted in each case depending on
how rich the data set is.

Table 6. Confusion matrices with precision, recall,
and f-measures scores for the data sets pitsA,

pitsB, and pitsC, using the top 100 and the top 3
terms respectively for learning.

pitsA using top 100 terms for learning
 tn fn fp tp rec pre f

sev=3 321 12 21 0 0.91 0.59 0.71
sev=4 157 41 8 0 0.20 0.72 0.31
sev=2 49 3 259 0 0.83 0.89 0.86
Sev=5 21 1 2 2 0.08 1.00 0.14

pitsA using top 3 terms for learning
 tn fn fp tp rec pre f

sev=3 314 13 27 0 0.89 0.55 0.68
sev=4 158 25 24 0 0.12 0.52 0.20
sev=2 69 10 232 0 0.75 0.82 0.78
sev=5 25 0 1 0 0.00

pitsB using top 100 terms for learning
 tn fn fp tp rec pre f

sev=4 120 254 0 4 0.32 0.63 0.42
sev=3 69 445 0 7 0.85 0.62 0.72
sev=5 0 11 47 0 0.81 1.00 0.90
sev=2 2 9 0 11 0.50 0.50 0.50

pitsB using top 3 terms for learning
 tn fn fp tp rec pre f

sev=4 60 317 0 0 0.16 0.64 0.25
sev=3 20 501 0 0 0.96 0.57 0.71
sev=5 3 55 0 0 0.00
sev=2 11 11 0 0 0.00

pitsC using top 100 terms for learning
 tn fn fp tp rec pre f

sev=4 162 14 4 n/a 0.90 0.95 0.92
sev=3 7 123 0 n/a 0.95 0.89 0.92
sev=5 2 1 4 n/a 0.57 0.50 0.53

pitsC using top 3 terms for learning
 tn fn fp tp rec pre f

sev=4 169 11 0 n/a 0.94 0.80 0.86
sev=3 37 93 0 n/a 0.72 0.89 0.79
sev=5 6 1 0 n/a 0.00

Table 6 and Table 7 show the confusion matrices
when learning from the top 100 tokens and top 3
tokens of each data set. In each case a set of rules was
learned by SEVERIS from 90% of the data and tested
on the remaining 10% to compute mean precision,
mean recall, and the mean f-measures. For each data
set, we repeated tested the rules 10 times, rotating the
10% testing part of the data.

Table 7. Confusion matrices with precision, recall,
and f-measures scores for the data sets pitsD and

pitsE, using the top 100 and the top 3 terms
respectively for learning.

pitsD using top 100 terms for learning
 tn fn fp tp rec pre f

sev=2 0 0 0 0 0
sev=4 0 10 2 0 0.83 0.91 0.87
sev=3 0 1 163 0 0.99 0.98 0.99
sev=5 0 0 1 0 0.00

pitsD using top 3 terms for learning
 tn fn fp tp rec pre f

sev=2 0 0 1 0 0.00
sev=4 0 10 2 0 0.83 0.91 0.87
sev=3 0 1 163 0 0.99 0.98 0.98
sev=5 0 0 1 0 0.00

pitsE using top 100 terms for learning
 tn fn fp tp rec pre f

sev=2 1 20 0 0 0.05 0.25 0.08
sev=3 3 490 3 20 0.95 0.70 0.80
sev=5 0 26 9 6 0.22 0.69 0.33
sev=4 0 167 1 74 0.31 0.74 0.43

pitsE using top 3 terms for learning
 tn fn fp tp rec pre f

sev=2 0 21 0 0 0.00
sev=3 0 515 0 1 1.00 0.65 0.79
sev=5 0 34 0 7 0.00
sev=4 0 222 0 20 0.08 0.71 0.15

We chose 100 terms as this number of attributes is

larger than most of the data sets used to certify the
standard data miners (most of the data sets in the UCI
repository of machine learning data has less than 100
attributes [3]).

