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Abstract—Agile and traditional plan-based approaches to 
software system development both agree that prioritizing 
requirements is an essential activity. They differ in basic 
strategy - when to prioritize, to what degree, and how to guide 
implementation. As with many software engineering methods, 
verifying the benefit of following a particular approach is a 
challenge. Industry and student/classroom based experimental 
studies are generally impractical to use for large numbers of 
controlled experiments and benefits are difficult to measure 
directly. We use simulation to validate the fundamental, yet 
typically intangible benefits of requirements prioritization 
strategies. Our simulation is directly based on detailed 
empirical studies of agile and plan-based requirements 
management studies. Our simulation shows, as many have 
claimed, that an agile strategy excels when requirements are 
highly volatile, whereas a plan-based strategy excels when 
requirements are stable, and that there exist mixed strategies 
that are better than either for typical development efforts. 
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I.  INTRODUCTION 
All development efforts take great care in choosing what 

is implemented. A great deal of research and debate is 
directed on implementation approaches. In particular agile 
vs. plan-based [1,2] development approaches. Less attention 
is focused on what should be implemented when, yet this is 
no less important in today’s complex and risky software 
development efforts. In this, prioritization of requirements is 
recognized as an essential micro-process within any 
development process [12]. With high customer expectations, 
tight schedules, and limited resources, prioritization is used 
to limit the scope [12] and deliver the most essential 
functionality as early as possible [14]. It is an accepted fact 
that for most development efforts that not all identified 
requirements will be implemented. Wiegers [14] states that 
prioritization is needed, not just so as to be able to ignore the 
least important requirements, but also to help the project 
manager to resolve conflicts, plan for staged deliveries, and 
make the necessary trade-offs throughout the development 
lifecycle [14].   

Both plan-based and agile development approaches view 
prioritization as a fundamental activity [1,12] but they differ 
in their basic strategy. A requirements prioritization strategy 

determines what requirements are implemented and in what 
sequence with respect to a strategic goal such as “minimize 
cost.” There are many different strategies. For example, 
“implement the lowest cost requirements first” or 
“implement the highest value requirements first” and some 
strategies are more effective than others. 

The primary question of interest here is in finding an 
effective strategy for a given development effort.  While 
there is a great deal of literature on requirements 
prioritization, little of this addresses the issue of strategy 
effectiveness.  Perhaps one reason for this is that, with the 
exception of naïve strategies (e.g. implement the 
requirements as they appear) all strategies rely on difficult 
assessments such as cost estimation, value assessment, 
dependency analysis, and so forth. While estimating the cost 
of a task is generally straightforward, it is difficult to 
estimate the cost of a particular requirement (cost here 
typically is interpreted as “effort” here, not money). Value is 
generally an “intangible” not easily attributed to a particular 
requirement. Generally it is overall value, or the value for 
completed groups of requirements that represent a complete 
set of functionality is all that is considered. So called “earned 
value” is not actual value [3] is not reliable for prioritization 
purposes. Furthermore, requirements prioritization is difficult 
to monitor and measure “in-vitro” within actual practice [13].  

Given the above issues, and many others that we have 
left out, the research question we are interested in is what is a 
practical means for investigating the effectiveness of 
requirements prioritization? Controlled experiments are 
impractical, as is common with assessing software 
engineering methods (e.g. how to set up exact replications 
with different strategies, how to prescribe requirements 
volatility, etc.). In addition to the above stated challenges in 
dealing with intangibles and collecting data in-vitro, 
experiments would require a large number data points to get 
convergence of effectiveness measures due to the highly 
variable (and uncontrollable) conditions and circumstances 
within any given project.  

Comprehensive simulation is an attractive option for 
investigating and providing empirical support and 
justification of new software engineering methods whose 
effectiveness measures are intangible and unobservable. 
Such simulations are common and accepted as evidence 



within the management and operations research literature 
where the evaluation challenges are analogous to those in 
software engineering. In this work we create a simulation 
based on requirements theory and a detailed empirical study 
of requirements practices. We verify that the simulation is 
consistent with the “home-ground” theory of Boehm-Turner 
[2] for basic agile and plan-based requirements prioritization 
methods. The simulation is then used to explore properties of 
requirements prioritization strategies and investigate two 
new methods suggested by application of this theory. 
Strategies are compared graphically and with respect to six 
strategy effectiveness measures under various requirements 
volatility scenarios. 

The home-ground theory states that agile methods are 
most effective when requirements volatility is very high, 
while plan-based methods are most effective when there is 
relatively little requirements volatility. The theory suggests 
that a mixture of the two methods will generally be more 
effective than either alone for typical development efforts. 
This study seeks to answer the question “what would a 
mixed agile and plan-based requirements prioritization 
strategy look like and how effective is it?  

The paper begins with an overview of how requirements 
are modeled in the simulation, their evolutionary stochastics, 
and the adjustable parameters of the simulation. This is 
followed by a detailed discussion on the assumptions made 
in the simulation model and their justifications. We then 
describe how the agile and plan-based prioritization 
strategies are modeled and simulated. Then a discussion on 
measuring the effectiveness of a strategy and describing six 
relevant effectiveness measures we use for generating 
comparison results. Subsequently we discuss the theoretical 
validity of the simulation model. This leads to the 
construction of two new “mixed” strategies which are then 
compared to the agile and plan-based methods in the results 
section. We conclude with a brief discussion of contribution 
of this work, the utility of simulating software development 
micro-processes such as requirements prioritization, and 
indicate how the new prioritization strategies can be applied 
in practice. 

