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Abstract

We have conducted a study in a large
telecommunication company in Turkey to employ a
software measurement program and to predict pre-
release defects. We have previously built such
predictors using Al techniques. This project is a
transfer of our research experience into a real life
setting to solve a specific problem for Trcll: to improve
code quality by predicting pre-release defects and
efficiently allocating testing resources. Our results in
this project have many practical implications that
managers have started benefiting: using version
history information, developers only need to inspect
31% of the code to find around 84% of the defects with
29% false alarms, compared to 60% inspection effort
with 46% false alarms without using the historical
data. In this paper we also shared in detail our
experience in terms of the project steps (i.e. challenges
and opportunities).

1. Introduction

Telecommunications is a booming industry in
Turkey and its neighbouring countries. For example,
Trell operates in Azerbaijan, Kazakhstan, Georgia,
Northern Cyprus and Ukraine with a customer base of
53,4 million. This booming industry is highly
competitive. Trcll is under constant pressure to launch
new and better campaigns in limited amount of time
with tight budgets. Accordingly, the company seeks to
lever any opportunity for improving their software
construction.

Previously [1], we have implemented extensive
automated defect prediction programs at NASA using
data mining. In this paper, we describe our experience
in translating those programs to Turkey. In summary,
while Turkish software development practices are very
different to NASA, the automated Al methods ported
with relatively little effort. Also, we found we could

reuse some of the NASA data to enhance defect
predictors on Turkish software. However, in order to
achieve this goal, we spent much time learning the
organization and working in with their current
practices. Our conclusion is simple: Al is easy, but
integrating that Al with an organization requires much
effort.

In this respect, we present our experience on the
practical applications of Al techniques to solve the
problems of Trcll in their software development
processes. The results of our study showed that we can
perceive the benefits of a learning-based defect
predictor on the allocation of resources, bug tracing
and measurement in a large software system. Using
code metrics and version history, we managed to keep
high stable detection rates, on the average 84%, up to
100%, while decreasing false alarms from 46% to 29%
in sample of experiments. Those improvements in the
classification accuracy of our model have also affected
the inspection costs to detect defective modules. Our
cost-benefit analysis presented, on the average, 50%
improvement in terms of LOC, which is required for
detecting defective modules in projects of Trcll.

2. Goals of the Project

Trcll has grown very rapidly and successfully since
its inception in 1994. Their software systems have
millions of lines of code that needs to be maintained.
As the technology changes and the customers require
new functionalities, they keep developing code faster
than ever. Similar to other software development
companies, testing is one of the most critical stages in
their development cycle [2, 14, 15].

This project in Trcll aimed at measuring software
artifacts, managing defect rates as well as the testing
phase more efficiently and cost effectively.

Previously, software development team did not
measure source code attributes such as LOC,
complexity, etc. or store any version history with defect



data. Developers did not record any defect information
during unit testing due to tight schedule and/ or other
priorities in their work load. @ However, senior
management and the project managers strongly
believed that they should change their development
processes to increase their software quality as well as to
make efficient resource allocation.

Our project kick-off meeting was attended by the
R&D manager, project managers and development
team (both coders and testers). In this meeting, we
jointly agreed on the goals of the project and we
decided on the roles and responsibilities. We clearly
explained to them that, at the end of the project, what
they will have and what they will not have. We all
agreed that we would build a code measurement, bug
tracing/ matching program and a defect prediction
model. We also aligned the goals of the project with
Trcll’s business goals as seen in Table 1. In order to
track the progress of the project, we decided to make
monthly meetings with the project team, and quarterly
meetings with the senior management to present the
progress and discuss on the next step. Senior
management meetings were quite important either to
escalate the problems or to get their blessing on some
critical decisions we had to make throughout the
project. During the life of the project Softlab
researchers were on-site on a weekly basis to work
together with the coders, testers and quality teams.

Table 1. Goals of the project in line with
company objectives

Goals of the project Management objectives

Construction of a defect
prediction model to
predict defect prone
modules before testing
phase.

Decrease their lifecycle
costs such as testing
effort.

