
Can Data Transformation Help in the Detection of
Fault-prone Modules?

Yue Jiang, Bojan Cukic,Tim Menzies
Lane Department of Computer Science and Electrical Engineering

West Virginia University
Morgantown,WV,USA

yue@csee.wvu.edu;bojan.cukic@mail.wvu.edu;tim@menzies.us

ABSTRACT
Data preprocessing (transformation) plays an important role in data
mining and machine learning. In this study, we investigate the
effect of four different preprocessing methods to fault-proneness
prediction using nine datasets from NASA Metrics Data Programs
(MDP) and ten classification algorithms. Our experiments indicate
that log transformation rarely improves classification performance,
but discretization affects the performance of many different algo-
rithms. The impact of different transformations differs. Random
forest algorithm, for example, performs better with original and
log transformed data set. Boosting and NaiveBayes perform sig-
nificantly better with discretized data. We conclude that no gen-
eral benefit can be expected from data transformations. Instead,
selected transformation techniques are recommended to boost the
performance of specific classification algorithms.

1. INTRODUCTION
Data mining is the process of finding useful information from

data sets. Data sets typically contain noise which affects the per-
formance of classification algorithms. Hence, preprocessing (trans-
formation) methods have been proposed to "prepare" the data set
for mining. Normalization [7], linear and non-linear transforma-
tion [7], feature subset selection [9], principal component analy-
sis [11], and discretization [6] are often conducted before predic-
tion experiments. It has been suggested that transformation can im-
prove the performance of software quality models [12]. This is the
research hypothesis we want to investigate. In this study, we com-
pare the impact of four different preprocessing methods on nine
NASA MDP datasets across 10 different machine learning algo-
rithms. The four preprocessing methods include the original data
(i.e., no transformation, denoted by none), log transformed data
(log), discretized data (nom), and discretization of the log trans-
formed data (log&nom).

2. EXPERIMENT SETUP
Cross-validation is the statistical practice of partitioning a sam-

ple of data into two subsets: training and testing subset. In 10× 10
CV 90% of data is randomly assigned to the training subset and the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DEFECTS’08, July 20, 2008, Seattle, Washington, USA.
Copyright 2008 ACM 978-1-60558-051-7/08/07 ...$5.00.

remaining 10% of data is used for testing. The data is randomly
divided into 10 fixed bins of equal size. We leave one bin to act as
test data and the other 9 bins are used for training. This procedure
is repeated 10 times.

Receiver Operating Characteristic (ROC) curves provide an intu-
itive way to compare the classification performance. An ROC curve
is a plot of the Probability of Detection (pd) as a function of the
Probability of False alarm (pf) across all the possible experimental
threshold settings. AUC is a numeric performance evaluation mea-
sure directly associated with an ROC curve. It is very common to
use AUC to compare the performance of different classifiers.

In all reported experiments, we use 10 × 10 cross validation to
generate ROC curves for each classification algorithm, using each
data set and four transformation methods. Therefore, the results
reported in this paper represent 3, 600 fault prediction modeling
experiments (10 classification algorithms × 9 data sets × 4 trans-
formations × 10x cross validation). The Area Under the ROC
curve, referred to as AUC, is used as the performance measure-
ment to evaluate the performance of different models.

A box and whisker diagram (boxplot diagram) graphically de-
picts numerical data distributions using five first order statistics:
the smallest observation, lower quartile (Q1), median, upper quar-
tile (Q3), and the largest observation. The box is constructed based
on the interquartile range (IQR) from Q1 to Q3. The line inside the
box depicts the median which follows the central tendency. The
whiskers indicate the smallest observation and the largest observa-
tion. In this study, we use Boxplot diagrams to visually depict the
performance of different fault prediction modeling techniques.

