
Using Simulation to Investigate Requirements
Prioritization Strategies

Dan Port, Alexy Olkov
Information Technology Management

University of Hawaii, Manoa
Honolulu, HI

{dport, olkov}@hawaii.edu

Tim Menzies
Lane Department of Computer Science and Electrical

EngineeringWest Virgina University
Morgantown, WV
tim@menzies.us

Abstract—Agile and traditional plan-based approaches to
software system development both agree that prioritizing
requirements is an essential activity. They differ in basic
strategy - when to prioritize, to what degree, and how to guide
implementation. As with many software engineering methods,
verifying the benefit of following a particular approach is a
challenge. Industry and student/classroom based experimental
studies are generally impractical to use for large numbers of
controlled experiments and benefits are difficult to measure
directly. We use simulation to validate the fundamental, yet
typically intangible benefits of requirements prioritization
strategies. Our simulation is directly based on detailed
empirical studies of agile and plan-based requirements
management studies. Our simulation shows, as many have
claimed, that an agile strategy excels when requirements are
highly volatile, whereas a plan-based strategy excels when
requirements are stable, and that there exist mixed strategies
that are better than either for typical development efforts.

Keywords-requirements, agile, plan-based, simulation

I. INTRODUCTION
All development efforts take great care in choosing what

is implemented. A great deal of research and debate is
directed on implementation approaches. In particular agile
vs. plan-based [1,2] development approaches. Less attention
is focused on what should be implemented when, yet this is
no less important in today’s complex and risky software
development efforts. In this, prioritization of requirements is
recognized as an essential micro-process within any
development process [12]. With high customer expectations,
tight schedules, and limited resources, prioritization is used
to limit the scope [12] and deliver the most essential
functionality as early as possible [14]. It is an accepted fact
that for most development efforts that not all identified
requirements will be implemented. Wiegers [14] states that
prioritization is needed, not just so as to be able to ignore the
least important requirements, but also to help the project
manager to resolve conflicts, plan for staged deliveries, and
make the necessary trade-offs throughout the development
lifecycle [14].

Both plan-based and agile development approaches view
prioritization as a fundamental activity [1,12] but they differ
in their basic strategy. A requirements prioritization strategy

determines what requirements are implemented and in what
sequence with respect to a strategic goal such as “minimize
cost.” There are many different strategies. For example,
“implement the lowest cost requirements first” or
“implement the highest value requirements first” and some
strategies are more effective than others.

The primary question of interest here is in finding an
effective strategy for a given development effort. While
there is a great deal of literature on requirements
prioritization, little of this addresses the issue of strategy
effectiveness. Perhaps one reason for this is that, with the
exception of naïve strategies (e.g. implement the
requirements as they appear) all strategies rely on difficult
assessments such as cost estimation, value assessment,
dependency analysis, and so forth. While estimating the cost
of a task is generally straightforward, it is difficult to
estimate the cost of a particular requirement (cost here
typically is interpreted as “effort” here, not money). Value is
generally an “intangible” not easily attributed to a particular
requirement. Generally it is overall value, or the value for
completed groups of requirements that represent a complete
set of functionality is all that is considered. So called “earned
value” is not actual value [3] is not reliable for prioritization
purposes. Furthermore, requirements prioritization is difficult
to monitor and measure “in-vitro” within actual practice [13].

Given the above issues, and many others that we have
left out, the research question we are interested in is what is a
practical means for investigating the effectiveness of
requirements prioritization? Controlled experiments are
impractical, as is common with assessing software
engineering methods (e.g. how to set up exact replications
with different strategies, how to prescribe requirements
volatility, etc.). In addition to the above stated challenges in
dealing with intangibles and collecting data in-vitro,
experiments would require a large number data points to get
convergence of effectiveness measures due to the highly
variable (and uncontrollable) conditions and circumstances
within any given project.

Comprehensive simulation is an attractive option for
investigating and providing empirical support and
justification of new software engineering methods whose
effectiveness measures are intangible and unobservable.
Such simulations are common and accepted as evidence

within the management and operations research literature
where the evaluation challenges are analogous to those in
software engineering. In this work we create a simulation
based on requirements theory and a detailed empirical study
of requirements practices. We verify that the simulation is
consistent with the “home-ground” theory of Boehm-Turner
[2] for basic agile and plan-based requirements prioritization
methods. The simulation is then used to explore properties of
requirements prioritization strategies and investigate two
new methods suggested by application of this theory.
Strategies are compared graphically and with respect to six
strategy effectiveness measures under various requirements
volatility scenarios.

The home-ground theory states that agile methods are
most effective when requirements volatility is very high,
while plan-based methods are most effective when there is
relatively little requirements volatility. The theory suggests
that a mixture of the two methods will generally be more
effective than either alone for typical development efforts.
This study seeks to answer the question “what would a
mixed agile and plan-based requirements prioritization
strategy look like and how effective is it?

The paper begins with an overview of how requirements
are modeled in the simulation, their evolutionary stochastics,
and the adjustable parameters of the simulation. This is
followed by a detailed discussion on the assumptions made
in the simulation model and their justifications. We then
describe how the agile and plan-based prioritization
strategies are modeled and simulated. Then a discussion on
measuring the effectiveness of a strategy and describing six
relevant effectiveness measures we use for generating
comparison results. Subsequently we discuss the theoretical
validity of the simulation model. This leads to the
construction of two new “mixed” strategies which are then
compared to the agile and plan-based methods in the results
section. We conclude with a brief discussion of contribution
of this work, the utility of simulating software development
micro-processes such as requirements prioritization, and
indicate how the new prioritization strategies can be applied
in practice.