II. SIMULATING REQUIREMENTS EVOLUTION 
For our purposes we are only interested in quantitative 

evaluation attributes of a requirement. The commonly used 
attributes for this are the cost of implementing (this is usually 
effort rather than a monetary unit) and the expected gain if 
the requirement is implemented which is referred to as value. 
A requirement Ri is considered an ordered pair (costi, valuei) 
where min_cost ≤ costi ≤ max_cost  and max_value ≤ 
valuei ≤ min_value. A “base set” of requirements {R1, R2, 
…, Rnum_reqs} is generated by assigning uniform random 
variables costi = U(min_cost, max_cost) and valuei = 
U(min_value, max_value). After each iteration, 
requirements volatility is handled by updating each 
requirement value with a normally distributed random 
variable Ri = (costi, valuei + N(0, req_value_sigma) ) 
and possibly a Poisson number of new requirements 
Poiss(ave_new_req_per_iter) are added to the base 

set. Cost is assumed to be non-volatile for reasons explained 
in the assumptions section. If valuei < 0 then valuei = 0 from 
that point on (requirements do not rise from the dead after 
being completely devalued). A base number of iterations 
num_iters and a minimum number of iterations 
min_iters are chosen. The requirements change values 
every (total cost of base reqs) / num_iters which may not 
be the same as the development iteration size. Note that 
strategies do not have to use this as their iteration size 
determination. It is mainly for handling requirements 
volatility. 

The simulation runs for at least min_iters iterations 
applying requirements prioritization strategies to the current 
set of known requirements. After min_iters iterations, a 
“stopping time” is determined by when a Bernoulli random 
variable B(end_dev_prob) = 1, after which the 
development is considered ended (this simulates the 
unknown stopping time for a development project) and this 
completes one trial  in the simulation.  

TABLE I.  SIMULATION PARAMETERS 

Parameter name Description 
num_trials (1000) Number of simulation experiments 

to perform 
min_value (30) Lower bound on requirements values 
max_value (500) Upper bound on requirements values 
min_cost (1) Lower bound on requirements costs 
max_cost (100) Upper bound on requirements costs 
rank_tol (10%) Two goodness measures are 

considered the same rank when they 
are within this percentage of each 
other 

num_reqs (25) Number of initial base requirements 
num_iters (6) Number of initial base iterations (a 

maximum on the development) 
req_value_sigma  
(15%) 

Standard deviation of the 
requirements value volatility Normal 
random variable 

ave_new_req_per_ite
r (1.4) 

Average arrival rate of new 
requirements per iteration (Poisson) 

ave_unimpl_req_per_
iter (20% of num_reqs) 

Average arrival rate of requirements 
taken from the initial base set (for 
“discovery” of initial requirements 
in later iterations by agile methods)   

inital_bound_lower 
(30%) 

Minimum percentage of initial base 
set requirements that can be 
“discovered” (for initial 
requirements set for agile)  

initial_bound_upper 
(70%) 

Maximum percentage of initial base 
set requirements that can be 
“discovered” (for initial 
requirements set for agile) 

min_iters 
(num_iters/4) 

Minimum number of iterations for a 
trial 

end_dev_prob 
(1/num_iters^0.333) 

Parameter for the Bernoulli random 
variable to determine a random 
development stopping time 
(compounds after min_iters is 
exceeded) 

 

No strategy may exceed the total cost of the base 
requirements at the stopping time, but they may expend less 
due to the particular cost of the requirements left over at the 



last iteration (i.e. if adding one more would exceed the 
stopping cost, then it is not used).  

Table I provides a summary of the adjustable parameters 
for the simulation and the default parameters for a “typical” 
simulation (in parenthesis). 

In our investigation we made use of the default 
parameters indicated in Table I to generate the results 
described in this paper. The selected values appear to be 
representative of “typical” development efforts, but we do 
not have explicit evidence to support this currently.  We have 
performed a sensitivity analysis on the parameters and found 
that beyond using excessive values, our results are not 
sensitive in any of the parameters not directly related to 
requirements volatility. This suggests that regardless of what 
the actual parameters are for typical projects, we would not 
expect the results would be any different.  

III. ASSUMPTIONS OF THE SIMULATION MODEL  
In this section we describe the significant assumptions 

used to define the simulation model and the justifications for 
using them.  

End development time is unknown: even with exhaustive cost 
and schedule estimation and manage-to-plan development, 
high uncertainty and business circumstances frequently 
expand or contract expected development effort. According 
to the 2006 Standish CHAOS [15] survey, only 35% of 
development efforts are successful in meeting cost, schedule, 
or capability expectations. To simulate unknown end 
development “stopping time” we assume a minimum number 
of iterations are completed after which a biased coin toss is 
used to determine if the development must stop. No 
requirements may be implemented that exceed this stopping 
time. Without this assumption, all strategies would 
implement the complete set of identified requirements and 
thereby achieve the same total value and total cost. Some of 
the more interesting strategy effectiveness properties appear 
when only a subset of the requirements are implemented. 
When there is no requirements volatility, an unknown end 
development time generally results in some of the identified 
requirements not being implemented. In a volatile 
requirements situation, it is possible that the stopping time 
will exceed the time needed to implement the base 
requirements as new requirements may be added during the 
iterations. 

Requirements volatility has two independent factors: 
requirements are assumed to change either by adding or 
removing a requirement, or by a change in a requirement 
value or cost. This is substantiated in [4]: “Participants 
reported two types of requirements changes: adding or 
dropping features, and changing already implemented 
features.” 

Non-volatile cost: it is assumed that requirements volatility 
affects value but not cost. Uncertainties in cost can cause 
volatility, however in our analysis we have found that this 
simply increases the overall volatility and does not constitute 
an independent volatility factor. Including cost volatility did 
not change our results, but it does complicate the analysis, so 

as a simplification we assume cost is non-volatile and this 
does not invalidate our results.  Note that the cost of late 
changes to requirements may be a factor here not accounted 
for that perhaps should be investigated. Such cost of change 
factors are generally thought predominantly due to 
requirement dependencies which we have determined do not 
affect our results, hence we suspect that this too would not 
change our basic results . 