2.1 Data sets and Transformation Methods
The nine data sets from Metrics Data Programs (MDP) [2] used

in this study are listed in Table 1. The same table shortly describes
their characteristics too. In each experiment, our models predict
whether a module is fault-prone or not. We do not attempt to predict
how many faults a module may contain. As mentioned earlier, we
experiment with the following data transformation methods:

• none: This is the original data set without applying any pre-
processing methods. All the independent variables (metrics)
in MDP are continuous attributes.

• log: The original continuous variable values are transformed
by taking mathematical log operation. To avoid numerical
errors with ln(0), all numbers under 0.000001 are replaced
with ln(0.000001). This transformation method is reported
to be effective in [12].

• nom: The original continuous variable values are discretized
to nominal values using Fayyad and Irani’s minimum de-
scription length (MDL) method (Weka’s default discretiza-
tion method) [6, 14]. We discuss this method in detail below.

Table 1: Datasets used in this study
data # mod. # faulty mod. % faulty notes lang.
CM1 505 81 16.04% Spacecraft instrument C
KC1 2107 293 13.9% Storage management for receiving/processing ground data C++
KC3 458 29 6.3% Storage management for ground data Java
KC4 125 60 48% A ground-based subscription server Perl
PC1 1107 73 6.59% Flight software from an earth orbiting satellite C
PC3 1563 163 10.43% Flight software for earth orbiting satellite C
PC4 1458 178 12.21% Flight software for earth orbiting satellite C

MW1 403 27 6.7% A zero gravity experiment related to combustion C
MC2 161 52 32.30% A video guidance system C++

Table 2: The average number of distinct values for attributes.
dataset none Log nom log&nom # attrib.

cm1 63.27 63.27 1.81 1.78 37
kc1 68.38 68.38 3.1 3.1 21
kc3 51.46 51.46 1.9 1.9 39
kc4 34.77 34.77 1.69 1.69 13
pc1 69.84 69.84 1.68 1.65 37
pc3 72.54 72.54 2.11 2.11 37
pc4 64.89 64.89 2.22 2.22 37

mw1 53.14 53.14 1.68 1.65 37
mc2 51.85 51.85 1.64 1.62 39
ave. 58.90 58.90 1.98 1.97 33

• log&nom: The log-transformed data is discretized to nomi-
nal values using Fayyad and Irani’s discretization method.

Fayyad and Irani is the recursive minimal entropy discretiza-
tion method [8]. It is a supervised, non-parametric discretiza-
tion method. It uses the class information entropy to partition bin
boundaries. The stoping criterion is the minimum description length.
For example, assume there is a dataset with S instances, a variable
A, and a partition boundary T . There are two classes (S1, S2) for
the dataset and the class entropy is denoted E(A,T;S):
E(A, T ; S) = |S1|

|S| E(S1) + |S2|
|S| E(S2)

The algorithm creates a discretization tree top down. The branch of
the partition is recursively discretized and evaluated independently.
Thus, in some branches, the continuous values with relatively high
entropy will be partitioned very finely, while others that have rela-
tively low entropy will be partitioned coarsely.

Table 2 shows the average number of distinct values for attributes
in the MDP dataset. For example, in column none 63.27 means
that in CM1 data set, on average, attributes contain 63.27 distinct
values. The average number of distinct values for none and log
are the same. The average number of distinct values for nom and
log&nom are similar. The average number of distinct values for
none and log data are larger than that of nom and log&nom.

Since the goal of this study is to compare the effects of data trans-
formations across different classification algorithms, we decided
to use machine learning and classification algorithms available in
Weka [14]. These algorithms are often used in demonstrations of
software quality modeling. Table 3 lists the machine learners com-
pared in this study. Due to limited space, we omit their description,
but interested readers will find it in [14]. All the machine learn-
ing algorithms were applied using their default parameters, except
for random forest. In Weka, the size of the forrest of classification
trees is set to 10, an insufficient number based on our prior expe-
rience [10]. We increased the default number of trees in the forest

Table 3: Classification algorithms used in the study.
learner Abbrev.