II. SIMULATING REQUIREMENTS EVOLUTION
For our purposes we are only interested in quantitative

evaluation attributes of a requirement. The commonly used
attributes for this are the cost of implementing (this is usually
effort rather than a monetary unit) and the expected gain if
the requirement is implemented which is referred to as value.
A requirement Ri is considered an ordered pair (costi, valuei)
where min_cost ≤ costi ≤ max_cost and max_value ≤
valuei ≤ min_value. A “base set” of requirements {R1, R2,
…, Rnum_reqs} is generated by assigning uniform random
variables costi = U(min_cost, max_cost) and valuei =
U(min_value, max_value). After each iteration,
requirements volatility is handled by updating each
requirement value with a normally distributed random
variable Ri = (costi, valuei + N(0, req_value_sigma))
and possibly a Poisson number of new requirements
Poiss(ave_new_req_per_iter) are added to the base

set. Cost is assumed to be non-volatile for reasons explained
in the assumptions section. If valuei < 0 then valuei = 0 from
that point on (requirements do not rise from the dead after
being completely devalued). A base number of iterations
num_iters and a minimum number of iterations
min_iters are chosen. The requirements change values
every (total cost of base reqs) / num_iters which may not
be the same as the development iteration size. Note that
strategies do not have to use this as their iteration size
determination. It is mainly for handling requirements
volatility.

The simulation runs for at least min_iters iterations
applying requirements prioritization strategies to the current
set of known requirements. After min_iters iterations, a
“stopping time” is determined by when a Bernoulli random
variable B(end_dev_prob) = 1, after which the
development is considered ended (this simulates the
unknown stopping time for a development project) and this
completes one trial in the simulation.

TABLE I. SIMULATION PARAMETERS

Parameter name Description
num_trials (1000) Number of simulation experiments

to perform
min_value (30) Lower bound on requirements values
max_value (500) Upper bound on requirements values
min_cost (1) Lower bound on requirements costs
max_cost (100) Upper bound on requirements costs
rank_tol (10%) Two goodness measures are

considered the same rank when they
are within this percentage of each
other

num_reqs (25) Number of initial base requirements
num_iters (6) Number of initial base iterations (a

maximum on the development)
req_value_sigma
(15%)

Standard deviation of the
requirements value volatility Normal
random variable

ave_new_req_per_ite
r (1.4)

Average arrival rate of new
requirements per iteration (Poisson)

ave_unimpl_req_per_
iter (20% of num_reqs)

Average arrival rate of requirements
taken from the initial base set (for
“discovery” of initial requirements
in later iterations by agile methods)

inital_bound_lower
(30%)

Minimum percentage of initial base
set requirements that can be
“discovered” (for initial
requirements set for agile)

initial_bound_upper
(70%)

Maximum percentage of initial base
set requirements that can be
“discovered” (for initial
requirements set for agile)

min_iters
(num_iters/4)

Minimum number of iterations for a
trial

end_dev_prob
(1/num_iters^0.333)

Parameter for the Bernoulli random
variable to determine a random
development stopping time
(compounds after min_iters is
exceeded)

No strategy may exceed the total cost of the base
requirements at the stopping time, but they may expend less
due to the particular cost of the requirements left over at the

last iteration (i.e. if adding one more would exceed the
stopping cost, then it is not used).

Table I provides a summary of the adjustable parameters
for the simulation and the default parameters for a “typical”
simulation (in parenthesis).

In our investigation we made use of the default
parameters indicated in Table I to generate the results
described in this paper. The selected values appear to be
representative of “typical” development efforts, but we do
not have explicit evidence to support this currently. We have
performed a sensitivity analysis on the parameters and found
that beyond using excessive values, our results are not
sensitive in any of the parameters not directly related to
requirements volatility. This suggests that regardless of what
the actual parameters are for typical projects, we would not
expect the results would be any different.

III. ASSUMPTIONS OF THE SIMULATION MODEL
In this section we describe the significant assumptions

used to define the simulation model and the justifications for
using them.

End development time is unknown: even with exhaustive cost
and schedule estimation and manage-to-plan development,
high uncertainty and business circumstances frequently
expand or contract expected development effort. According
to the 2006 Standish CHAOS [15] survey, only 35% of
development efforts are successful in meeting cost, schedule,
or capability expectations. To simulate unknown end
development “stopping time” we assume a minimum number
of iterations are completed after which a biased coin toss is
used to determine if the development must stop. No
requirements may be implemented that exceed this stopping
time. Without this assumption, all strategies would
implement the complete set of identified requirements and
thereby achieve the same total value and total cost. Some of
the more interesting strategy effectiveness properties appear
when only a subset of the requirements are implemented.
When there is no requirements volatility, an unknown end
development time generally results in some of the identified
requirements not being implemented. In a volatile
requirements situation, it is possible that the stopping time
will exceed the time needed to implement the base
requirements as new requirements may be added during the
iterations.

Requirements volatility has two independent factors:
requirements are assumed to change either by adding or
removing a requirement, or by a change in a requirement
value or cost. This is substantiated in [4]: “Participants
reported two types of requirements changes: adding or
dropping features, and changing already implemented
features.”

Non-volatile cost: it is assumed that requirements volatility
affects value but not cost. Uncertainties in cost can cause
volatility, however in our analysis we have found that this
simply increases the overall volatility and does not constitute
an independent volatility factor. Including cost volatility did
not change our results, but it does complicate the analysis, so

as a simplification we assume cost is non-volatile and this
does not invalidate our results. Note that the cost of late
changes to requirements may be a factor here not accounted
for that perhaps should be investigated. Such cost of change
factors are generally thought predominantly due to
requirement dependencies which we have determined do not
affect our results, hence we suspect that this too would not
change our basic results .