As an experiment, we tried halving the attribute set
size. To our surprise, there was little difference in the
halved results as in the whole. This process was
repeated until the number of attributes was equal to
three. As shown below, even with this very small
attribute set, the performance of SEVERIS did not
decrease significantly.

Figure 4 shows the rules learned for dataset PITSA
considering the top 100 terms. Note that the rules of
Figure 4 use only a subset of the 100 terms in the data
set. That is, for data set PITSA, there are a handful of
terms that are most relevant to predict issue severity.
Similar results hold for the other data sets. That is,
even when learning from all 100 tokens, most of the
rules use a few dozens terms or less.

The rules are not easy to understand as the terms
are stemmed. For example, in those rules “sr” is a
stemmed version of “srs”, which stands for “systems
requirements specification”, a common abbreviation
used in the PITS reports.

Even though few tokens were used, in many cases,
the f-measures are quite large (see Table 6 and Table
7). The best results are:
• pitsA, for issues of severity=2, f = 78-86%;
• pitsA, for issues of severity=3, f = 68-71%;
• pitsB, for issues of severity=3, f = 71-71%;
• pitsC, for issues of severity=3, f = 79-92%;
• pitsC, for issues of severity=4, f = 86-92%;
• pitsD, for issues of severity=3, f = 98-98%;
• pitsD, for issues of severity=4, f = 91-91%;
• pitsE, for issues of severity=3, f = 65-70%;
• pitsE, for issues of severity=3, f = 71-75%;

These results are better than they might first appear.
The first f-measure (in f = X-Y%) corresponds to
learning with three tokens and the second one
corresponds to learning with 100 tokens. Note how
using just a vanishingly small number of tokens (i.e.,
three) performed nearly as well as using a much larger
number of tokens. Also, recall that these are all results
from a 10-way cross-validation, which usually over-
estimates model error [13]. That is, the real
performance values are higher than the values shown
above. The f-measure is used in SEVERIS as

Figure 4. Rules learned from the data set PITSA considering the top 100 terms.

confidence level in the prediction for new issues.
For other severities, the results are not as positive.

Recalling Table 2, none of our data sets had severity=1
errors so the absence of severity=1 results in the above
list is not a concern. However, not all datasets resulted
in good predictors for severity=2 errors. In all cases
where this was observed, the data set had very few
examples of such issues:
• pitsB only has 22 records of severity=2;
• pitsC has zero records of severity=2;
• pitsD only has 1 record of severity=2;
• pitsE only has 21 record of severity=2;

Part of our proposed future work is to investigate
what is the (data specific) minimum number of
classified reports needed to learn in order to predict
with higher confidence.

3.4. Threats to validity
Like any empirical data mining work, our

conclusions are biased according to what data was used
to generate them. Issues of sampling bias threaten any
data mining experiment; i.e., what matters there may
not be true here. For example, the sample used here
comes from NASA, which works in a unique market
niche. Nevertheless, we argue that results from NASA
are relevant to the general software engineering
industry. NASA makes extensive use of contractors
who are contractually obliged (ISO-9O01) to
demonstrate their understanding and usage of current
industrial best practices. These contractors service
many other industries; for example, Rockwell-Collins
builds systems for many government and commercial
organizations. For these reasons, other noted
researchers such as Basili, Zelkowitz, et al. [2] have
argued that conclusions from NASA data are relevant
to the general software. We plan to run similar future
experiments on open source date from Bugzilla
repositories to reduce this bias.

We must also point out the fact that the learning
rules can not be generalized across data sets, as each
rule is only relevant to the data it was learnt from. Not
having data with issues of severity=1 influenced the
results, but we argue that adding additional categories
to the learning algorithm would not change the results
or the way SEVERIS works.

4. Related Work
Given the nature of defect descriptions in most bug

tracking systems (i.e., textual), other researchers
applied text mining techniques to analyze bug
descriptions in support of various tasks.