Change in value due to volatility is normally distributed: 
there is no evidence to support that value changes are biased 
either in favor of higher or lower valuations as development 
progresses. Furthermore while minor changes of requirement 
value are common, major changes are rare. This is indicated 
in [4]: “Customers provide feedback and can request major 
changes if their expectations aren’t met. In the 16 
organizations [surveyed], this kind of change is relatively 
rare” and “… most of the change requests are ‘usually more 
a case of tweaks…”  Even though these quotes were made in 
the context of changes requested within an agile 
development effort, they indicate the general nature of 
requirements changes because it is not the agile process that 
dictates the magnitude of a change in requirements value. A 
random variable whose value varies either up or down 
equally (i.e. symmetric) and tends to vary relatively little 
from its average but on rare occasion varies greatly is 
modeled very well with the Normal distribution.   

Once a requirement has zero or negative value it never 
regains positive value: there is no evidence to support that 
when a requirement is assessed as valueless that it ever is 
reconsidered and becomes valued. Requirement 
reconsideration after being de-valued, is more accurately 
modeled as a new requirement that was “inspired” by the de-
valued requirement.  

Arrival of new requirements due to volatility is Poisson 
distributed: there is no evidence to support that the number 
of new requirements in any given iteration is dependent of 
the number of new requirements previously added or 
removed. Note that this is NOT saying that new requirements 
are independent of previous or existing requirements. Only 
the number of “new arrivals” are independent. We further 
assume that new requirements are “orderly” and do not arrive 
simultaneously at any given time, although many can arrive 
within the same time interval (this is a minor technical point 
that we do not believe is relevant to requirements 
prioritization). Thus the number of new requirements arrival 
is a “memoryless” and “orderly” counting process modeled 
as a Poisson random variable.  

Requirement implementation dependencies are not 
accounted for: it is generally thought that requirements are 
rarely independent of each other and that such dependencies 
must be accounted for when prioritizing. While such 
dependencies are critical for actual implementation, this is 
not the case for prioritization. Prioritization is an assessment 
activity that influences, but does not determine the 
implementation. We have found two important factors in this 
regard. First, when requirements are assessed for 
prioritization, dependencies tend to be implicitly accounted 
for – costs and values are adjusted to match dependencies 



e.g. if requirement B depends on A which has a high value, 
then so does B. That is, it is not individual requirements 
being prioritized, rather sets of requirements (and perhaps 
partial requirements) that constitute single implementation 
activities. Second, prioritization is only a “first pass” plan 
that must be later refined into a practical implementation 
plan when the particular dependency issues are known. On 
this point, we have not seen any evidence that developers 
explicitly account for dependencies when “first pass” 
prioritizing requirements, while there is ample evidence that 
dependencies are considered for implementation (but 
surprisingly rarely considered explicitly).  Given that a 
prioritization operates on the exhaustive space of all possible 
orderings and combinations of requirements, the effect of 
individual dependences does not appear to influence the net 
outcome. This fact has been verified in our simulation. We 
have conducted simulations accounting for varying degrees 
of dependencies (using so-called dependency graphs), both 
extreme and mild and have observed no substantial 
difference in simulation behavior. Given this and that 
accounting for dependencies greatly complicates the 
simulation, we have chosen to ignore them for studies of 
prioritization strategies. It is certainly possible that 
requirement dependencies do matter for some prioritization 
properties and we are not claiming otherwise here. For our 
study, requirement dependencies in general affect all 
strategies equally, and as such they do not affect the 
properties we are investigating, i.e. requirement 
dependencies are independent of prioritization strategy. As 
such, we are confident in ignoring such factors at this time. 

Single option for implementation: generally there are 
many choices on how a requirement could be implemented; 
each with a different (cost, value) pair. While a prioritization 
strategy involves choosing how to implement, as well as the 
order in which to implement a requirement, this represents an 
independent dimension on the effectiveness of a strategy (a 
fact that was shown in [11]). For our investigation it is 
assumed that the optimal implementation option is always 
chosen and this option will achieve the entire value and 
expend the entire cost of the base requirement. We have 
extended the simulation to include implementation options, 
but this is not the main focus of the investigation described 
currently nor does it change any of the basic results 
presented here. 

IV. 4. SIMULATING PRIORITIZATION STRATEGIES 
The prioritization strategies are modeled on empirical 

results from [3,4,5,7,9,10]. Our models implement a literal 
representation of agile and plan-based methods as they are 
defined in the literature. In [2] Boehm-Turner argue that the 
general perception, as well as is stated in the literature, that 
development practice follows one of two extremes – either 
agile or plan-based. Given that neither approach is “at home” 
for typical development efforts, Boehm-Turner claim that 
this view is unrealistic and leads to confusion and decreased 
effectiveness in practice. We state up front that the agile and 
plan-based strategies we simulate likely do not represent 
what is actually used in practice. Since we are interested in 
investigating properties of prioritization strategies, we must 

consider what is considered to be at the extreme. Without 
explicitly designing the simulation to do so, the results of our 
simulation support Boehm-Turner’s assertion that, in general 
a “balance” of plan-based and agile methods is indeed the 
best approach. 

The literal view of agile and plan-based approaches we 
take simply means that we do not mix (or balance in the 
terminology of [2]) the activities that are attributed to each 
respective approach. However, we most certainly desire that 
the activities performed in each strategy are representative of 
actual practice and not on specious statements, theories, or 
claims that have not been empirically validated or justified. 
We are fortunate to have at hand a comparative empirical 
study of requirements practices across 16 different 
companies [4] to provide a reliable basis for establishing a 
representative simulation of agile and plan-based 
requirements prioritization strategies. From this study the 
following properties of agile and plan-based strategies, with 
respective evidence, form the basis for simulating these 
approaches realistically. The quotations below are taken 
from [4] and indicate the rationalization for the stated 
properties.  