Change in value due to volatility is normally distributed:
there is no evidence to support that value changes are biased
either in favor of higher or lower valuations as development
progresses. Furthermore while minor changes of requirement
value are common, major changes are rare. This is indicated
in [4]: “Customers provide feedback and can request major
changes if their expectations aren’t met. In the 16
organizations [surveyed], this kind of change is relatively
rare” and “… most of the change requests are ‘usually more
a case of tweaks…” Even though these quotes were made in
the context of changes requested within an agile
development effort, they indicate the general nature of
requirements changes because it is not the agile process that
dictates the magnitude of a change in requirements value. A
random variable whose value varies either up or down
equally (i.e. symmetric) and tends to vary relatively little
from its average but on rare occasion varies greatly is
modeled very well with the Normal distribution.

Once a requirement has zero or negative value it never
regains positive value: there is no evidence to support that
when a requirement is assessed as valueless that it ever is
reconsidered and becomes valued. Requirement
reconsideration after being de-valued, is more accurately
modeled as a new requirement that was “inspired” by the de-
valued requirement.

Arrival of new requirements due to volatility is Poisson
distributed: there is no evidence to support that the number
of new requirements in any given iteration is dependent of
the number of new requirements previously added or
removed. Note that this is NOT saying that new requirements
are independent of previous or existing requirements. Only
the number of “new arrivals” are independent. We further
assume that new requirements are “orderly” and do not arrive
simultaneously at any given time, although many can arrive
within the same time interval (this is a minor technical point
that we do not believe is relevant to requirements
prioritization). Thus the number of new requirements arrival
is a “memoryless” and “orderly” counting process modeled
as a Poisson random variable.

Requirement implementation dependencies are not
accounted for: it is generally thought that requirements are
rarely independent of each other and that such dependencies
must be accounted for when prioritizing. While such
dependencies are critical for actual implementation, this is
not the case for prioritization. Prioritization is an assessment
activity that influences, but does not determine the
implementation. We have found two important factors in this
regard. First, when requirements are assessed for
prioritization, dependencies tend to be implicitly accounted
for – costs and values are adjusted to match dependencies

e.g. if requirement B depends on A which has a high value,
then so does B. That is, it is not individual requirements
being prioritized, rather sets of requirements (and perhaps
partial requirements) that constitute single implementation
activities. Second, prioritization is only a “first pass” plan
that must be later refined into a practical implementation
plan when the particular dependency issues are known. On
this point, we have not seen any evidence that developers
explicitly account for dependencies when “first pass”
prioritizing requirements, while there is ample evidence that
dependencies are considered for implementation (but
surprisingly rarely considered explicitly). Given that a
prioritization operates on the exhaustive space of all possible
orderings and combinations of requirements, the effect of
individual dependences does not appear to influence the net
outcome. This fact has been verified in our simulation. We
have conducted simulations accounting for varying degrees
of dependencies (using so-called dependency graphs), both
extreme and mild and have observed no substantial
difference in simulation behavior. Given this and that
accounting for dependencies greatly complicates the
simulation, we have chosen to ignore them for studies of
prioritization strategies. It is certainly possible that
requirement dependencies do matter for some prioritization
properties and we are not claiming otherwise here. For our
study, requirement dependencies in general affect all
strategies equally, and as such they do not affect the
properties we are investigating, i.e. requirement
dependencies are independent of prioritization strategy. As
such, we are confident in ignoring such factors at this time.

Single option for implementation: generally there are
many choices on how a requirement could be implemented;
each with a different (cost, value) pair. While a prioritization
strategy involves choosing how to implement, as well as the
order in which to implement a requirement, this represents an
independent dimension on the effectiveness of a strategy (a
fact that was shown in [11]). For our investigation it is
assumed that the optimal implementation option is always
chosen and this option will achieve the entire value and
expend the entire cost of the base requirement. We have
extended the simulation to include implementation options,
but this is not the main focus of the investigation described
currently nor does it change any of the basic results
presented here.

IV. 4. SIMULATING PRIORITIZATION STRATEGIES
The prioritization strategies are modeled on empirical

results from [3,4,5,7,9,10]. Our models implement a literal
representation of agile and plan-based methods as they are
defined in the literature. In [2] Boehm-Turner argue that the
general perception, as well as is stated in the literature, that
development practice follows one of two extremes – either
agile or plan-based. Given that neither approach is “at home”
for typical development efforts, Boehm-Turner claim that
this view is unrealistic and leads to confusion and decreased
effectiveness in practice. We state up front that the agile and
plan-based strategies we simulate likely do not represent
what is actually used in practice. Since we are interested in
investigating properties of prioritization strategies, we must

consider what is considered to be at the extreme. Without
explicitly designing the simulation to do so, the results of our
simulation support Boehm-Turner’s assertion that, in general
a “balance” of plan-based and agile methods is indeed the
best approach.

The literal view of agile and plan-based approaches we
take simply means that we do not mix (or balance in the
terminology of [2]) the activities that are attributed to each
respective approach. However, we most certainly desire that
the activities performed in each strategy are representative of
actual practice and not on specious statements, theories, or
claims that have not been empirically validated or justified.
We are fortunate to have at hand a comparative empirical
study of requirements practices across 16 different
companies [4] to provide a reliable basis for establishing a
representative simulation of agile and plan-based
requirements prioritization strategies. From this study the
following properties of agile and plan-based strategies, with
respective evidence, form the basis for simulating these
approaches realistically. The quotations below are taken
from [4] and indicate the rationalization for the stated
properties.

Agile requirements prioritization properties

1) Requirements are prioritized at the beginning of each
development iteration: “… agile involves prioritizing
requirements in each development cycle. Prioritization often
happens … at the beginning of each cycle.”

2) Requirements are prioritized according to highest

value first: “… agile practitioners uniformly reported that
their prioritization is based predominantly on one factor –
business value …”

3) A significant subset, but not all “initial”

requirements are discovered at the first iteration: “…
requirements aren’t predefined; instead, they emerge during
development. High-level RE occurs at the project’s
beginning. During this brief process, the development team
acquires a high-level understanding of the application’s
critical features.”