One of the addressed problems is the detection of
duplicate bug reports. In the most recent work, Wang

et al. [18] use an Information Retrieval (IR) technique,
vector space model (VSM) [16], to index the titles and
descriptions of bug reports in Bugzilla. Textual
similarities are computed between the bug descriptions,
based on the VSM representation. Additional
information is considered from the execution steps to
reproduce the bug, described in the reports. Earlier
work on the same problem was done by Runeson et al.
[14], who proposed the recall rate as evaluation for
their approach, also used in [18].

Closer to our work, in as much as some prediction
is being made based on observed rules, are the
approaches that use the textual similarity between bug
descriptions to assign bugs to developers [1, 4, 8, 10].
These approaches work by indexing the bug titles and
their descriptions (extracted from Bugzilla) and
computing textual similarities between them, using
some IR method. Based on these similarities and
learning who fixed earlier bugs, these systems
recommend the best developer to fix a newly reported
bug. The main differences between the approaches are
in their choice of IR method and in the machine
learning algorithm they use, such as: support vector
machines, Naïve Bayes and C4.5 are used in [1];
Probabilistic IR, VSM, support vector machines,
classification and regression trees, and k-nearest
neighbor are used in [10]; Naïve Bayes is used in [8].

A probabilistic IR model is used in [5, 6] to predict
source code files that will change in response to a new
bug, based on textual similarities between its
description and other similar bug reports, which were
previously fixed.

In a similar fashion, Lucene (http://lucene.apache.org)
a VSM based IR tool, is used in [19] to predict the time
and effort required for fixing a bug.

None of these efforts are specifically targeted at the
assessment of the severity level of the bug
descriptions. However, what makes this earlier work
relevant to ours is that researchers recognized the
importance of finding textual similarities between bug
reports and correlating them with additional bug
related issues. Our work on SEVERIS is based on the
same principles, yet it uses different text mining and
machine learning techniques, while addressing a new
problem.

5. Conclusions and Future Work
Over the years, the Project Issue Tracking System

has been extensively and repeatedly modified. Prior
attempts at generating generalized conclusions from
PITS have required significant levels of manual, hence
error-prone, processing.

Here, we show that conclusions can be reached
from PITS without heroic effort. Using text mining

and machine learning methods, we have shown that it
is possible to automatically generate predictors for
severity levels from the free text entered into PITS.

Better yet, our rules are self-certifying. Our data
mining generation methods builds the rules and prints
performance statistics (the confusion matrix with the f-
measure). For data sets with more than 30 examples of
high severity issues, SEVERIS always found good
issue predictors (with high f-measures). Further,
SEVERIS does so using surprisingly little domain
knowledge. In all cases where large f-measures were
seen using the top 100 terms, similar f-measures were
seen when using as few as 3 terms. It is a very exciting
result since it speaks to the usability of this work.

Future work will be aimed at performing
experiments on other defect data (from open source
domain) and at assessing what is the optimum number
of term to be used in learning and the minimum
number of data points in each category.

6. Acknowledgements
This research was conducted at West Virginia

University under NASA sub-contract project
100005549, task 5e, award 1002193r.

Andrian Marcus was supported in part by grants
from the US National Science Foundation (CCF-
0438970 and CCF-0820133).

Special thanks to Ken Costello for collecting,
sanitizing, and releasing the data used in this study
(note that all project identifiers were removed before
the data was passed outside of NASA).

We are grateful to Denys Poshyvanyk and Sonia
Haiduc from Wayne State University for their help.

Any opinions, findings, conclusions, or
recommendations expressed in this material are those
of the authors and do not necessarily reflect the views
of the NSF or of NASA. Reference herein to any
specific commercial product, process, or service by
trade name, trademark, manufacturer, or otherwise,
does not constitute or imply its endorsement by the
United States Government.