Code measurement and
analysis of the software
system.

Improve code quality

Guiding developers with
a predictor through
defect prone parts to fix
them before testing
phase.

Decrease defect rates

Storing a version history
and bug data from
completed versions.

Measure/ control the time
to repair the defects

Initially, we have planned our work in four main
phases. In the first phase, we aimed to measure static
code attributes at functional/ method level from their
source code. In the second phase, we planned to match

those methods with pre-release defects. In the third and
fourth phases, we planned to build and calibrate a
defect prediction model assuming that we would have
collected enough data to train our model. However, the
outcomes of every phase have led us to re-define and
extend the original scope and objectives in the later
stages. We will explain what happened at the
beginning, what was unsatisfactory about our plan and
our proposed solutions for these problems in detail in
the next sections.

3. Phase 1I: Code Measurement and

Analysis

3.1. How Things Went at the Beginning

In the first three months of the project, we aimed to
analyze the company’s coding practices and to conduct
a literature survey of measurement and defect
prediction in the telecommunications industry. At the
end of this phase, we aimed at having agreed on the list
of static code attributes and to decide on an automatic
tool to collect them. We also hoped to have collected
the first set of static code attributes from the source
code in order to make a raw code analysis. In order to
do that, we would choose the sample projects that we
would collect data from.

Initially, we decided that static code attributes, such
as McCabe, Halstead and LOC metrics [4, 5], can be
easily used to point out current coding practices, since
they can be easily collected through automated tools [1,
3]. Static code attributes are also accepted as reliable
indicators of defective modules in the software
systems, and they are widely used in many defect
prediction studies [1, 3, 6, 8, 15, 16]. Therefore, we
have defined the set of static code attributes from
NASA MDP Repository [12] as the metrics that needs
to be collected from the software in Trcll.

3.2. What Went Wrong During Phase 1

Trcll did not have a process or an automated tool to
measure code attributes. Our suggestion was to buy a
commercially available automated tool to extract
metrics information easily and quickly. However, due
to budget constraints and concerns for adequacy of
functionalities of the existing tools, senior management
did not want to make an investment on such a tool.
Besides, Trcll’s software systems contain source codes
and scripts written in different languages such as Java,
Jsp, PL/SQL. Therefore the management was not
convinced to find a cost effective single tool that would



embrace all languages and extract similar attributes
easily from all of them.

Trcll has the standard 3-tier architecture with
presentation, application and data layers. However, the
content in these layers can not be separated as distinct
projects. Any enhancement to the existing software
somehow touches all or some of the layers at the same
time, making it difficult to identify code ownership as
well as to define distinct software projects.

Another problem we have come across was related
with data collection process. When we observed the
software development process with coding practices of
the development team, it seemed that collecting static
code attributes in the same manner with NASA
datasets, i.e. in functional method level, is almost
impossible due to lack of an available automated
mechanisms that would match those attributes with the
defect data.

3.3. How The Team Changed To Repair This

Metric Extraction: In Softlab, we have developed a
new metrics extraction tool, Prest [9]. Different than
available commercial products, Prest is able to parse C,
C++, Java, Jsp projects and extract static code
attributes at package/ file/ functional method level. It
can also form a dependency matrix based on caller-
callee relations between modules to examine the
complexity and design of software systems. Currently,
we are extending this tool to collect PL/ SQL metrics
as well. Using Prest, we have collected 29 static code
attributes [1, 12] from 25 critical projects.

Project Selection: This was one of our first critical
decisions in this project: to define the scope and to
choose projects and/ or units of production that would
be under study. Although project managers initially
wanted to focus on presentation and application layers
due to the complexity of the architecture, we jointly
decided to take 25 critical and highly interconnected
Java applications embedded in these layers. We refer to
them as projects during this study.

Level of granularity: As we mentioned in the
previous section, we were unable to use method-level
metrics in Trcll software system, since we could not
collect method-level defect data from the developers in
such limited amount of time. Therefore, we have also
converted our method-level attributes into the file-level
to make them compatible with defect data.

