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Abstract

While data miners can learn defect predictors from static code features, the performance improve-

ment in such detectors is curiously static. One explanation for this ceiling effect is that static code

features have limited information content. If so, then it should be useful to give our learners more

knowledge about the problems they are processing. Data miners build predictors using a performance

criteria P (e.g. accuracy), then assess them using another criteria Q (e.g. probability of detection).

Typically, P != Q, so learners are blind to their purpose. Therefore, it is hardly surprising that they

cannot find ways to better their performance. WHICH is a new data miner with P ≈ Q; i.e. a similar

evaluation criteria is applied during training and testing. After matching P to the goals of a particular

business application, we found that commonly used data miners perform no better than simple manual

methods; and that WHICH outperforms other methods, coming close to a theoretical upper bound in

performance (50 and 75 percentile of 70.9% and 80%, respectively). That is, with knowledge of the

business application, it is possible to build new data miners that overcome ceiling effects.

Index Terms

product metrics, defect prediction, data mining, decision-tree learning, rule-learning, C4.5, RIPPER.
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I. INTRODUCTION

For several years, the authors have relied upon straightforward application of standard data

mining algorithms to learn defect predictors from static code features; see [1]–[10] Recent results,

discussed in the paper, now suggest that there has been too much emphasis on machine learning,

and too little attention on the use of specific software engineering knowledge.

Automatically generated detect predictors are demonstrably useful and, as described in §2, can

operate better than current industrial best practices [9], [11]. However, we have observed that

these AI methods have hit a performance ceiling; i.e., some inherent upper bound on the amount

of information standard data miners can extract from, say, static code features. For example, after

a careful study of 19 data miners for learning defect predictors, Lessmann et.al. [12] conclude

the importance of the classification model (our emphasis) is less than generally as-

sumed and that practitioners are free to choose from a broad set of candidate models

when building defect predictors.

Note that, if all learners yield similar results, then the value of further research into automatic

defect predictors is questionable. However, if the performance goal is changed from classifica-

tion to some application-aware criteria then, contrary to Lessmann’s advice, the selection of

learner becomes critical. For example, this paper examines a specific business context we call

application1: inspect the fewest lines of code; find the most number of defective modules. In

the context of application1, we show that several standard learners are demonstrably inferior to

simple manual methods. The same cannot be said of our new learner, called WHICH [13], that

performs better than both standard learners and manual methods. In fact, WHICH’s performance

also comes close to a theoretical upper bound on the performance of any learner tackling

application1.

This paper is structured as follows. After a literature review on defect predictors, we document

the ceiling effect mentioned above and hypothesize that it is due to limited information content

in static code attributes. Two data reduction experiments (that shrink the size of training sets)

will confirm this hypothesis and show that the performance of our defect predictors stabilizes

after just a handful of training examples1. If limited information is the problem, the solution is

clear: give our learners more information. The details of application1 will be used to design an

application-aware performance criteria for WHICH. An experiment is performed where WHICH

1Note that the data reduction experiments of §4 have been reported previously [14]. However, the rest of this paper, including

the definition and exploration of the WHICH learner, is all new work.
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and three standard data miners are applied to application1. WHICH will be shown to perform

better than manual methods and standard data miners. We hypothesize that WHICH’s superior

performance comes from detailed knowledge of the necessary business context. Unlike other

learners, WHICH applies that knowledge at all levels of its reasoning.

Our conclusion will be that knowledge of the business application can overcome ceiling effects.

We hope that this result prompts a new cycle of defect prediction research focused on discovering

the best learner(s) for particular business context(s).

II. ABOUT DEFECT PREDICTION

Data miners learn defect predictors from static code features, either from projects previously

developed in the same environment or from a continually expanding base of the current project’s

artifacts. To do so, tables of examples are formed where one column has a boolean value for

“defects detected” and the other columns describe software features such as lines of code, number

of unique symbols [15], or max. number of possible execution pathways [16]. Each row in

the table holds data from one “module”, the smallest unit of functionality. Depending on the

language, these may be called “functions”, “methods”, or “procedures”. Static code features are

described in Figures 1,2,&3

The data mining task is to find combinations of features that predict for the value in the defects

column. The value of static code features as defect predictors has been widely debated. While

some researchers vehemently oppose them [17], [18], many others endorse their use [6], [9], [10],

[15], [16], [19]–[35]. Standard verification and validation (V&V) textbooks [36] advise using

static code complexity attributes to decide which modules are worthy of manual inspections. For

several years, the authors have worked on-site at the NASA Independent software Verification and

Validation facility where large government software contractors won’t review software modules

unless tools like the McCabe static source code analyzer predict that they exhibit high code

complexity measures.