7. References
[1] Anvik, J., Hiew, L., and Murphy, G. C., "Who should fix
this bug?" in Proceedings 28th International Conference on
Software Engineering (ICSE'06), 2006, pp. 361-370.

[2] Basili, V. R., McGarry, F. E., Pajerski, R., and Zelkowitz,
M. V., "Lessons learned from 25 years of process
improvement: the rise and fall of the NASA software
engineering laboratory", in Proceedings 24th IEEE/ACM
International Conference on Software Engineering, 2002, pp.
69 - 79.

[3] Blake, C. L. and Merz, C. J., "{UCI} Repository of
machine learning databases", 1998.

[4] Canfora, G. and Cerulo, L., "How Software Repositories
can Help in Resolving a New Change Request", in
Proceedings Workshop on Empirical Studies in Reverse
Engineering, 2005, pp.

[5] Canfora, G. and Cerulo, L., "Impact Analysis by Mining
Software and Change Request Repositories", in Proceedings
11th IEEE International Symposium on Software Metrics
(METRICS'05), September 19-22 2005, pp. 20-29.

[6] Canfora, G. and Cerulo, L., "Fine Grained Indexing of
Software Repositories to Support Impact Analysis", in
Proceedings International Workshop on Mining Software
Repositories (MSR'06), 2006, pp. 105 - 111.
[7] Cohen, W. W., "Fast Effective Rule Induction", in
Proceedings 12th International Conference on Machine
Learning, 1995, pp. 115-123.
[8] Cubranic, D. and Murphy, G. C., "Automatic Bug Triage
Using Text Categorization", in Proceedings 6th
International Conference on Software Engineering &
Knowledge Engineering (SEKE'04), 2004, pp. 92–97.

[9] Deerwester, S., Dumais, S. T., Furnas, G. W., Landauer,
T. K., and Harshman, R., "Indexing by Latent Semantic
Analysis", Journal of the American Society for Information
Science, 41, 1990, pp. 391-407.

[10] Di Lucca, G. A., Di Penta, M., and Gradara, S., "An
Approach to Classify Software Maintenance Requests", in
Proceedings IEEE International Conference on Software
Maintenance, Montréal, Québec, Canada, 2002, pp. 93-102.

[11] Menzies, T., Greenwald, J., and Frank, A., "Data Mining
Static Code Attributes to Learn Defect Predictors", IEEE
Transactions on Software Engineering, 33, 1, 2007, pp. 2-13.

[12] Porter, M., "An Algorithm for Suffix Stripping",
Program, 14, 3, July 1980, pp. 130-137.

[13] Quinlan, R., C4.5: Programs for Machine Learning,
Morgan Kaufman, 1992.

[14] Runeson, P., Alexandersson, M., and Nyholm, O.,
"Detection of Duplicate Defect Reports Using Natural
Language Processing", in Proceedings 29th IEEE/ACM
International Conference on Software Engineering
(ICSE'07), Minneapolis, MN, 2007, pp. 499-510.

[15] Salton, G., Automatic Text Processing: The
Transformation, Analysis and Retrieval of Information by
Computer, Addison-Wesley, 1989.

[16] Salton, G. and McGill, M., Introduction to Modern
Information Retrieval, McGraw-Hill, 1983.

[17] Strang, G., Linear Algebra and its Applications, 2nd ed.,
Academic Press, 1980.

[18] Wang, X., Zhang, L., Xie, T., Anvik, J., and Sun, J., "An
Approach to Detecting Duplicate Bug Reports using Natural
Language and Execution Information", in Proceedings 30th
International Conference on Software Engineering
(ICSE’08), Leipzig, Germany, 10 - 18 May 2008

[19] Weiß, C., Premraj, R., Zimmermann, T., and Zeller, A.,
"How Long Will It Take to Fix This Bug?" in Proceedings

4th Working Conference on Mining Software Repositories
(MSR'07), 2007