4. Phase II: Bug Tracing/ Matching

4.1. How Things Went At the Beginning

The second phase of our study was originally
planned to store defect data, i.e. test and production
defects. If things had their normal course of action in
Phase I, we would have collected metrics from the
completed versions of 25 projects and matched the
bugs as well.

In this phase, we have completed the coding of our
Java parser in the Prest metric collection tool. We were
able to extract static code attributes from 25 projects.
We have pointed out some problems in the coding
practices of the company’s development team. We
have taken best practice coding standards of NASA
MDP Repository [12] and compared them with Trcll’s
measurement. Based on our analysis, we have seen that
there are two fundamental issues in the coding
practices:

e Developers rarely write comments to the code.
We suggested increasing the ratio of comments
to code to make the source code easy to read
and understand by other developers.

e The number of operators and operands used in
the applications, i.e. vocabulary in the software,
is very limited. This brings a conclusion that the
system is designed to be highly modular. This
may also be due to the fact that this code mostly
comes from the application layer, and hence,
many Jsp codes make it seem too modular.

Moreover, as an alternative analysis, we have also
conducted a rule-based code review process based on
only static code attributes. Our aim here was to decide
what amount of code should be reviewed and how
much testing effort is needed to inspect defect-prone
modules [10].

In the rule-based review, we have simply defined
rules for each attribute, based on its recommended
minimum and maximum values [10]. These rules are
fired, if a module’s selected attribute is not in the
specified interval. This also indicates that the module
could be defect-prone, therefore, it should be manually
inspected. The results of the rule-based model can be
seen in Figure 1, where there are 17 basic rules with
corresponding attributes and two additional rules
derived from all of the attributes. Rule #18 is fired if
any of 17 rules is fired. This rule shows that we need to
inspect 100% LOC to find defect-prone modules of the
overall system. Besides, Rule #19 is fired if all basic
rules, but the Halstead rules, are fired. This reduces the
firing frequency of the former rule such that 45% of the
code (341655 LOC) should be reviewed to detect
potentially problematic modules in the software.



Rule Mo Metric Module % LOC %
Rule 1 Intelligent Content B245 | 17 |507344| 66
Rule 2 [Maximum Nesting Depth| 1307 | 3 |1558695| 20
Rule 3 Wolume 31260| 65 | 345399 45
Rule 4 Total Operators 44117 | 92 | 530882| 7O
Rule & Time 143 0] 53388 | 7
Rule 6 Difficulty a3 0 | 29545 ] 4
Rule 7 Yocabulary 40442 | 24 | 444212| 55
Rule 8 Effort 1626 | 3 |234039] 31
Rule 9 Unigue Operands 41599 | 87 | 528542| 59
Eule 10 Unigque Operatars 44086 | 92 | 464262 | 61
Rule 11 Total Operands 42774 | 89 | 507471| 67
Rule 12 |Architectural Complexity]| 1217 | 3 [196641| 26
Rule 13 Level 3270 | 7 | 2867V | 4
Eule 14 |atio Of Camment To Cod[47062| 98 | 729896| 96
Eule 15 Length L2k 1 [122541] 16
Rule 16| Cyclomatic Complexity | 1735 | 4 [223773| 29
Rule 17| Structural Complexity | 1036 | 2 [112470] 15
Rule 18 ANy 47995|100) V63025 100
Rule 19 Any® 6488 | 14 | 341655 45

Figure 1. Rule-based analysis [10].

We have seen that rule-based code review process is
impractical in the sense that we need to inspect 45% of
the code in order to detect, on the average, 70% of
defective modules [10]. So, it is obvious that we need
more intelligent oracles to decrease testing effort and
defect rates in the software system.

4.2. What Went Wrong In Phase 11

This phase took much longer than we anticipated.
First of all, there was no process for bug tracing.
Secondly, test defects were not stored at method level
during development activities. Thirdly, there was no
process to match bugs.

The project team has realized that the system is very
complex such that it needs too much time and effort to
match each defect with its file constantly. Additionally,
developers did not volunteer to participate in this
process, since keeping bug reports would have
increased their busy workloads.