Nevertheless, static code attributes can never be a full characterization of a program module.

Fenton offers an insightful example where the same functionality is achieved using different

programming language constructs resulting in different static measurements for that module [38].

Fenton used this example to argue the uselessness of static code attributes for fault prediction.

If Fenton is right, then the performance of predictors learned by data mining static code

features should be poor. However, this is not true, at least for the code we have studied [2],

[4], [6], [7], [9], [10], [27], [29], [30], [39]. Using NASA data, our fault prediction models find
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m = Mccabe v(g) cyclomatic complexity
iv(G) design complexity
ev(G) essential complexity

locs loc loc total (one line = one count
loc(other) loc blank

loc code and comment
loc comments
loc executable
number of lines (opening to
closing brackets)

Halstead h N1 num operators
N2 num operands
µ1 num unique operators
µ2 num unique operands

H N length: N = N1 + N2

V volume: V = N ∗ log2µ
L level: L = V ∗/V where

V ∗ = (2+µ2
∗)log2(2+µ2

∗)
D difficulty: D = 1/L
I content: I = L̂ ∗ V where

L̂ = 2
µ1
∗ µ2

N2

E effort: E = V/L̂
B error est
T prog time: T = E/18 sec-

onds

Fig. 1. Features used in this study. The Halstead features are explained in Figure 2 and the Mccabe features are explained in
Figure 3.

The Halstead features were derived by Maurice Halstead in 1977. He argued that modules that are hard to read are more
likely to be fault prone [15]. Halstead estimates reading complexity by counting the number of operators and operands
in a module: see the h features of Figure 1. These three raw h Halstead features were then used to compute the H: the
eight derived Halstead features using the equations shown in Figure 1. In between the raw and derived Halstead features
are certain intermediaries:

• µ = µ1 + µ2;
• minimum operator count: µ∗1 = 2;
• µ∗2 is the minimum operand count (number of module parameters).

Fig. 2. Notes on the Halstead features

defect predictors [9] with a probability of detection (pd) and probability of false alarm (pf ) of

mean(pd, pf) = (71%, 25%).

These values can be compared to baselines in data mining and industrial practice. Raffo

(personnel communication) found that industrial reviews discover pd = TR(35, 50, 65)%2 of a

systems errors’ (for full Fagan inspections [40]) to pd = TR(13, 21, 30)% for less-structured

inspections. Similar values were reported at an IEEE Metrics 2002 panel. That panel declined

to endorse claims by Fagan [41] and Schull [42] regarding the efficacy of their inspection or

2TR(a, b, c) is a triangular distribution with min/mode/max of a, b, c.
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An alternative to the Halstead features of Figure 2 are the complexity features proposed by Thomas McCabe in 1976.
Unlike Halstead, McCabe argued that the complexity of pathways between module symbols are more insightful than just
a count of the symbols [16].
The first three lines of Figure 1 shows McCabe three main features for this pathway complexity. These are defined as
follows.

• A module is said to have a flow graph; i.e. a directed graph where each node corresponds to a program statement,
and each arc indicates the flow of control from one statement to another.

• The cyclomatic complexity of a module is v(G) = e− n + 2 where G is a program’s flow graph, e is the number
of arcs in the flow graph, and n is the number of nodes in the flow graph [37].

• The essential complexity, (ev(G)) of a module is the extent to which a flow graph can be “reduced” by decomposing
all the subflowgraphs of G that are D-structured primes (also sometimes referred to as “proper one-entry one-exit
subflowgraphs” [37]). ev(G) = v(G) −m where m is the number of subflowgraphs of G that are D-structured
primes [37].

• Finally, the design complexity (iv(G)) of a module is the cyclomatic complexity of a module’s reduced flow graph.

Fig. 3. Notes on the McCabe features

directed inspection methods. Rather, it concluded that manual software reviews can find ≈60%

of defects [43].

As to comparing our defect predictors with standard results from the data mining community,

in prior work, we have checked the efficacy of data mining on standard machine learning data sets

such as the UCI data repository [44]. For each UCI data set, ten experiments were conducted,

using a state-of-the-art decision tree learner [45] from 90% of the data, selected at random.