It is difficult to gauge exactly what percentage of the
requirements are identified at the beginning of an agile based
development. In the simulation we randomly (according to
the uniform distribution) select a percentage from
initial_bound_lower to initial_bound_upper of the
base set of requirements (which are the assumed base of all
“actual” requirements that could be discovered at the start of
the project). There is little empirical study of what range
might be representative and there are numerous conflicting
practices here. All we know is that in general not all initial
requirements are identified. Indeed, it is a primary tactic of
the agile approach NOT to discover the majority of initial
requirements and to allow requirements to emerge during the
development as they become important. To be conservative
we selected a range of 30%-70% for the agile approach.

With the above properties it is fairly straightforward to
simulate an agile prioritization strategy. Agile iterations will
be determined inductively by:

Iteration 0: define a uniform random integer
first_iteration_number between
initial_bound_lower*num_reqs and
initial_bound_upper*num_reqs to determine the
number of initial critical requirements identified from the
base set. We define AG_PLAN as the working set of
requirements for the agile strategy. At the end of each
iteration this ordered set will represent the prioritization for
that iteration. At the start of development this is the sub-set
of the base requirements initially identified, say {R1, R2, …,
Rfirst_iteration_number} (recall agile property 3 from above)
and the remaining base set requirements are placed in
AG_HEAP as {Rfirst_iteration_number+1 ,… , Rnum_reqs}. We
now define the iteration size. For simplicity we choose this to
be the same as the iteration size used for volatility
adjustments (however note this synchronization actually
gives an agile strategy a bit of an unfair advantage in the
final iteration as will be discussed later).

Iteration k>0: sort AG_PLAN from highest to lowest value.
Implement the requirements in this set in this order up to the
iteration size. Unimplemented requirements are carried over
to the next iteration.

Intra-iterations: a Poission random variable with intensity
ave_unimpl_req_per_iter number of requirements
are taken from AG_HEAP and added to AG_PLAN to
represent the “discovery” of the base set requirements as they
emerge during the development.

Plan-based requirements prioritization properties
1) Requirements are prioritized exhaustively once at the

beginning of the development: “… in traditional RE,
requirements are typically prioritized once.”

2) Requirements are prioritized according to highest

cost-benefit first: “… in traditional RE, many factors drive
requirements prioritization – for example, business value,
risks, and cost ...”

Other empirical works within requirements engineering

have described the predominance of cost and benefits as the
primary prioritization decision factors [5,9,14]. It has been
shown that the optimal strategic prioritization order is
established by considering the value/cost (or slight variations
of this) [11]. Requirements engineering methods are
consistent with this, for example in the popular cost-value
graph prioritization approach [6].

Iteration 0: Owing to property 1 above, the PB_PLAN is the
entire base set of requirements as {R1, R2, …, Rnum_reqs }. We
sort this set from highest to lowest value/cost of the
requirements. The iteration size is inconsequential to the
plan-based strategy as no changes to the priorities are made
subsequently.

Iteration k>0: Implement the requirements in PB_PLAN in
the order established in iteration 0.

Intra-iterations: since requirements are prioritized only once,
new requirements that emerge are “unexpected” and simply
appended to the end of PB_PLAN in the order that they
arrive.

V. SIX MEASURES OF STRATEGY EFFECTIVENESS
A strategy {R1, R2, …, Rn} can be visualized by plotting

the cumulative values versus costs (i.e. running sums). That
is, (cost(R1), value(R1)), (cost(R1)+cost(R2), value(R1)+
value(R2)), … as exemplified in Figures 1-3. However there
are several possible “best strategy” criterions that are of
interest which may not be obvious from a visual inspection.
To automate the analysis of strategies, we introduce the
following six “goodness of strategy” metrics related to the
strategy graphs as exemplified in Figures 1-3:

tv – total value of the requirements implemented. This
represents the value on the y-axis at the end point of a
strategy graph (or the ultimate “height”).

tc – total cost of the requirements implemented. Requirement
costs are assumed to be constant throughout the project. .
This represents the value on the x-axis at the end point of a
strategy graph (or the ultimate “length”).

int – the discreet integral, or total area under the strategy
curve from 0 to tc. This represents the “total value created”
by a strategy (different than total value implemented).What
makes this measure attractive is that it accounts for the
“goodness” of a strategy overall rather than just at the end.
That is, a strategy may perform poorly early on, but jump up
at the end to deliver a good end value. But if the
development had stopped earlier, it would have done poorly
at the end. Another way to look at this is that the closer a
strategy comes to the optimal strategy that could have been
created has the unknown values and requirements been
known (we call this the frontier strategy), which no strategy
can do better, then the “better” that strategy. The frontier
strategy has the obvious property that it has the maximum
possible area under it, so the larger a strategies integral is, the
closer it must be to the frontier strategy.

ben – is the benefit, defined as tv – tc

cb – is the cost-benefit defined as tv/tc

fr – it is the “frontier ratio” defined as int/(int for frontier
strategy up to same cost) where the frontier strategy is the
Pareto ordering of the set of all the requirements at the
stopping time. No strategy can pass this curve and hence it
represents the “optimal” in terms of overall value and cost.
However note that this is an “after the fact” ordering that no
strategy can generally achieve due to the random changes in
values and new requirements added during the iterations. The
closer this ratio is to 1, the more closely it resembles the
frontier strategy up to its tc.

When calculating goodness of strategy metrics, only the
values of the requirements at the stopping time are used as

these presumably represent the value that is actually
delivered.