Agile requirements prioritization properties 

1) Requirements are prioritized at the beginning of each 
development iteration: “… agile involves prioritizing 
requirements in each development cycle. Prioritization often 
happens … at the beginning of each cycle.” 

 
2) Requirements are prioritized according to highest 

value first: “… agile practitioners uniformly reported that 
their prioritization is based predominantly on one factor – 
business value …” 

 
3) A significant subset, but not all “initial” 

requirements are discovered at the first iteration: “… 
requirements aren’t predefined; instead, they emerge during 
development. High-level RE occurs at the project’s 
beginning. During this brief process, the development team 
acquires a high-level understanding of the application’s 
critical features.” 
 

It is difficult to gauge exactly what percentage of the 
requirements are identified at the beginning of an agile based 
development. In the simulation we randomly (according to 
the uniform distribution) select a percentage from 
initial_bound_lower to initial_bound_upper of the 
base set of requirements (which are the assumed base of all 
“actual” requirements that could be discovered at the start of 
the project). There is little empirical study of what range 
might be representative and there are numerous conflicting 
practices here. All we know is that in general not all initial 
requirements are identified. Indeed, it is a primary tactic of 
the agile approach NOT to discover the majority of initial 
requirements and to allow requirements to emerge during the 
development as they become important. To be conservative 
we selected a range of 30%-70% for the agile approach. 



With the above properties it is fairly straightforward to 
simulate an agile prioritization strategy. Agile iterations will 
be determined inductively by: 

Iteration 0: define a uniform random integer 
first_iteration_number between 
initial_bound_lower*num_reqs and 
initial_bound_upper*num_reqs to determine the 
number of initial critical requirements identified from the 
base set. We define AG_PLAN as the working set of 
requirements for the agile strategy. At the end of each 
iteration this ordered set will represent the prioritization for 
that iteration. At the start of development this is the sub-set 
of the base requirements initially identified, say {R1, R2, …, 
Rfirst_iteration_number} (recall agile property 3 from above) 
and the remaining base set requirements are placed in 
AG_HEAP as {Rfirst_iteration_number+1 ,… , Rnum_reqs}. We 
now define the iteration size. For simplicity we choose this to 
be the same as the iteration size used for volatility 
adjustments (however note this synchronization actually 
gives an agile strategy a bit of an unfair advantage in the 
final iteration as will be discussed later).  

Iteration k>0: sort AG_PLAN from highest to lowest value. 
Implement the requirements in this set in this order up to the 
iteration size. Unimplemented requirements are carried over 
to the next iteration. 

Intra-iterations: a Poission random variable with intensity 
ave_unimpl_req_per_iter number of requirements 
are taken from AG_HEAP and added to AG_PLAN to 
represent the “discovery” of the base set requirements as they 
emerge during the development. 

Plan-based requirements prioritization properties 
1)  Requirements are prioritized exhaustively once at the 

beginning of the development: “… in traditional RE, 
requirements are typically prioritized once.”  

 
2) Requirements are prioritized according to highest 

cost-benefit first: “… in traditional RE, many factors drive 
requirements prioritization – for example, business value, 
risks, and cost ...”  

 
Other empirical works within requirements engineering 

have described the predominance of cost and benefits as the 
primary prioritization decision factors [5,9,14]. It has been 
shown that the optimal strategic prioritization order is 
established by considering the value/cost (or slight variations 
of this) [11]. Requirements engineering methods are 
consistent with this, for example in the popular cost-value 
graph prioritization approach [6]. 

Iteration 0: Owing to property 1 above, the PB_PLAN is the 
entire base set of requirements as {R1, R2, …, Rnum_reqs }. We 
sort this set from highest to lowest value/cost of the 
requirements.  The iteration size is inconsequential to the 
plan-based strategy as no changes to the priorities are made 
subsequently.  

Iteration k>0: Implement the requirements in PB_PLAN in 
the order established in iteration 0.  

Intra-iterations: since requirements are prioritized only once, 
new requirements that emerge are “unexpected” and simply 
appended to the end of PB_PLAN in the order that they 
arrive. 

V.  SIX MEASURES OF STRATEGY EFFECTIVENESS  
A strategy {R1, R2, …, Rn} can be visualized by plotting 

the cumulative values versus costs (i.e. running sums). That 
is, (cost(R1), value(R1)), (cost(R1)+cost(R2), value(R1)+ 
value(R2)), … as exemplified in Figures 1-3. However there 
are several possible “best strategy” criterions that are of 
interest which may not be obvious from a visual inspection. 
To automate the analysis of strategies, we introduce the 
following six “goodness of strategy” metrics related to the 
strategy graphs as exemplified in Figures 1-3: 

tv – total value of the requirements implemented. This 
represents the value on the y-axis at the end point of a 
strategy graph (or the ultimate “height”).  

tc – total cost of the requirements implemented. Requirement 
costs are assumed to be constant throughout the project. . 
This represents the value on the x-axis at the end point of a 
strategy graph (or the ultimate “length”). 

int – the discreet integral, or total area under the strategy 
curve from 0 to tc. This represents the “total value created” 
by a strategy (different than total value implemented).What 
makes this measure attractive is that it accounts for the 
“goodness” of a strategy overall rather than just at the end. 
That is, a strategy may perform poorly early on, but jump up 
at the end to deliver a good end value. But if the 
development had stopped earlier, it would have done poorly 
at the end. Another way to look at this is that the closer a 
strategy comes to the optimal strategy that could have been 
created has the unknown values and requirements been 
known (we call this the frontier strategy), which no strategy 
can do better, then the “better” that strategy. The frontier 
strategy has the obvious property that it has the maximum 
possible area under it, so the larger a strategies integral is, the 
closer it must be to the frontier strategy. 

ben – is the benefit, defined as tv – tc 

cb – is the cost-benefit defined as tv/tc 

fr – it is the “frontier ratio” defined as int/( int for frontier 
strategy up to same cost) where the frontier strategy is the 
Pareto ordering of the set of all the requirements at the 
stopping time. No strategy can pass this curve and hence it 
represents the “optimal” in terms of overall value and cost. 
However note that this is an “after the fact” ordering that no 
strategy can generally achieve due to the random changes in 
values and new requirements added during the iterations. The 
closer this ratio is to 1, the more closely it resembles the 
frontier strategy up to its tc. 