The experiments tested the learned decision tree on remaining 10% of the data. On average,

state of the art data miners perform at (pd,pf )=(81%,20%). This is close to the results we have

obtained via data mining on static code attributes (pd,pf )=(71%,25%). Note that if static code

attributes capture so little about source code (as argued by Fenton), then we would expect lower

probabilities of detection and much higher false alarm rates.

Overall, there are two reasons to recommend static code predictors. Firstly, our (pd, pf) results

are better than currently used industrial methods such as:

• the pd≈60% reported at the 2002 IEEE Metrics panel or

• the median(pd) = 21..50 reported by Raffo.

Secondly, static code defect predictors can be built quickly, even for very large systems [31].

Other methods such as manual code reviews may be more labor-intensive. Depending on the

review method, 8 to 20 lines of code (LOC) per minute can be inspected. This effort repeats for

all members of the review team (typically, four or six [46]). Our defect detectors, on the other

hand, can be generated using automatic methods.
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If {A, B, C, D} are the true negatives, false negatives, false positives, and true positives (respectively) found by a defect
predictor, then:

pd = recall = D/(B + D) (1)

pf = C/(A + C) (2)

bal = balance = 1−

q
(0− pf)2 + (1− pd)2

√
2

(3)

All these values range zero to one. Better and larger balances fall closer to the desired zone of no false alarms and 100%
detection.
Other measures such as accuracy and precision were not used since, as shown in Figure 7, the percent of defective
examples in our tables was usually very small (median value around 8%). Accuracy and precision are poor indicators of
performance for data were the target class is so rare (for more on this issue, see [9], [10]).

Fig. 4. Performance measures.

III. CEILING EFFECTS

A‘‘ceiling effect” may be observed when different treatments all yield similar upper-bounds

on their performance. As documented in this section, there is much evidence for a ceiling effect

in defect prediction. Specifically, even after years of exploring different learners and data pre-

processing methods, the performance of our learners has not improved.

In January 2007, we published in TSE [9] a study that defined a repeatable experiment in

learning defect predictors. The aim of that work was a benchmark result that other researchers

could repeat/ improve/ refute. That experiment used public domain data sets3 and open source

data mining tools (the WEKA toolkit [47]); Data order was randomly sorted (to stop order

effects). Data mining was performed using 10-way cross-validation (to test on data not used

in training). Learner assessment was via multiple criteria such as probability of detection (pd),

probability of false alarm (pf ), and balance that combines {pd, pf} (balance is defined in

Figure 4). The experiment also included statistical hypothesis tests over the assessment criteria;

novel visualization methods for the results; feature subset selection to find important subsets of

features; and learning via multiple types of machine learning algorithms: rule learners, decision

tree learners, näive Bayes classifiers.

Surprisingly, näive Bayes classifiers (with a simple pre-processor for the numerics) out-

performed the other studied methods. For details on näive Bayes classifiers, see Appendix I.

Since that study, we have tried to find better data mining algorithms for defect prediction.

To date, we have failed. Our recent experiments [48] have found little or no improvement from

3From http://promisedata.org
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Fig. 5. Box plot for area under PD-vs-PF curves seen with 9 learners when, 100 times, a random 90% selection of the data

is used for training and the remaining data is used for testing. The rectangles show the inter-quartile range (the 25% to 75%

quartile range). The line shows the minimum to maximum range, unless that range extends beyond 1.5 times the inter-quartile

range (in which case dots are used to mark these extreme outliers). From [48].

Fig. 6. Range of “ranks” seen in 19 learners building defect predictors when, 10 times, a random 66% selection of the data is

used for training and the remaining data is used for testing. In ranked data, values from one method are replaced by their rank

in space of all sorted values (so smaller ranks means better performance). In this case, the performance value was area under

the false positive vs true-positive curve (and larger values are better). Vertical lines divide the results into regions where the

results are statically similar. For example, all the methods whose top ranks are 4 to 12 are statistically insignificantly different.

From [12].
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the application of numerous data mining methods. Figure 5 shows some of those results using

(in order, left to right) aode average one-dependence estimators [49]; bag bagging [50]; bst

boosting [51]; IBk instance-based learning [52]; j48 j48 [45]; jrip RIPPER [53]; lgi logistic

regression [54]; nb näive Bayes (second from the right); and rf random forests [55]. A statistical

analysis shows that only boosting on discretized data offers a statistically better result than näive

Bayes. However, we cannot recommend boosting:

• Boosting is orders of magnitudes slower than näive Bayes;

• The median improvement over näive Bayes is negligible.