1 Random Forest rf
2 Bagging bag
3 Logistic regression lgi
4 Boosting bst
5 Naivebayes nb
6 Jrip jrip
7 IBk IBk
8 J48 j48
9 Decorate dec

10 AODE aode

to 500, the value originally proposed as a default by Breiman [3].
8 of the classifiers accept data from all 4 preprocessing methods.
Decorate only runs on none and log data sets, while AODE can
only run on nom and log&nom data sets.

2.2 Statistical hypothesis tests
10× 10 CV experiments result in 10 individual values of AUC.

These 10 values are usually similar to each other, given that they
come from the same population. But with 10 values it is difficult to
say whether they follow the normal distribution (i.e., indicate that
they obey the central limit theorem). Therefore, parametric statis-
tical methods which assume a normally distributed population to
compare the performance of classifiers may not be the right choice.
A prudent approach calls for the use of nonparametric methods.
The loss of efficiency caused by using nonparametric tests is typi-
cally marginal [4, 13].

In [5], Demsar recommends to use the Wilcoxon signed rank test
for the comparison of two classifiers; the Friedman test for the com-
parison of more than two classifiers and the Nemenyi test of post-
hoc comparison (rank ordering) among all classifiers over multiple
data sets. The Wilcoxon signed rank test, the Friedman test, and the
Nemenyi test are nonparametric counterparts for paired t − test,
analysis of variance (ANOVA), and Tukey test parametric meth-
ods, respectively. The advantage of the recommended tests is that
nonparametric procedures make less stringent demands on the data.
However, two issues need attention. First, nonparametric tests do
not utilize all the information available. The actual data values (in
our case, for example, AUCs) are not used in the test procedure.
Instead, the signs or ranks of the observations are used. The sec-
ond point is that the Wilcoxon signed rank test is constructed for
the null hypothesis that the difference of the performance measure
is symmetrically distributed. For non-symmetric distributions, this
test can lead to a wrong conclusion.

bag bst dec IBk j48 jrip lgi nb rf

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

Original data (none)

learner

AU
C

Figure 1: Boxplot diagrams with original data.

The Friedman test, the Nemenyi test and the Wilcoxon test are
implemented in a statistical package R [1]. These implementations
comply with the assumptions in [5]. Based on Demsar’s recom-
mendation, we use the Friedman test to evaluate whether there is a
difference in the performance amongst the models developed by
the 10 classifiers over the 9 data sets. Provided that the Fried-
man test indicates statistically significant difference, we use the
Nemenyi test to determine which classifier(s) performs the best.
The Wilcoxon signed rank test is used to compare the performance
of the two specific models, if necessery.

3. EXPERIMENTAL RESULTS
In the following subsections, we show the test results of the

Friedman test, the post-hoc Nemenyi test, and the Wilcoxon non-
parametric tests applied to compare the classification performance
of software engineering fault prediction models.

3.1 Original Data
Figure 1 shows the boxplot diagrams representing AUC values of

different classifiers applied across all the data sets. In these exper-
iments, the data sets were unchanged, i.e., no transformation func-
tion had been applied. The diagrams graphically depict numerical
data distribution using five first order statistics: the smallest obser-
vation, lower quartile (Q1), median, upper quartile (Q3) and the
largest observation for each classification algorithm.

When applied to the data from Figure 1 the Friedman test con-
firmed that there exists statistically significant difference in the per-
formance of different fault prediction modeling techniques. The
next step in our procedure was to apply the Nemenyi test. Figure 2
ranks the performance of the classifiers from the worst (the left-
most) to the best (the rightmost). CD stands for the critical differ-
ence of the Nemenyi test. If the difference between two classifiers
is less than the value of CD, there is no significant difference in
95% confidence interval (p_value = 0.05 in this case), otherwise,
there is. The classifiers connected with a straight line in Figure 2
are those whose performance does not demonstrate statistically sig-
nificant difference in 95% confidence interval. The following are
further obesrvations from the application of the Nemenyi test:

Figure 2: Comparison of all classifiers in the original data do-
main (none) with the Nemenyi test using 95% confidence inter-
val.

bag bst dec IBk j48 jrip lgi nb rf

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

Log transformation (log)

learner

AU
C

Figure 3: Boxplot diagrams with (log) data.