VI. THEORETICAL VALIDITY
Our objective for simulation is to explore comparative

properties of prioritization strategies under various
conditions that are difficult or impossible to observe in
practice. To inspire confidence in the validity of our
simulation it is important that it is consistent with known
theory. A well-accepted basic model for comparing plan-
driven and agile methods is the “home ground” model of
Boehm- Turner [2]. In this model, plan-based and agile
methods are considered to have their “home-ground” at
opposite extremes with respect to five project factors – Size,
Criticality, Dynamism, Personnel, and Culture. The theory
states that most projects will have some low factors, some
high, and some in between and rarely wholly within either
method’s home ground. Thus using a mixture of approaches
to best match the factor values is generally more effective for
any given project. The most relevant factor for requirements
prioritization is Dynamism, defined as the percentage of
requirements-change per month. According to [2], agile
methods have a home ground when there is 50% or more
changes per month, while plan-based methods excel at 1% or
less. In our simulation high Dynamism translates into large
values of the parameters ave_new_req_per_iter (λ for
convenience) and req_value_sigma (σ for convenience),
the opposite for low Dynamism.

For our simulation, this aspect of the home-ground theory
implies that an agile requirements prioritization (AG) should
excel with (high λ, high σ), whereas plan-based (PB) excels
with (low λ, low σ) as summarized in Table II below.

TABLE II. DYNAMISM AND SIMULATION PARAMETERS
HIGH λ ? AG
LOW λ PB ?

average new
requirements per

iteration λ LOW σ HIGH σ

 requirements value standard deviation σ

Our simulation results are consistent with Table II with
very high confidence. Specifically, there is a significant
difference in the ranks of all goodness of strategy measures
except tc with (high λ, high σ). In this case it is not
unexpected that PB will have slightly better tc (which
implies lower cost) given the last requirement implemented
in this strategy is likely to have much lower cost than the
requirement that would have been implemented had
development not ended abruptly. We see on the strategy
graphs that PB has greater “pull-back” at the stopping time
than AG.

Table II implies two additional cases for which the home-
ground theory provides no expectations but useful to
consider in any case. In the (high λ, low σ) case, it is
interesting to note that the simulation results are mixed
without any significant differences between AG or PB. In the
(low λ, high σ) case, agile generally is better on all measures,
but not significantly better. Significance is defined as having

more than 25% difference in the average rank for a measure
after “convergence” of the simulation (discussed later).

VII. DISCOVERING NEW STRATEGIES
Given that our simulation has properties and results that

are consistent with expectations derived from the home-
ground theory, we have a “fair” and justifiable basis for
exploring new strategies by comparing them with simulated
AG and PB strategies. Recall that the main tenet of the
home-ground theory is that for the majority of development
efforts, their five critical project characteristics are generally
not within either the agile or plan-based home grounds. The
advice given is that a “balance” that mixes the two
approaches is best - use agile methods for areas whose
characteristics are closer to the agile home ground, use plan-
based methods for areas that are closer to its home ground.

Taking this advice with respect to our more narrow
interests in requirements prioritization, we would like find a
mixture of AG and PB that has its home ground in the
middle of the two extremes of Dynamism. That is, we seek a
strategy that is effective where a given project is more likely
to be – with neither high nor low Dynamism. Furthermore, it
is difficult (perhaps impossible) to accurately predict at the
outset what the Dynamism for a given project will be, so we
seek a strategy that does not depend on knowing this.
Furthermore, there is no justification assuming that
Dynamism is constant throughout the development. Hence
the ideal strategy does not depend on knowing what the
Dynamism actually is and will “adjust” automatically if it
changes.

There are a number of interesting ways to mix PB and
AG. The primary trade-off consideration is effort. Adding
plan-based activities to an agile approach or vice-versa will
increase the effort needed to perform prioritization. This is
another consideration when comparing new strategies. If a
mixed strategy has better performance, it should be large
enough to outweigh the additional effort required use it. With
these in mind, two candidate mixed strategies are:

The AG2 strategy: We note that the PB strategy takes
advantage of Pareto optimization when prioritized by cost-
benefit. This approach is effective in low Dynamism projects
by ensuring that regardless of when the development ends,
the majority of high-leverage requirements get implemented
first i.e. the “80%” of the value that resided in “20%” of the
requirements (quotes added to emphasize that these are only
representative percentages). Clearly in a high Dynamism
environment where values may change radically, what may
once have been a high-leverage requirement may transform
to a low-leverage requirement (or vice-versa) thereby
obviating the benefit of this prioritization. Hence a natural
variation of AG is to order the requirements in each iteration
by cost-benefit (or value/cost in our simulation) rather than
by value alone. The effort increase is that a cost assessment
must now be performed in addition to the usual value
assessment. We will call this strategy AG2.

The HY strategy: The AG strategy is effective when the
Dynamism is high because it enables adjustment of priorities
when requirement values change. The shortcoming of this

strategy is that it assumes that always going with the highest
valued requirements that are known within each iteration will
result in implementing the highest valued requirements
overall. That is, local value maximization will lead to global
value maximization. Generally the “local optimization leads
to global optimization” property does not hold and the result
is a sub-optimal prioritization with respect to the overall
development (i.e. over all the iterations). This is also true
regardless of what local prioritization method is used e.g.
cost-benefit rather than value. As such, the AG2 strategy will
suffer this shortcoming as well and so we seek an alternative.
The basic problem is that the agile method iteration sizes do
not account for the likelihood of higher leverage
requirements appearing in a later iteration. Indeed, agile
methods tend to have fixed iteration sizes (usually fairly
small) with the goal to implement as much as possible in that
iteration then add the remainder to the next iteration. The
small fixed size iterations are intended to keep the
development from wandering too far off course when there is
high Dynamism.