4.3. How the Team Changed To Repair This

To solve these issues we called for an emergency
meeting with senior management as well as with the
heads of development, testing and quality teams.

As a result, Trcll agreed to change their existing
code development process. They built a version control
log to keep changes in the source code done by the
development team. These changes can be either bug
fixing or new requirement request, all of which are
uniquely numbered in the system. Whenever a
developer needs to check out the source code to their
version control system, he/ she should provide
additional information about “which file has been

modified because of which problem”, i.e. id of either
test defect or requirement request. Then, we would be
able to retrieve those defect logs from the history and
match them manually with the files of the projects in
that version. Since we were able to collect defect data
in the source file level, we have also changed our code
measurement practice. We have collected static code
attributes in the method level and converted them to
file level by taking minimum, maximum, average and
sum of the methods in each file [17]. Then we
classified files as defective or defect-free by assigning
1 or 0 to them. This process change also enabled Trcll
to establish code ownership.

5. Phase III: Defect Prediction Modeling

The original plan in this phase was to start
constructing our prediction model with the data we had
been collecting from Trcll projects. We had planned to
test the performance of our model with the ones in the
literature. We would try different experimental designs,
sampling methods, and Al algorithms to build such a
model.

In this phase, we rigorously monitored the bug
tracing and matching process together with the quality
team. Whenever there was a slow down in the process,
we escalated the issues to senior management for them
to step in.

5.1. How Things Went At the Beginning

We planned to build a learning-based defect
predictor for Trcll. We have agreed to use Naive Bayes
classifier as the learner of this model, since in our
earlier research we have shown that Naive Bayes is a
simple algorithm and yet it gives the best results
compared to other machine learning methods [1]. We
also agreed on the performance measures of the defect
predictor we would be building. We decided using
three measures: probability of detection, pd, probability
of false alarm, pf, and balance from signal detection
theory [13]. Pd measures the percentage of defective
modules that are correctly classified by the predictor.
Pf; on the other hand, is a measure to calculate the ratio
of defect-free modules that are wrongly classified as
defective with our predictor. In the ideal case, we
expect to see {100%, 0} for {pd, pf} rates, however,
the model trigger more often which has a cost of false
alarms [1]. Finally, balance indicates how close our
estimates to the ideal case by calculating the Euclidean
distance between the performance of our model and the
point {100, 0}. All of these measures can be easily



calculated from a confusion matrix (Table 2) using the
formulas below:

pd=A/(A+C)

pf=B /(B+D)

bal = 1-,/(0-pH)? + (1-pd)* /+2

Table 2. Confusion Matrix

predicted actual
defective defect free
defective A B
defect free C D

In order to interpret our results to business managers
we also agreed to construct a cost-benefit analysis
based on Arisholm and Briand’s work [18]. We would
simply measure the amount of LOC or the number of
modules that our model would predict as defective.
Then we would compare this with a random testing
strategy to measure how much we gain from testing
effort by using our predictor. In a random testing
strategy, it is assumed that we need to inspect K percent
of LOC to detect K percent of defective modules [18].
Our aim is to decrease this inspection cost with the help
of our predictor.

5.2. What Went Wrong In Phase 111

Although we started collecting data from completed
versions of the software system, we have realized that
constructing such a dataset would take a long time.

We have seen that building a version history is an
inconsistent process. Developers could allocate extra
time to write all test defects they fixed during the
testing phase due to other business priorities. In
addition, matching those defects with corresponding
files of the software can not be automatically handled.
We could not form an effective training set for a long
time. Therefore, we were not able to build our defect
prediction model.

5.3. How the Team Changed To Repair This

Instead of waiting for a complete dataset, we have
come up with an alternative way to move ahead. In our
previous research, we had suggested companies like
Trcll to build defect predictors with other companies’
data which we call cross-company data [6].