When calculating goodness of strategy metrics, only the 
values of the requirements at the stopping time are used as 



these presumably represent the value that is actually 
delivered. 

VI. THEORETICAL VALIDITY 
Our objective for simulation is to explore comparative 

properties of prioritization strategies under various 
conditions that are difficult or impossible to observe in 
practice. To inspire confidence in the validity of our 
simulation it is important that it is consistent with known 
theory. A well-accepted basic model for comparing plan-
driven and agile methods is the “home ground” model of 
Boehm- Turner [2]. In this model, plan-based and agile 
methods are considered to have their “home-ground” at 
opposite extremes with respect to five project factors – Size, 
Criticality, Dynamism, Personnel, and Culture. The theory 
states that most projects will have some low factors, some 
high, and some in between and rarely wholly within either 
method’s home ground. Thus using a mixture of approaches 
to best match the factor values is generally more effective for 
any given project. The most relevant factor for requirements 
prioritization is Dynamism, defined as the percentage of 
requirements-change per month. According to [2], agile 
methods have a home ground when there is 50% or more 
changes per month, while plan-based methods excel at 1% or 
less. In our simulation high Dynamism translates into large 
values of the parameters ave_new_req_per_iter (λ for 
convenience) and req_value_sigma (σ for convenience), 
the opposite for low Dynamism. 

For our simulation, this aspect of the home-ground theory 
implies that an agile requirements prioritization (AG) should 
excel with (high λ, high σ), whereas plan-based (PB) excels 
with (low λ, low σ) as summarized in Table II below. 

TABLE II.  DYNAMISM AND SIMULATION PARAMETERS 
HIGH λ ? AG 
LOW λ PB ? 

average new 
requirements per 

iteration λ  LOW σ HIGH σ 

 requirements value standard deviation σ 
 

Our simulation results are consistent with Table II with 
very high confidence. Specifically, there is a significant 
difference in the ranks of all goodness of strategy measures 
except tc with (high λ, high σ). In this case it is not 
unexpected that PB will have slightly better tc (which 
implies lower cost) given the last requirement implemented 
in this strategy is likely to have much lower cost than the 
requirement that would have been implemented had 
development not ended abruptly. We see on the strategy 
graphs that PB has greater “pull-back” at the stopping time 
than AG.  

Table II implies two additional cases for which the home-
ground theory provides no expectations but useful to 
consider in any case. In the (high λ, low σ) case, it is 
interesting to note that the simulation results are mixed 
without any significant differences between AG or PB. In the 
(low λ, high σ) case, agile generally is better on all measures, 
but not significantly better. Significance is defined as having 

more than 25% difference in the average rank for a measure 
after “convergence” of the simulation (discussed later). 

VII. DISCOVERING NEW STRATEGIES 
Given that our simulation has properties and results that 

are consistent with expectations derived from the home-
ground theory, we have a “fair” and justifiable basis for 
exploring new strategies by comparing them with simulated 
AG and PB strategies. Recall that the main tenet of the 
home-ground theory is that for the majority of development 
efforts, their five critical project characteristics are generally 
not within either the agile or plan-based home grounds. The 
advice given is that a “balance” that mixes the two 
approaches is best - use agile methods for areas whose 
characteristics are closer to the agile home ground, use plan-
based methods for areas that are closer to its home ground.  

Taking this advice with respect to our more narrow 
interests in requirements prioritization, we would like find a 
mixture of AG and PB that has its home ground in the 
middle of the two extremes of Dynamism. That is, we seek a 
strategy that is effective where a given project is more likely 
to be – with neither high nor low Dynamism. Furthermore, it 
is difficult (perhaps impossible) to accurately predict at the 
outset what the Dynamism for a given project will be, so we 
seek a strategy that does not depend on knowing this. 
Furthermore, there is no justification assuming that 
Dynamism is constant throughout the development. Hence 
the ideal strategy does not depend on knowing what the 
Dynamism actually is and will “adjust” automatically if it 
changes. 

There are a number of interesting ways to mix PB and 
AG. The primary trade-off consideration is effort. Adding 
plan-based activities to an agile approach or vice-versa will 
increase the effort needed to perform prioritization. This is 
another consideration when comparing new strategies. If a 
mixed strategy has better performance, it should be large 
enough to outweigh the additional effort required use it. With 
these in mind, two candidate mixed strategies are: 

The AG2 strategy: We note that the PB strategy takes 
advantage of Pareto optimization when prioritized by cost-
benefit. This approach is effective in low Dynamism projects 
by ensuring that regardless of when the development ends, 
the majority of high-leverage requirements get implemented 
first i.e. the “80%” of the value that resided in “20%” of the 
requirements (quotes added to emphasize that these are only 
representative percentages). Clearly in a high Dynamism 
environment where values may change radically, what may 
once have been a high-leverage requirement may transform 
to a low-leverage requirement (or vice-versa) thereby 
obviating the benefit of this prioritization.  Hence a natural 
variation of AG is to order the requirements in each iteration 
by cost-benefit (or value/cost in our simulation) rather than 
by value alone. The effort increase is that a cost assessment 
must now be performed in addition to the usual value 
assessment. We will call this strategy AG2.  