Other researchers have also failed to improve our results. For example, Figure 6 shows results

from a study by Lessmann et al. on statistical differences between 19 learners used for defect

prediction [12]. At first glance, our preferred näive Bayes method (shown as “NB” on the sixth

line of Figure 6) seems to perform poorly: it is ranked in the lower third of all 19 methods.

However, as with all statistical analysis, it is important to examine not only central tendencies

but also the variance in the performance measure. The vertical dotted lines in Figure 6 show

Lessmann et al.’s statistical analysis that divided the results into regions where all the results

are significantly different: the performance of the top 16 methods are statistically insignificantly

different from each other (including our preferred “NB” method). Lessmann et.al. comment:

“Only four competitors are significantly inferior to the overall winner (k-NN, K-

start, BBF net, VP). The empirical data does not provide sufficient evidence to judge

whether RndFor (Random Forest), performs significantly better than QDA (Quadratic

Discriminant Analysis) or any classifier with better average rank.

In other words, Lessmann et al. are reporting a ceiling effect where a large number of learners

exhibit performance results that are indistinguishable.

IV. THE “LIMITED INFORMATION CONTENT” HYPOTHESIS

How to explain all these failed attempts to improve fault prediction? One possibility is that

these static code features have a limited information content. If so, then simple learning methods

will uncover all that can be found. Further, more sophisticated data mining methods will yield

no more information.

The rest of this section offers evidence for the limited information hypothesis.
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A. Random Reduction Experiments

In our RandomReduction study, defect predictors were learned from N = 100, N = 200, N = 300, etc..

instances (selected at random) then Tested on another 100 instances. For all experiments, the

Train and Test instances were selected at random using a 10-way cross-validation study4 for

each value of N .

This RandomReduction study was conducted on the NASA sets of Figure 7 using a näive

Bayes classifier (since it performed so well in the above experiments). Space does not permit

showing all the results but a representative sample is shown in Figure 8 [14]. In that figure, the

X-axis is the size of training set and the Y-axis is the balance measure defined in Figure 4.

Note that the performance does not change much regardless of whether the model is inferred

from 100 instances or from up to several thousand instances. In fact, learning from too many

training examples may even be detrimental (witness the widening variance as the training set

increases). A Mann Whitney U test [56] (95% confidence)5 confirms the visual pattern apparent

in Figure 8: static code features used as the basis for predicting module’s fault content revealed

all that they can reveal after as little as 100 instances.

B. Structured Reduction Experiments

The Figure 8 RandomReduction experiment randomly discarded training data. Perhaps a more

StructuredReduction method would not damage the information content of the data? If so then,

contrary to Figure 8, increasing the sample size will improve performance and break through

the ceiling effect reported above.

Three examples of StructuredReduction are micro-, over-, and under-sampling [59], [60]. All

of these methods build datasets with an equal number of defective and non-defective classes:

• In the case of under-sampling, random instances from the majority classification are re-

moved. This results in a much smaller dataset, but the minority class is no longer buried

4In 10-way cross-validation, 10 experiments are performed where training is conducted on |Train| = 90% ∗ N instances,

then tested on data not used during training (so Train ∩ Test = {}).
5In the rest of this paper, all statistical tests will be via the Mann-Whitney non-paired non-parametric test. Non-parametric tests

are used since Demsar advises that parametric assumptions have conflated much prior data mining research [57]. Non-paired tests

are used since, as in Figure 8, all the experiments from here onwards apply the same treatment to different populations. Mann-

Whitey is used instead of, say, the Wilcoxon test [58] since (a) Wilcoxon is a paired test and (b) a single Mann-Whitney test can

compare one learner L1 against rival learners L2, L3, ... (since Mann-Whitney does not require that all samples being compared

have the same cardinality). Hence, Mann-Whitney supports very succinct summaries of the results without the post-processing

required for Wilcoxon (see Demsar [57] or Lessmann et al. [12] for details on the Wilcoxon post-processing [12]).
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(# modules) .
source project language examples features %defective
NASA pc1 C++ 1,109 21 6.94
NASA kc1 C++ 845 21 15.45
NASA kc2 C++ 522 21 20.49
NASA cm1 C++ 498 21 9.83
NASA kc3 JAVA 458 39 9.38
NASA mw1 C++ 403 37 7.69
SOFTLAB ar4 C++ 107 30 18.69
SOFTLAB ar3 C++ 63 30 12.70
NASA mc2 C++ 61 39 32.29
SOFTLAB ar5 C++ 36 30 22.22

4,102

Fig. 7. Tables of data, sorted in order of number of examples. The rows labeled “NASA” come from NASA aerospace projects
while the rows labeled “SOFTLAB” come from a Turkish software company writing applications for domestic appliances. For
details on the features used in each data set, see Figure 1.
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Fig. 8. RandomReduction results. experimenting with training set size vs balance (and balance is defined in Figure 4).

inside a larger set of other classes.