5.3.1 Using Cross-Company Data

Cross-company data can be used effectively in the
absence of a local data repository, especially when
special filtering techniques are used:

e Selecting similar projects from cross-company

data using nearest neighbor sampling [8].
e Increasing the information content of data using
dependency data between modules [11].

In our study, we have selected NASA projects as the
cross-company data. NASA projects [7] contain more
than 20.000 modules, of which we used 90% randomly
as the training data to predict defective modules in
Trcll projects [6]. From this subset, we have selected a
subset of projects that are similar to those in Trcll data
in terms of Euclidean distance in the 17 dimensional
metric spaces [8]. The nearest neighbors in this random
subset are used to train a predictor, which then made
predictions on the Trcll data. We repeated this
procedure 20 times and raised a flag for modules that
are estimated as defective at least in 10 trials [8].

Figure 2 shows the results from the first analysis.
The estimated defect rate is %15 that is consistent with
the rule-based model’s estimation. However, there is a
major difference between the two models in terms of
their practical implications. For the rule-based model,
estimated defective LOC corresponds to 45% of the
whole code, while module level defect rate is 14%. On
the other hand; for the learning-based model, the
estimated defective LOC corresponds to only 6% of the
code, where module level defect rate is still estimated
as 15%.

FROJECT  [ESTIMATED  [ESTIMATED [FOTAL LOC [%LOC FOR
DEFECT RATE [DEFECTIVE LOC INSPECTION

Trell 1 0.05 242 6206 0.04
Trell 2 0.1% "EER) ls0941 008
Teel3 0.08 BT k5323 0.0
Trcll4 0.13 B2z E503 006
Trcll 5 0.18 3834 53650 0,07
Trell6 0.14 193 ksze 0,04
Trcll 7 0.28 505 E423 0,06
Trcll& 0.1z k77a o114 006
Trell @ 0.24 501 10221 008
[Trell 10 0.15 2747 e160z 004
Trcll 11 0.26 [fi40 [Pa455 0.0
Teoll 12 0.1z 555 5767 006
Trell 13 0.13 16 5425 0.04
Trcl 14 0.17 196 2965 007
Trcll 15 0.09 ] Bezen 0.04
Trell 16 0.3z 5108 bBza31 0,07
Trcll 17 0.09 359 [£933 0,05
Tecll 18 0.2z =1 Ro601 006
Trell 10 0.17 393 6258 008
[Trell 20 0.08 175 [3507 005
Trcll 21 0.09 i3 o7t 0,05
Trcll 22 0.05 G624 15265 0.04
Trcll 23 0.04 1545 E1273 0,03
[Trell 24 0,29 e27 10135 0.0
Trell 25 011 31 k5E0 0.07
UM koaiz [Fe30zs

VG, 0.15 008

Figure 2. Results for cross-company analysis:
Analysis 1 [10]



This significant difference is occurred because rule-
based model makes decisions based on individual
metrics and it has a bias towards more complex and
larger modules. On the other hand, learning based
model combines all ‘signals’ from each metric and
estimates defects located in smaller modules [1, 10].

We have added one more analysis using cross-
company data to increase the information content by
adding dependency data between modules of the
projects. Our previous research shows that false alarms
can be decreased from 30% to 20% using a call graph
based ranking framework in embedded software data
collected from a white-goods manufacturer [11].
Therefore, we have also calculated caller-callee
relations between modules of NASA and Trcll to adjust
code metrics with this framework. The results of the
second cost-benefit analysis using cross-company data
can be seen in Figure 3 for 22 Trcll projects. It is
observed that developers need to inspect only 3% of
the code to predict 70% of defective modules in their
software systems. When we compare this with the rule-
based model, we can once more see the benefits of a
learning-based model to decrease testing efforts by
guiding testers through defective parts of the software.
It is important to mention that this analysis was
completed in the absence of local data. Therefore, we
have used the results to show the tangible benefits of
building a defect predictor to the managers and
development team in Trcll.