The HY strategy: The AG strategy is effective when the 
Dynamism is high because it enables adjustment of priorities 
when requirement values change. The shortcoming of this 



strategy is that it assumes that always going with the highest 
valued requirements that are known within each iteration will 
result in implementing the highest valued requirements 
overall. That is, local value maximization will lead to global 
value maximization. Generally the “local optimization leads 
to global optimization” property does not hold and the result 
is a sub-optimal prioritization with respect to the overall 
development (i.e. over all the iterations). This is also true 
regardless of what local prioritization method is used e.g. 
cost-benefit rather than value. As such, the AG2 strategy will 
suffer this shortcoming as well and so we seek an alternative. 
The basic problem is that the agile method iteration sizes do 
not account for the likelihood of higher leverage 
requirements appearing in a later iteration. Indeed, agile 
methods tend to have fixed iteration sizes (usually fairly 
small) with the goal to implement as much as possible in that 
iteration then add the remainder to the next iteration. The 
small fixed size iterations are intended to keep the 
development from wandering too far off course when there is 
high Dynamism.  

The PB strategy avoids the agile shortcoming by making 
an exhaustive identification and assessment of requirements 
from the outset and then optimizes by prioritizing high 
leverage requirements first and then tries to control 
Dynamism as the development progresses. The assumption is 
that it is very unlikely that a high-leverage requirement will 
ever become low-leverage. This assumption tends to hold 
fairly well, however controlling Dynamism is not necessarily 
achievable in general, which is why the PB strategy is risky 
in a high Dynamism environment. As an alternative, a mixed 
strategy can be formed that performs an initial 
comprehensive requirements assessment to establish an 
overall initial prioritization (order is by highest to lowest 
cost-benefit), and then for subsequent iterations is updated 
according to re-assessments of cost and value and new 
requirements. The key is in choosing a strategic iteration size 
that implements the majority of the high-leverage 
requirements and then leaves the lower-leverage ones for the 
next iteration where they can be re-prioritized relative to new 
requirements and updated costs and values. A natural 
strategic criterion for this is when the total cost exceeds the 
total value for the requirements implemented (this is the so-
called “economic turning point”). The iteration size will vary 
depending on the particular costs and values of the 
unimplemented requirements - typically large at first, then 
progressively decreasing as the cost-benefits of the 
unimplemented requirements become more equal. This 
approach assumes that there is a reasonably significant 
variation in the costs and values of the requirements to 
reduce the risk of implementing a low-leverage requirement 
in favor of a high-leverage one simply because of a fixed 
iteration size. A strategy that performs in this way we will 
call the “hybrid” or HY.  The strategy is straightforward to 
apply and a brief example can be found in the Appendix. 

VIII. SIMULATION RESULTS 
We begin by visualizing a single simulation trial under a 

typical Dynamism scenario and then under two extremes to 
validate the expected behavior of the simulation for AG and 

PB and observe the adaptability properties of the new AG2 
and HY strategies. Figure 1 is a single trial with λ=1.4 and 
σ=15% (medium Dynamism).  

 
Each of the curves in the figure represents the results of 

applying a given strategy to the final set of requirements 
(with the exception of the Optimal initial curve). Each point 
on a curve represents the implementation of a requirement at 
which time its cost is added to the cumulative total and its 
value is added to the cumulative value up to that point. Thus 
strategy curves are non-decreasing. To explain the features in 
the figure above, the solid curve is the “Optimal initial” 
strategy and it is the Pareto plot of the base set of 
requirements. If there is no Dynamism, this would be the 
optimal strategy as no other ordering could have higher value 
at lower cost than this curve at any point. The dashed curve 
is the “Optimal Frontier” which represents the Pareto plot of 
the set of requirements at the time development ends. This 
includes the base set plus any requirements added during the 
development and their respective value changes. No strategy 
can rise above this curve as it represents the optimal strategy 
given retrospect knowledge of all the requirements and their 
values. Such a strategy is impossible to achieve because of 
the stochastic nature of requirements change. However, the 
more similar a strategy is to the Optimal Frontier, the better 
is its performance, and hence the motivation for the fr 
measure.   The difference between the Optimal initial and 
Optimal Frontier indicate the degree of Dynamism for a 
given trial i.e. the further apart these are, the greater the 
Dynamism. The tall vertical line indicates the maximum total 
cost of the development at the stopping time. No strategy 
may exceed this cost, and so no curve may extend past this 
line.  

We see that all the strategies are consistent with the 
features described above and so we have further 
confirmation that the simulation is correct. This verification 
has been performed hundreds of times under a large variation 
in simulation parameters with no unexpected behavior. We 
observe that neither AG nor PB perform particularly well in 
this “typical” non-extreme Dynamism case as is predicted by 
the home ground theory. The AG2 and HY perform best and 
at about the same level.  

 

 

Figure 1.  Medium Dynamism simulation trial 



Figure 2 is a single trial with λ= 1/1000 and σ=1/10% 
(low Dynamism). For this scenario we would expect that 
since there is nearly zero Dynamism, the Optimal initial and 
Optimal Frontier would be identical. This is clearly the seen 
in the figure (the two curves completely overlap). With no 
Dynamism, the PB strategy is predicted to be best and AG 
the worst. In fact, PB should be identical to the Optimal 
initial up to the stopping time. This is indicated in the figure 
above but is difficult to see as it is covered over by the HY 
strategy. This latter observation is notable as it indicates that 
the HY strategy has precisely adapted to the expected best 
strategy PB. This result has been seen to hold in general, and 
so we have confidence that HY is adaptable to Dynamism. It 
is also notable that the AG2 strategy performs reasonably 
well and appears to be adaptable.  A more subtle observation 
is that the AG2 and AG plans both clearly show the 
“diminishing returns” characteristic within each fixed 
iteration whereby the values sharply increase at the 
beginning of each new iteration (the humps). This is 
consistent with the expected behavior of the agile approach.  