The PB strategy avoids the agile shortcoming by making
an exhaustive identification and assessment of requirements
from the outset and then optimizes by prioritizing high
leverage requirements first and then tries to control
Dynamism as the development progresses. The assumption is
that it is very unlikely that a high-leverage requirement will
ever become low-leverage. This assumption tends to hold
fairly well, however controlling Dynamism is not necessarily
achievable in general, which is why the PB strategy is risky
in a high Dynamism environment. As an alternative, a mixed
strategy can be formed that performs an initial
comprehensive requirements assessment to establish an
overall initial prioritization (order is by highest to lowest
cost-benefit), and then for subsequent iterations is updated
according to re-assessments of cost and value and new
requirements. The key is in choosing a strategic iteration size
that implements the majority of the high-leverage
requirements and then leaves the lower-leverage ones for the
next iteration where they can be re-prioritized relative to new
requirements and updated costs and values. A natural
strategic criterion for this is when the total cost exceeds the
total value for the requirements implemented (this is the so-
called “economic turning point”). The iteration size will vary
depending on the particular costs and values of the
unimplemented requirements - typically large at first, then
progressively decreasing as the cost-benefits of the
unimplemented requirements become more equal. This
approach assumes that there is a reasonably significant
variation in the costs and values of the requirements to
reduce the risk of implementing a low-leverage requirement
in favor of a high-leverage one simply because of a fixed
iteration size. A strategy that performs in this way we will
call the “hybrid” or HY. The strategy is straightforward to
apply and a brief example can be found in the Appendix.

VIII. SIMULATION RESULTS
We begin by visualizing a single simulation trial under a

typical Dynamism scenario and then under two extremes to
validate the expected behavior of the simulation for AG and

PB and observe the adaptability properties of the new AG2
and HY strategies. Figure 1 is a single trial with λ=1.4 and
σ=15% (medium Dynamism).

Each of the curves in the figure represents the results of

applying a given strategy to the final set of requirements
(with the exception of the Optimal initial curve). Each point
on a curve represents the implementation of a requirement at
which time its cost is added to the cumulative total and its
value is added to the cumulative value up to that point. Thus
strategy curves are non-decreasing. To explain the features in
the figure above, the solid curve is the “Optimal initial”
strategy and it is the Pareto plot of the base set of
requirements. If there is no Dynamism, this would be the
optimal strategy as no other ordering could have higher value
at lower cost than this curve at any point. The dashed curve
is the “Optimal Frontier” which represents the Pareto plot of
the set of requirements at the time development ends. This
includes the base set plus any requirements added during the
development and their respective value changes. No strategy
can rise above this curve as it represents the optimal strategy
given retrospect knowledge of all the requirements and their
values. Such a strategy is impossible to achieve because of
the stochastic nature of requirements change. However, the
more similar a strategy is to the Optimal Frontier, the better
is its performance, and hence the motivation for the fr
measure. The difference between the Optimal initial and
Optimal Frontier indicate the degree of Dynamism for a
given trial i.e. the further apart these are, the greater the
Dynamism. The tall vertical line indicates the maximum total
cost of the development at the stopping time. No strategy
may exceed this cost, and so no curve may extend past this
line.

We see that all the strategies are consistent with the
features described above and so we have further
confirmation that the simulation is correct. This verification
has been performed hundreds of times under a large variation
in simulation parameters with no unexpected behavior. We
observe that neither AG nor PB perform particularly well in
this “typical” non-extreme Dynamism case as is predicted by
the home ground theory. The AG2 and HY perform best and
at about the same level.

Figure 1. Medium Dynamism simulation trial

Figure 2 is a single trial with λ= 1/1000 and σ=1/10%
(low Dynamism). For this scenario we would expect that
since there is nearly zero Dynamism, the Optimal initial and
Optimal Frontier would be identical. This is clearly the seen
in the figure (the two curves completely overlap). With no
Dynamism, the PB strategy is predicted to be best and AG
the worst. In fact, PB should be identical to the Optimal
initial up to the stopping time. This is indicated in the figure
above but is difficult to see as it is covered over by the HY
strategy. This latter observation is notable as it indicates that
the HY strategy has precisely adapted to the expected best
strategy PB. This result has been seen to hold in general, and
so we have confidence that HY is adaptable to Dynamism. It
is also notable that the AG2 strategy performs reasonably
well and appears to be adaptable. A more subtle observation
is that the AG2 and AG plans both clearly show the
“diminishing returns” characteristic within each fixed
iteration whereby the values sharply increase at the
beginning of each new iteration (the humps). This is
consistent with the expected behavior of the agile approach.

Figure 3 is a single trial with λ= 20 and σ=200% (very
high Dynamism). With many new requirements and large
value swings, we expect a large difference between the
Optimal initial and Optimal Frontier as seen in the figure.
Also expected from this, and clearly seen in the figure, is that
AG would greatly outperform the PB strategy. In this trial,
all the strategies that re-prioritize within each iteration seem
to perform equally well (at least at the end development
time). This is not generally the case, and even here closer
inspection will reveal significant differences in these
strategies. For example, if the development ended much
earlier, say at 500, then the AG2 strategy would be the clear
winner. Indeed it is consistently closer to the Optimal
Frontier than the other strategies, so its fr measure will be
higher. What is notable is the similarity of the AG2 and HY
strategies. Both strategies appear to adapt well at this
extreme level of Dynamism. In this particular case better
than AG, but in general this is not true.

To get a handle on the properties of the strategies
generally, we consider the average ranks and standard
deviations over 1000 simulation trials for the six strategy
measures described earlier. We chose 1000 trials because
uniformly, the average values converged to at least 1 decimal
of precision for all the measures at this level. The rank for a
measure M on a given trial is the (number of strategies being
compared) - (number of strategies with “worse” measures
within the specified tolerance). For example, if there are 4
strategies being compared and the Agile strategy has a tv that
is more than 5% (the tolerance level) greater than the other 3
than it will have rank 1. It is unjustifiable to consider two
values that are within a given small percentage of each other
to have different ranks, hence the use of a tolerance value
(we use 5%) to create rank-equivalences. Thus it is possible
for all strategies to have the same rank indicating no
substantial differences for that measure.

Table III below is an example of average rank results for
1000 trials with λ=1.4 and σ=15% (medium Dynamism).