ESTIMATED | ESTIMATED
DEFECT | DEFECTIVE %LOC FOR

PROJECT|  RATE LOC TOTAL LOC | INSPECTION
Trcll 1 0.02 99 6206 0.02
Trcll 2 0.03 1035 45323 0.02
Trcll 3 0.08 163 5803 0.03
Trcll 4 0.06 85.00 4526 0.02
Trcll 5 0.05 1130 53690 0.02
Trcll 6 0.13 138 5423 0.03
Trcll 8 0.18 505 10221 0.05
Trell 9 0.09 1509 61602 0.02
Trcll 10 0.09 44 2485 0.02
Trcll 11 0.08 303 9767 0.03
Trell 12 0.08 119 5425 0.02
Trell 13 0.06 65 2965 0.02
Trcll 14 0.05 746 36280 0.02
Trell 15 0.18 1476 42431 0.03
Trcll 16 0.04 140 6933 0.02
Trcll 17 0.10 246 10601 0.02
Trcll 18 0.07 137 6258 0.02
Trcll 19 0.03 82 3507 0.02
Trcll 20 0.03 28 1971 0.01
Trell 21 0.1 369 10135 0.04
Trcll 22 0.07 168 4880 0.03
Trcll 24 0.10 2458.00 80941 0.03

SUM 8587 336432

AVG. 0.08 0.03

Figure 3. Results for cross-company analysis:
Analysis 11 [10]

6. Phase IV: Defect Prediction Model
Extended

This phase did not exist in our original plan, since
we had underestimated the time and effort that was
necessary to build a local data repository.

In this phase, we were able to collect local data for
three versions of the software. We have started with a
total of 10 projects from three completed versions.
Projects vary at each version, since they have been
developed or modified according to the content of new
campaign at a specific release.

6.1. How Things Went At the Beginning

Different than the first cross-company analysis, we
have collected within-company data at file level. We
have applied the micro-sampling approach, proposed in
our previous study [3], to decide on the ratio of
defective vs. defect-free modules in the training set.
Based on the results of our previous analysis, we have
decided to form a set containing M defective and N
defect-free modules, (i.e. M=N) such that the model
would not improve with additional data [3]. Then, we
have used the training set to predict defective files of
the test set, i.e. nth version of the selected project. We
have also conducted another experiment that treats all
projects as one software system at the (n-1)th version to
build the training set [14]. Then we have estimated the

defective files for a specific project at the nth version
of the software system [14]. Figure 4 shows a sample
of two versions and two projects in our experiment
results. It is observed that both of the approaches
produced high pd rates in the range between 78% to
100%.

nd

I experiment
with 8 appl.

pd pf  bal pd of bal

l’\p{”'ﬂ‘”?(’”f
Release Appl. with Trelll or Trell2

number Naine

Trelll 100 67 53 83 34 68

2.32
Trell2 78 75 o 80 66 51
Trelll 92 51 60 100 36 751
2.33
Trell2 81 63 45 90 71 44

Figure 4. Results for version- vs. project-
level prediction [14].

6.2. What Went Wrong

The results of this analysis, in Figure 4, show that
we further increased the false alarms by selecting the



Table 5. Results of our local defect prediction model with cost-benefit analysis.

# # Required # Inspected Verification
pd pf bal Modules Modules Modules Effort(%)

2.32 Trell3 Model I 0.50 049  0.50 249 137 132 4
Model 11 0.50 019  0.62 137 53 61

Trell2 Model I 1.00 0.31 0.76 245 221 88 60

Model 11 1.00 0.18 0.86 221 49 78

Trelll Model I 0.80 0.75 045 388 326 291 11

Model 11 0.80 0.62 0.54 326 238 27

233 Trell2 Model I 1.00 022 084 247 247 72 71
Model 11 1.00 015 0.89 247 43 83

Trelll Model I 1.00 0.69 042 389 233 226 3

Model 11 1.00 0.61 053 233 173 26

Trell4 Model I 1.00 0.08 095 27 27 8 70

Model 11 1.00 0.00 1.00 27 2 93

2.34 Trell2 Model I 0.75 0.75  0.42 389 292 293 0
Model 11 0.75 053 055 292 208 29

Trell5 Model I 0.70 0.41 0.65 493 355 219 38

Model 11 0.70 0.10 0.75 355 69 81

training data from previous versions of various projects
inside the software system, compared to the results,
when training data is selected from the previous
versions of the specific project only.