 

Figure 3 is a single trial with λ= 20 and σ=200% (very 
high Dynamism). With many new requirements and large 
value swings, we expect a large difference between the 
Optimal initial and Optimal Frontier as seen in the figure. 
Also expected from this, and clearly seen in the figure, is that 
AG would greatly outperform the PB strategy. In this trial, 
all the strategies that re-prioritize within each iteration seem 
to perform equally well (at least at the end development 
time). This is not generally the case, and even here closer 
inspection will reveal significant differences in these 
strategies. For example, if the development ended much 
earlier, say at 500, then the AG2 strategy would be the clear 
winner. Indeed it is consistently closer to the Optimal 
Frontier than the other strategies, so its fr measure will be 
higher. What is notable is the similarity of the AG2 and HY 
strategies. Both strategies appear to adapt well at this 
extreme level of Dynamism. In this particular case better 
than AG, but in general this is not true.  

 

To get a handle on the properties of the strategies 
generally, we consider the average ranks and standard 
deviations over 1000 simulation trials for the six strategy 
measures described earlier. We chose 1000 trials because 
uniformly, the average values converged to at least 1 decimal 
of precision for all the measures at this level. The rank for a 
measure M on a given trial is the (number of strategies being 
compared) - (number of strategies with “worse” measures 
within the specified tolerance). For example, if there are 4 
strategies being compared and the Agile strategy has a tv that 
is more than 5% (the tolerance level) greater than the other 3 
than it will have rank 1. It is unjustifiable to consider two 
values that are within a given small percentage of each other 
to have different ranks, hence the use of a tolerance value 
(we use 5%) to create rank-equivalences. Thus it is possible 
for all strategies to have the same rank indicating no 
substantial differences for that measure. 

Table III below is an example of average rank results for 
1000 trials with λ=1.4 and σ=15% (medium Dynamism). 

TABLE III.  AVERAGE RANKS N=1000, Λ=1.4, Σ=15% 

 tv tc int ben cb fr 

PB 1.67 1.18 1.82 1.74 1.49 1.90 

std 1.04 0.46 0.97 1.08 0.87 0.86 

AG 2.34 1.26 3.43 2.45 2.41 3.56 

std  1.32 0.57 0.94 1.32 1.32 0.84 

AG2 1.18 1.21 1.42 1.20 1.16 1.34 

std  0.55 0.51 0.70 0.57 0.48 0.62 

HY 1.07 1.23 1.23 1.09 1.10 1.21 

std 0.30 0.53 0.51 0.35 0.40 0.47 
 

The results are significant to 1 decimal place and we see 
that the HY strategy is the top rank for all but tc (as is 
expected from our previous discussion on cost and PB). Also 
notable is that HY has the lowest standard deviation for all 
measures where it is top ranked. This can be interpreted as 
the degree to which we expect a typical simulation trial to be 
near its average rank value. That is, the HY strategy is more 
consistently top ranked than the other plans. It is not top 

 

 

Figure 3.  High Dynamism simulation trial 

 

 

Figure 2.  Low Dynamism simulation trial 



ranked on average because it swings wildly from top to 
bottom rank.  

Table IV considers the top average ranks from 1000 
random trials under different levels of Dynamism. The PB 
strategy wins on tc mostly due to the abrupt stopping rule 
which is that no requirements can be implemented that 
exceed the cost at the stopping point. What happens with the 
plan-based strategy is that at the stopping point, the planned 
set of requirements generally cannot exactly meet the cost 
limit at the stopping time (no rearrangements are possible in 
the plan-based strategy, even at the end) so there is no choice 
in which requirement to end on – the one which makes the 
cumulative cost less than the stopping point whose next 
requirement in the planned order would make a cumulative 
cost exceed the stopping point. Since the requirements are 
ordered by cost-benefit, the farther the stopping time is, the 
greater the cost per requirement is likely to be. So the end 
requirement is more likely to “pull back” far behind the 
stopping point cost because the next requirement is likely to 
have a higher cost. Because of this, total cost is probably not 
a very useful “goodness” of strategy measure.  

In the overall spectrum of performance, HY dominates in 
4 areas, is very strong in another 2, and is strong, but not 
dominant in 1 additional area from a total of 7 of the 9 
scenarios considered. It is worth noting that the strongest 
areas are when the Dynamism is medium in either λ or σ, and 
curiously when λ is low and σ is high. The dominance of HY 
is indicated in Table IV by the shading where darker shades 
indicate greater HY dominance. 

TABLE IV.  AVERAGE RANKS FOR N=1000 TRIALS 

 
 
 
 
 
HIGH  
λ=20 
 
 

Value: AG2 
Cost: PB 
Integral: AG2 
Ben: AG2 
CB: AG2 
FR: AG2 

Value: AG2 
Cost: PB 
Integral: AG2 
Ben: AG2 
CB: AG2 
FR: AG2 

Value: AG 
Cost: PB 
Integral: HY 
Ben: AG 
CB:HY, AG 
FR: HY 

 
 
 
 
MED 
λ=1.4 

Value: HY 
Cost: PB 
Integral: HY 
Ben: HY 
CB: HY 
FR: HY 

Value: HY 
Cost: PB 
Integral: HY 
Ben: HY 
CB: HY 
FR: HY 

Value: HY 
Cost: PB 
Integral: HY 
Ben: AG 
CB: HY 
FR: HY 

 
 
 
 
LOW  
λ=0 

Value: HY, PB 
Cost: PB 
Integral: HY 
Ben: HY, PB 
CB: PB 
FR: HY, PB 

Value: HY 
Cost: PB, AG2 
Integral: HY 
Ben: HY 
CB: HY 
FR: HY 

Value: HY 
Cost: HY 
Integral: HY 
Ben: HY 
CB: HY 
FR: HY 

 LOW σ=0% MED σ=15% HIGH σ=200% 
HY: Hybrid, PB: Plan-based, AG: Agile, AG2: Agile cost-benefit 