1. Classifier’s performance trend, from the worst to the best,
is: jrip, j48, IBk, decorate, Naivebayes, logistic regression,
boosting, bagging, and random forest.

2. The classifier with the best performance is random forest.
However, the performance of random forest, bagging, and
boosting does not demonstrate statistically significant differ-
ence.

3. The classifier which offers the worst performance is jrip, but
the performance of j48 is statistically indistinguishable.

3.2 Log transformation
Figures 3 and 4 indicate that that the classification performance

with (log) transformation in place is similar to that of the original
data set. According to our experiments, log transformation does
not improve classification performance. To the contrary, the models
typically suffer from the increase in variance.

3.3 Discretized data
When a data set is discretized, a large number of values that inde-

pendent variables may assume is consolidated into a small number

Figure 4: Comparison of all classifiers in the log data domain
using the Nemenyi test

aode bag bst IBk j48 jrip lgi nb rf

0.
5

0.
6

0.
7

0.
8

0.
9

Discretization data(nom)

learner

AU
C

Figure 5: Boxplot with the discretized (nom) domain.

Figure 6: Comparison of all classifiers in the nom data domain
with the Nemenyi test

of discrete classes. Such a transformation has an observable effect
on the classification results. Figures 5 and 6 support the following
observations:

• Boosting offers the best performance on discretized data.
Naivebayes is in a statistical performance tie with boosting
(using the 95% confidence interval).

• Consistent with [6], Naivebayes performs much better on
discretized data in the continuous domain.

• The performance of randomforest, the preferred classifier
on the original dataset, decreases on discretized data.

• IBk, j48, and jrip remain uncompetitive.

3.4 Discretized log data

aode bag bst IBk j48 jrip lgi nb rf

0.
5

0.
6

0.
7

0.
8

0.
9

Discretization on log transf. data(log&nom)

learner

AU
C

Figure 7: Boxplot in log&nom.

Figures 7 and 8 report the results of statistical analysis of the
classification performance of models that use log&nom transformed
data sets. The remarks offered for the discretization transformation
hold for log&nom transformation too.

3.5 Comparison between Random Forest and
Boosting

Figure 8: Comparison of all classifiers in the log&nom data
domain with the Nemenyi test

When summarizing the results, we noticed that random forest
models outperform others in none and log domains, although they
are in statistical tie with bagging and boosting. On the other hand,
boosting appears to offer the best performance on nom and log&nom
data sets. We performed the Wilcoxon nonparametric statistical
test to compare the performance of these two classifiers in data do-
mains where they offer their best performance: 1) random forest in
none and log data sets and 2) boosting in nom and log&nom data
sets. The p value of the null hypothesis is 0.00000001510363(<
0.05), suggesting a significant difference between these two mod-
els. The p value of the hypothesis of whether random forest is
better than boosting is 0.000000007551813(< 0.05) supporting
the claim that the performance of random forest in none and log is
better than boosting in nom and log&nom domains.

3.6 Comparing transformation methods

Table 4: Classifier performance in the four transformation do-
mains.

rf none=log>nom=log&nom
bag none=log>nom=log&nom
bst none=log<nom=log&nom
IBk none<log&nom; log<nom
nb none=log<nom=log&nom
lgi none<log=nom=log&nom
j48 none=log=log&nom=nom
jrip none=log>nom=log&nom
dec none=log
aode nom=log&nom

We also analyzed how the choice of a data domain can guide the
choice of the classification algorithm. Table 4 shows the compari-
son of classifiers based on the outcome of the Friedman test and its
post-hoc Nemenyi nonparametric statistical test over the four pre-
processing methods. Since decorate and aode only accepts the
data from two preprocessing methods, we use the Wilcoxon non-
parametric test for their comparison. Not surprisingly, classifica-
tion algorithms have their “preferred" domains:

• Boosting, NaiveBayes, IBk, and logistic achieve better
performance on discretized data.