6.3. How the Team Changed To Repair This

In order to decrease the false alarm rates, we wanted to
increase the information content of the inputs of our
model by focusing on a specific project and build
training set only from the previous version of this
project.

In Figure 4, sample of two versions and two projects
are selected to compare version-level vs. project-level
prediction. Third column (the first experiment) presents
the prediction performance when we choose our
training set from all projects of the previous version to
predict defective modules of projects, Trclll and
Trcll2. The last column (the second experiment), on the
other hand, shows the performance of our predictor
when we use only the previous version of Trclll or
Trcll2 to predict defective modules of the selected
project in the current version. From the results, we
have concluded that project-level defect prediction is
better although we still have high false alarm rates.

7. What Happened at the End

We have successfully built our defect predictor for
Trell using local data and presented our results to the
project team. The results of the project showed that the

Trcll’s business goal of decreasing testing effort
without compromising the level of product quality can
be achieved with intelligent oracles. We have used
several methods to calibrate the model for Trcll in
order to get the best prediction performance for them.
We have seen that file-level call graph based ranking
(CGBR) method did not work due to their transition to
Service Oriented Architecture (SOA). SOA did not
allow us to capture caller-callee relations through
simple file interactions. Moreover, we have currently
used static code attributes from Java files to build our
model. However, there are many PL/ SQL scripts that
contain very critical information on the interactions
between application and data layers. Thus, a simple
call-graph based ranking in file-level could not capture
the overall picture and hence fail to increase the
information content in our study.

As the final step, we have discussed on the reasons
of high false alarms in monthly meetings with Trcll
project team and found that we need to clean files that
are not changed since January 2008 from the version
history. For this, we built a simple assumption on
defect-proneness of a module: It is highly probable that
a module is defect free if it has not been changed since
January 2008. Then, we have added a flag to each file
of the projects that indicates whether the file is actively
changed or passive since January. Our model controls
each of its predictions by looking at the history flag of
these files. If the model predicts a file as defective,
although it has not been used since January, then it is
re-classified as defect-free. Sample results for this
experiment can be seen in Table 5. Model I represents



our predictor without using version history, whereas
Model II represents a combination of our predictor and
the version history to predict defective modules of
Trcll data. We can clearly observe that using version
history improves the predictions significantly in terms
of pf rates. Our model succeeded in decreasing false
alarms, on the average from 46% to 29% using version
history. The change in pf rates vary in terms of projects
in the range of {7%, 31%} due to discontinuities in the
changed projects throughout version history.

Additionally, we managed to have stable high pd
rates, on the average 84%, while reducing pf rates
successfully. Besides, we have spent less effort to
detect 84% of these defective modules. Our results
show that the improvement in testing effort is around
50% when we used Model II instead of I. This
indicates that we inspected fewer LOC, only 30%
instead of 61%, and still found the best prediction
performance on the projects. Therefore, the cost-
benefit analysis shows that using a defect prediction
model enables developers allocate their limited amount
of time and effort to only defect-prone parts of a
system. Managers can also see the practical
implications of such decision making tools which
reduces testing effort and cost.

8. Lessons Learned

During this project we had many challenges to
overcome, and we constantly re-defined our processes,
and planned for new sets of actions. In this section, we
would like to discuss how we feel about this study:
what can be used as best practices, and what needs to
be avoided next time. We hope that this study and our
self evaluation would shed some light for other
researchers and practitioners.

8.1. Best Practices

Managerial Support: From the beginning till the
end of this work, we had full support of senior
management, and mid level management. They were
available and ready to help whenever we needed them.
We believe that without such a support a project like
this would not have been concluded successfully.