IX. CONCLUSIONS AND APPLICATIONS 
In the essential area of requirements prioritization, we 

have provided empirical support for the home ground theory 
of Boehm-Turner [2] that suggests, for most projects, a 
mixed agile (AG) and plan-based (PB) strategy is best. It is 
not clear how to construct such a strategy. Using simulation 
we have discovered two (to the best of our knowledge) new 

mixed strategies which we call AG2 and HY that, at least 
within our simulation adapt very well to any Dynamism 
level. The best performing strategy is HY but at increased 
effort over PB. AG2 also performs well and requires less 
effort than PB but more than AG. We have high confidence 
in our results because the assumptions, properties and 
behaviors of the simulation are consistent with reliable 
empirical studies. Although these studies did not provide the 
detail required to determine all the appropriate simulation 
parameters, sensitivity analysis shows that our results are 
remarkably insensitive to variations in the simulation 
parameters and even to variations in the basic assumptions.  

These results suggest that a project using a predominantly 
agile approach should use the AG2 strategy, while a more 
plan-based project should use HY. Both strategies are fairly 
simple and explicitly defined. The simulation is constructive 
in that it actually performs the prioritizations as if it were a 
non-simulated project. Only the requirements and their 
evolution are simulated. While we did not detail the 
implementations of the HY or AG2 strategies, to apply them 
on an actual project, one simply need follow the steps from 
what the simulation does. The simulation source code can be 
obtained at: 

http://db-itm.shidler.hawaii.edu/port_research/req_pri/ 

The additional benefits of reduced variance (std in Table 
III) for the AG2 and HY strategies should not be under 
appreciated. Reduced variance directly translates into lower 
risk and more predictable and controllable outcomes. This 
would be reason enough to utilize hybrid strategies.  

In the future we hope to perform some form of follow-up 
empirical study on the application of HY and AG2 to real 
projects. Perhaps searching specifically for projects with 
requirements volatility which are predicted to fit AG2 and 
HY strategies and study if these projects can actually apply 
these strategies in practice. Single-case studies, selected on 
the basis of simulation, would be substantially more valuable 
than just "any" case study selected by random. The benefit 
here is that it lends evidence that the particular case study 
results may hold in general and are not simply anomalous.   

Aside from the potentially useful new prioritization 
strategies, we hope this work will inspire other simulation 
based investigations of software engineering methods that 
are intractable to in-vitro experimentation and validation. We 
believe that simulation can provide meaningful insights into 
software development micro-processes in ways that theory, 
empirical studies, and experiments cannot. The assumptions 
for a simulation should be explicitly formulated and derived 
from high quality empirical studies. The validity and 
correctness of the simulation follow by checking the 
consistency of results with theory and known results. 
Confidence in new results can be had by comparing these 
with what would be predicted from theory. Performing 
sensitivity analysis on both the simulation parameters and 
assumptions enable understanding of the degree of 
applicability of simulation results to actual practice where 
many parameters are unknown and perhaps unknowable. 



In conclusion, simulation appears to be a practical and 
useful means for investigating and validating software 
development micro-processes such as requirements 
prioritization. It is useful for both helping to justify a micro-
process methodology, help investigate possible 
improvements (or avoidance of a given method), and better 
understand the factors involved and their possible 
consequences. It should be a standard tool within automated 
software engineering research. In this regard, we have begun 
to develop SimSWE – an opensource software engineering 
research simulation toolbox for Freemat (and other 
compatible numerical mathematics systems). The 
components built for the simulation used for this study will 
be contributed to this toolkit in addition to some guidelines 
on building simulations for automated software engineering 
research. 
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APPENDIX: EXAMPLE HY STRATEGY 

Below is an example illustrating the performance of the 
HY method with some Dynamism for the case of few initial 
requirements. We assume that requirements R1-R7 are the 
“base” requirements with R8-R10 emerging in later. 

iteration 0 & 1: The known requirements are ordered from 
highest to lowest CB and then Iteration 1 is defined by the 
set of requirements with CB greater than the turning point, 
which is in this case equals 0.95, implemented in the current 
order i.e. R2, R3, then  R5: 

Requirement R2 R3 R5 R6 R1 R4 R7 
Value 6 2 27 9 12 3 1 
Cost 2 1 20 13 20 5 2 
CB 3 2 1.35 0.69 0.6 0.6 0.5 

 

iteration 2: When the requirements in iteration 1 are 
implemented, iteration 2 begins by removing these from 
consideration and revisiting. Value of R4 increased to 10, 
new requirements R8 and R9 emerge, and the new turning 
point equals 0.97 giving R4 and R8 for this iteration: 
Requirement R4 R8 R9 R6 R1 R7 
Value 10 17 11 9 12 1 
Cost 5 9 13 13 20 2 
CB 2 1.9 0.85 0.69 0.6 0.5 
 
iteration 3: R4 and R8  are removed, turning point is 0.69 

Requirement R9 R6 R1 R7 
Value 11 9 12 1 
Cost 13 13 20 2 
CB 0.85 0.69 0.6 0.5 
 
iteration 4: R10 emerges and the turning point equals 0.68: 

Requirement R10 R1 R7 
Value 12 12 1 
Cost 15 20 2 
CB 0.8 0.6 0.5 
 
iteration 5: CB’s are close in value so this is the last 
iteration: 

Requirement R1 R7 
Value 12 1 
Cost 20 2 
CB 0.6 0.5 

 

The figure below shows the implemented strategy as 
compared to the frontier. Clearly, in spite of Dynamism, the 
HY strategy performs quite closely to the optimal. Also, 
notice the different iteration sizes.  

(a) HY compared with optimal frontier
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