• J48 has the same (miserable) performance regardless of the
transformation.

• jrip has better performance in the original and log transfor-
mation domains.

• Decorate performs similarly in the original and log trans-
formation domains.

• AODE offers the same performance in two discretized data
domains.

• Randomforest′s performance is better in none and log
than in (nom and log&nom) domains.

• Logistic offers better performance in log and discretized
transformation data domains.

4. CONCLUSIONS
We investigated the effect of four data transformation methods

on the prediction of fault-prone modules in several NASA data sets.
Our most important finding is that transformations did not improve
overall classification performance measured by the area under the
ROC curve (AUC). Random forest offered the best overall perfor-
mance in the untransformed data domain. However, discretization
improved classification performance of several classification algo-
rithms. In summary:

• Random forest is reliably one of the best classification al-
gorithms overall. Its performance decreased with discretiza-
tion, thus confirming that its main strength lays in the analy-
sis of noisy data, always the fact of life in software engineer-
ing experiments.

• Boosting offers the best models in the discretized data do-
main. It is also consistently one of the best models with all
four preprocessing methods. But, boosting is also one of the
most computationally expensive modeling techniques, which
may play a role in its selection especially if training requires
a large number of samples.

• The performance of NaiveBayes is greatly improved in the
discretized domain. This observation confirms results from [6].
Arguably, NaiveBayes is the simplest of classification algo-
rithms. If selected for software quality prediction, discretiz-
ing the data prior to its application is desirable.

• IBk, J48, and jrip are consistently the worst classification al-
gorithms and including them in software quality modeling is
likely a waste of time.

• Log transformation rarely affects the performance of predic-
tive software quality models (logistic is the only exception).

5. REFERENCES
[1] The R Project for Statistical Computing, available

http://www.r-project.org/.
[2] Metric data program. NASA Independent Verification and

Validation facility, Available from
http://MDP.ivv.nasa.gov.

[3] L. Breiman. Random forests. Machine Learning, 45:5–32,
2001.

[4] W. J. Conover. Practical Nonparametric Statistics. John
Wiley and Sons, Inc., 1999.

[5] J. Demsar. Statistical comparisons of classifiers over multiple
data sets. Journal of Machine Learning Research, 7, 2006.

[6] J. Dougherty, R. Kohavi, and M. Sahami. Supervised and
unsupervised discretization of continuous features. In
International Conference on Machine Learning, pages
194–202, 1995.

[7] J. J. Faraway. Practical Regression and Anova using R.
online, July 2002.

[8] U. M. Fayyad and K. B. Irani. Multi-interval discretization of
continuous-valued attributes for classification learning. pages
1022–1027, 1993.

[9] I. Guyon, S. Gunn, M. Nikravesh, and L. A. Zadeh. Feature
Extraction: Foundations and Applications. Springer, 2006.

[10] Y. Jiang, B. Cukic, and T. Menzies. Fault prediction using
early lifecycle data. pages 237–246. Software Reliability,
2007. ISSRE ’07. The 18th IEEE International Symposium
on, Nov. 2007.

[11] I. Jolliffe. Principal Component Analysis. Springer,New
York, 2002.

[12] T. Menzies, J. Greenwald, and A. Frank. Data mining static
code attributes to learn defect predictors. IEEE Transactions
on Software Engineering, 33(1):2–13, January 2007.
Available from
http://menzies.us/pdf/06learnPredict.pdf.

[13] S. Siegel. Nonparametric Satistics. New York: McGraw- Hill
Book Company, Inc., 1956.

[14] I. H. Witten and E. Frank. Data Mining: Practical machine
learning tools and techniques. Morgan Kaufmann, Los
Altos, US, 2005.