TABLE III. AVERAGE RANKS N=1000, Λ=1.4, Σ=15%

 tv tc int ben cb fr

PB 1.67 1.18 1.82 1.74 1.49 1.90

std 1.04 0.46 0.97 1.08 0.87 0.86

AG 2.34 1.26 3.43 2.45 2.41 3.56

std 1.32 0.57 0.94 1.32 1.32 0.84

AG2 1.18 1.21 1.42 1.20 1.16 1.34

std 0.55 0.51 0.70 0.57 0.48 0.62

HY 1.07 1.23 1.23 1.09 1.10 1.21

std 0.30 0.53 0.51 0.35 0.40 0.47

The results are significant to 1 decimal place and we see
that the HY strategy is the top rank for all but tc (as is
expected from our previous discussion on cost and PB). Also
notable is that HY has the lowest standard deviation for all
measures where it is top ranked. This can be interpreted as
the degree to which we expect a typical simulation trial to be
near its average rank value. That is, the HY strategy is more
consistently top ranked than the other plans. It is not top

Figure 3. High Dynamism simulation trial

Figure 2. Low Dynamism simulation trial

ranked on average because it swings wildly from top to
bottom rank.

Table IV considers the top average ranks from 1000
random trials under different levels of Dynamism. The PB
strategy wins on tc mostly due to the abrupt stopping rule
which is that no requirements can be implemented that
exceed the cost at the stopping point. What happens with the
plan-based strategy is that at the stopping point, the planned
set of requirements generally cannot exactly meet the cost
limit at the stopping time (no rearrangements are possible in
the plan-based strategy, even at the end) so there is no choice
in which requirement to end on – the one which makes the
cumulative cost less than the stopping point whose next
requirement in the planned order would make a cumulative
cost exceed the stopping point. Since the requirements are
ordered by cost-benefit, the farther the stopping time is, the
greater the cost per requirement is likely to be. So the end
requirement is more likely to “pull back” far behind the
stopping point cost because the next requirement is likely to
have a higher cost. Because of this, total cost is probably not
a very useful “goodness” of strategy measure.

In the overall spectrum of performance, HY dominates in
4 areas, is very strong in another 2, and is strong, but not
dominant in 1 additional area from a total of 7 of the 9
scenarios considered. It is worth noting that the strongest
areas are when the Dynamism is medium in either λ or σ, and
curiously when λ is low and σ is high. The dominance of HY
is indicated in Table IV by the shading where darker shades
indicate greater HY dominance.

TABLE IV. AVERAGE RANKS FOR N=1000 TRIALS

HIGH
λ=20

Value: AG2
Cost: PB
Integral: AG2
Ben: AG2
CB: AG2
FR: AG2

Value: AG2
Cost: PB
Integral: AG2
Ben: AG2
CB: AG2
FR: AG2

Value: AG
Cost: PB
Integral: HY
Ben: AG
CB:HY, AG
FR: HY

MED
λ=1.4

Value: HY
Cost: PB
Integral: HY
Ben: HY
CB: HY
FR: HY

Value: HY
Cost: PB
Integral: HY
Ben: HY
CB: HY
FR: HY

Value: HY
Cost: PB
Integral: HY
Ben: AG
CB: HY
FR: HY

LOW
λ=0

Value: HY, PB
Cost: PB
Integral: HY
Ben: HY, PB
CB: PB
FR: HY, PB

Value: HY
Cost: PB, AG2
Integral: HY
Ben: HY
CB: HY
FR: HY

Value: HY
Cost: HY
Integral: HY
Ben: HY
CB: HY
FR: HY

 LOW σ=0% MED σ=15% HIGH σ=200%
HY: Hybrid, PB: Plan-based, AG: Agile, AG2: Agile cost-benefit

IX. CONCLUSIONS AND APPLICATIONS
In the essential area of requirements prioritization, we

have provided empirical support for the home ground theory
of Boehm-Turner [2] that suggests, for most projects, a
mixed agile (AG) and plan-based (PB) strategy is best. It is
not clear how to construct such a strategy. Using simulation
we have discovered two (to the best of our knowledge) new

mixed strategies which we call AG2 and HY that, at least
within our simulation adapt very well to any Dynamism
level. The best performing strategy is HY but at increased
effort over PB. AG2 also performs well and requires less
effort than PB but more than AG. We have high confidence
in our results because the assumptions, properties and
behaviors of the simulation are consistent with reliable
empirical studies. Although these studies did not provide the
detail required to determine all the appropriate simulation
parameters, sensitivity analysis shows that our results are
remarkably insensitive to variations in the simulation
parameters and even to variations in the basic assumptions.

These results suggest that a project using a predominantly
agile approach should use the AG2 strategy, while a more
plan-based project should use HY. Both strategies are fairly
simple and explicitly defined. The simulation is constructive
in that it actually performs the prioritizations as if it were a
non-simulated project. Only the requirements and their
evolution are simulated. While we did not detail the
implementations of the HY or AG2 strategies, to apply them
on an actual project, one simply need follow the steps from
what the simulation does. The simulation source code can be
obtained at:

http://db-itm.shidler.hawaii.edu/port_research/req_pri/

The additional benefits of reduced variance (std in Table
III) for the AG2 and HY strategies should not be under
appreciated. Reduced variance directly translates into lower
risk and more predictable and controllable outcomes. This
would be reason enough to utilize hybrid strategies.

In the future we hope to perform some form of follow-up
empirical study on the application of HY and AG2 to real
projects. Perhaps searching specifically for projects with
requirements volatility which are predicted to fit AG2 and
HY strategies and study if these projects can actually apply
these strategies in practice. Single-case studies, selected on
the basis of simulation, would be substantially more valuable
than just "any" case study selected by random. The benefit
here is that it lends evidence that the particular case study
results may hold in general and are not simply anomalous.