Project planning and monitoring: One of the
critical success factors was that we had a detailed
project plan and we rigorously followed and monitored
the plan. This enabled us to identify problems early on
and to take necessary precautions on time. Although we
had many challenges we were able to finish the project
on time achieving and extending its intended goals.
These meetings also brought up new and creative

research ideas. As a research team we mapped the
project plan and its deliverables to the deliverables of
two masters and one PhD thesis. Our research
deliverables were to publish papers as well as to finish
thesis works of three Softlab students. We have
successfully achieved these research goals at the end.

Multiplier Effect: One of the benefits of doing a
research in a live laboratory environment like Trcll is
that researchers can work on-site, access massive
amounts of data, conduct many experiments, and
produce a lot of results. The benefit of this amateur
attitude to a commercial company is that they can get
five times more output than originally planned. It is
definitely a win-win situation. Although we had started
a measurement and defect prediction problem focusing
only the testing stage, we have extended the project to
be able touch whole software development life cycle:
1) the design phase by using dependencies between
modules of the software system, 2) coding phase by
adding static code measurement, raw code analysis and
rule-based model, 3) coding phase by employing a
sample of test-driven development, 4) testing phase by
building a defect predictor to decrease testing efforts,
and finally 5) the maintenance phase by examining the
code complexity measures to evaluate which modules
need to be re-factored in the next release.

Existence of Well Defined Project Life Cycles and
Roles/ Responsibilities: The development lifecycle in
Trcll has been arranged such that all stages, i.e.
requirements, design, coding, testing and maintenance
are separately assigned to different groups in the team.
Therefore, segregation of duties has been successfully
operated in the company. We have benefited from this
organizational structure while we were working on this
project. It was easy to contact test team to take defect
data, as well as the development team to take
measurements from the source code.

8.2. Things to Avoid Next Time

Lack of Tool Support: Automated tool support for
measurement and analysis is fundamental for these
kinds of projects. In this project we have developed
metrics extraction tool to collect code metrics easily,
however, we were unable to match defects with
corresponding files. Therefore it took too much time to
be able to construct local defect prediction model.
Therefore, our next plan would definitely be initiating
an automated bug tracing/ matching mechanism with
Trcll. We now highly recommend that before a similar
project starts an automated tool support for bug
collection and matching is employed.



Lack of documentation and architectural
complexity: Large and complex systems have
distinguishing  characteristics. ~ Therefore, proper

documentation is paramount to understand the
complexities especially when critical milestones are
defined at every stage of such projects. This has caused
us to face with many challenges as we moved along.
We had to change our plans several times.

9. Conclusion

Al has been tackling the problem of decision
making under uncertainty for some time. This is an
everyday business problem that managers in various
industries have to deal with. In this project and its
related research we have built an oracle for software
development managers to help them decide “how much
testing is enough?” and “when to stop testing and go
live?”.

The research we undertook during the course of this
project has been at the intersection of Al and Software
Engineering. We had the opportunity to use some of
the most interesting computational techniques to solve
some of the most important and rewarding questions in
software development practice. Our research was an
empirical study where we collected data, designed
experiments, presented and evaluated the results of
these experiments. Contrary to classical machine
learning  applications we focused on better
understanding the data at hand. The project in Trcll
provided the “live laboratory” environment that was
necessary to achieve this.

We have seen that implementing Al in real life is
very difficult, but it is possible. As always both sides
(academia and practice) need “passion” for success.
Our empirical results showed that a metrics program
can be built in less than a year time: as few as 100 data
points are good enough to train the model [3]. In the
meantime the company can use cross company data to
predict defects by using filtering techniques (NN and
CGBR). In the case of Trcll in cross company
experiments we showed that the estimated testing effort
is only 3% to catch around at least 70% of the defects.
But we could not measure the classification accuracy in
cross-company analysis. Finally, once a local
repository is built and version history information is
used the testing effort decreased up to 50% in certain
projects, from 60% to 31%.

As a future direction we are extending Prest to
extract metrics from PL/ SQL. We would also like to
develop an automated tool to match defects seamlessly
to the coders. If such a tool can be developed we would
be able to match at a lower granularity level (i.e.

function level instead of file level) so that we can have
more accurate prediction results.
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