Aside from the potentially useful new prioritization
strategies, we hope this work will inspire other simulation
based investigations of software engineering methods that
are intractable to in-vitro experimentation and validation. We
believe that simulation can provide meaningful insights into
software development micro-processes in ways that theory,
empirical studies, and experiments cannot. The assumptions
for a simulation should be explicitly formulated and derived
from high quality empirical studies. The validity and
correctness of the simulation follow by checking the
consistency of results with theory and known results.
Confidence in new results can be had by comparing these
with what would be predicted from theory. Performing
sensitivity analysis on both the simulation parameters and
assumptions enable understanding of the degree of
applicability of simulation results to actual practice where
many parameters are unknown and perhaps unknowable.

In conclusion, simulation appears to be a practical and
useful means for investigating and validating software
development micro-processes such as requirements
prioritization. It is useful for both helping to justify a micro-
process methodology, help investigate possible
improvements (or avoidance of a given method), and better
understand the factors involved and their possible
consequences. It should be a standard tool within automated
software engineering research. In this regard, we have begun
to develop SimSWE – an opensource software engineering
research simulation toolbox for Freemat (and other
compatible numerical mathematics systems). The
components built for the simulation used for this study will
be contributed to this toolkit in addition to some guidelines
on building simulations for automated software engineering
research.

REFERENCES
[1] Beck, K. Extreme Programming: Explained, 7th ed. Boston, MA:

Addison-Wesley, 2001.
[2] Boehm, B. Turner, R. "Balancing Agility and Discipline: Evaluating

and Integrating Agile and Plan-Driven Methods," proceedings 26th
International Conference on Software Engineering (ICSE), pp. 718-
719 (2004)

[3] Barry Boehm, Value-based software engineering, ACM SIGSOFT
Software Engineering Notes, v.28 n.2, March 2003

[4] Cao, L., Ramesh, B., Requirements Engineering Practices: An
Empirical Study, IEEE Software, Volume: 25, Issue: 1. page(s): 60-
67 (2008)

[5] Karlsson, J. Software requirements prioritizing. proceedings
ICRE’96, 1996.

[6] Karlsson, J., Ryan, K.: A cost-value approach for prioritizing
requirements. IEEE Software 14 (1997) 67–74

[7] Karlsson, J., Wohlin, C., Regnell, B.: An evaluation of methods for
prioritizing software requirements. Information and Software
Technology 39 (1998) 939–947

[8] Lehtola, L., Kauppinen, M., and Kujala, S. (2004) ‘Requirements
Prioritization Challenges in Practice’, Proceedings of 5th International
Conference on Product Focused Software Process Improvement,
Kansai Science City, Japan, pp. 497- 508.

[9] Moisiadis, F. The fundamentals of prioritising requirements., In
System Engineering, Test and Evaluation Conference, Sydney,
Australia, 2002.

[10] Paetsch, F., Eberlein, A., and Maurer, F. 2003. Requirements
Engineering and Agile Software Development. In Proceedings of the
Twelfth international Workshop on Enabling Technologies:
infrastructure For Collaborative Enterprises (June 09 - 11, 2003).
WETICE. IEEE Computer Society, Washington, DC, 308.

[11] Port , Kazman, Nakao, Katahira, “Practicing What is Preached: 80-20
Rules for Strategic IV&V Assessment”, Proceedings of IEEE
Conference on Exploring Quantifiable Information Technology
Yields (EQUITY), 2007, Amsterdam, Netherlands

[12] Siddiqi, J., Shekaran, M.: Requirements engineering: The emerging
wisdom. IEEE Software 2 (1996) 15–19

[13] Sjoberg, D., et al, Conducting realistic experiments in software
engineering, Proceedings of the International Symposium on
Empirical Software Engineering 2002.

[14] Wiegers, K.E.: Software Requirements. Microsoft Press, Redmont,
Washington (1999)

[15] [15] The Standish Group, The CHAOS Report,
http://www.standishgroup.com/chaos.html, 2006.

APPENDIX: EXAMPLE HY STRATEGY

Below is an example illustrating the performance of the
HY method with some Dynamism for the case of few initial
requirements. We assume that requirements R1-R7 are the
“base” requirements with R8-R10 emerging in later.

iteration 0 & 1: The known requirements are ordered from
highest to lowest CB and then Iteration 1 is defined by the
set of requirements with CB greater than the turning point,
which is in this case equals 0.95, implemented in the current
order i.e. R2, R3, then R5:

Requirement R2 R3 R5 R6 R1 R4 R7
Value 6 2 27 9 12 3 1
Cost 2 1 20 13 20 5 2
CB 3 2 1.35 0.69 0.6 0.6 0.5

iteration 2: When the requirements in iteration 1 are
implemented, iteration 2 begins by removing these from
consideration and revisiting. Value of R4 increased to 10,
new requirements R8 and R9 emerge, and the new turning
point equals 0.97 giving R4 and R8 for this iteration:
Requirement R4 R8 R9 R6 R1 R7
Value 10 17 11 9 12 1
Cost 5 9 13 13 20 2
CB 2 1.9 0.85 0.69 0.6 0.5

iteration 3: R4 and R8 are removed, turning point is 0.69

Requirement R9 R6 R1 R7
Value 11 9 12 1
Cost 13 13 20 2
CB 0.85 0.69 0.6 0.5

iteration 4: R10 emerges and the turning point equals 0.68:

Requirement R10 R1 R7
Value 12 12 1
Cost 15 20 2
CB 0.8 0.6 0.5

iteration 5: CB’s are close in value so this is the last
iteration:

Requirement R1 R7
Value 12 1
Cost 20 2
CB 0.6 0.5

The figure below shows the implemented strategy as
compared to the frontier. Clearly, in spite of Dynamism, the
HY strategy performs quite closely to the optimal. Also,
notice the different iteration sizes.

(a) HY compared with optimal frontier

0

10

20

30

40

50

60

70

80

90

100

0 20 40 60 80 100

Cost (%)

V
al

u
e(

%
)

.

HY

optimal frontier

iteration

1

iteration

2

iteration

3

iteration

4

iteration

5