• In over-sampling, randomly selected instances from the minority class are copied. Where

as under-sampling produces smaller data sets, over-sampling grows the size of the data.

• Micro-sampling combines under-sampling with data reduction. Given N defective modules

in a data set, M ∈ {25, 50, 75, . . .} ≤ N defective modules are selected at random. Another

M non-defective modules are then selected, at random. Note that under-sampling is a micro-

sampling where M = N . Micro-sampling explores training sets of increasing size 2M..2N ,

while standard under-sampling just explores one data set of size 2N .

Under-sampling, over-sampling, micro-sampling, and “no-sampling” were applied to the NASA

data sets from Figure 7 using 10-way cross-validation. For the “no-sampling” experiments, the

raw data was used for training and testing without any adjustment to the class frequencies.

In these studies, two data miners were used: the näive Bayes classifier we recommended above

and the j48 decision tree learner [45], [47]. j48 was used to test our rig against known over-

and under- sampling results described in the literature [59], [61]. Other learners were not used

since, as discussed above, all of our experiments with other learners have not be productive. For
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2nd quartile, median
rank treatment median and 3rd quartile

1 NB/ none 74.6 !
1 NB/ under 74.1 !
1 j48/ under 73.6 !
2 NB/ over 62.5 !
3 j48/ over 45.6 !
4 j48/ none 42.3 !

50%

Fig. 9. StructuredReduction results. Over- & under- & no sampling results. Sorted descending by median balance results
(balance is defined in Figure 4). The right-hand side show median values (as a circle) within a 25% to 75% percentile range.
The rank, shown left-hand-side, come from the statistical analysis of Figure 10. Three methods share top rank: NB/none,
NB/under, j48/under.

rank treatment win loss ties
1 nb / none 3 0 2
1 nb / under 3 0 2
1 j48/ under 3 0 2
2 nb / over 2 3 0
3 j48/ over 1 4 0
4 j48/ none 0 5 0

Fig. 10. StructuredReduction results: statistical tests on the Figure 9 results. Column two lists six treatments. Each row shows
how the results for one treatment compare to the other five. This table is sorted in ascending order on the number of losses (so
better methods appear at the top of the table. The first column shows a comparison of one treatment against the other eight. Two
treatments have the same rank if their median ranks are statistically insignificantly different (Mann-Whitney, 95% confidence).

more details on j48, see Appendix II.

Figure 9 shows the under- and over- balance results (balance was defined in Figure 4). The

pattern of results is very clear:

• Over-sampling did not improve classifier performance. This result is consistent with Drum-

mond & Holte’s sub-sampling experiments [59] and the sub-sampling classification tree

experiments of Kamei et.al. [61].

• The method with the highest medium performance was, yet again, the simple näive Bayes

we recommended previously [9].

• Just like the Figure 8 results, throwing away data (i.e. under-sampling) does not degrade

the performance of the learner. In fact, in the case of j48, throwing away data improved the

median balance performance from around 40% to over 70%.

This last point motivated the micro-sampling experiment. Recall that micro-sampling is an

under-sampling method that discards most of the majority class while keeping only M examples

of the minority class. Figure 11 shows the results of an under-sampling study where M ∈
{25, 50, 75, ...} defective modules were selected at random, along with an equal M number of

defect-free modules. Note the same visual pattern as before: increasing data does not necessarily
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Fig. 11. StructuredSampling results: micro-sampling.

improve balance.

Mann-Whitney tests were applied to test the visual pattern of Figure 11. Detectors learned

from small M instances do as well as detectors learned from any other number of instances.

• For five data sets, {CM1,KC2, KC3,MC2,PC1}, micro-sampling at M = 25 did just as well

as anything larger sample size.

• For one data set, KC1, best results were seen at M = 575. However, in hundreds of repeats

for that data set, in all by one case, M = 25 did as well as any larger value.

V. ADDING BUSINESS KNOWLEDGE

The above results offer much support for the limited information content hypothesis. In those

results, our learners’ performance did not improve after:

• RandomReduction: 100 randomly selected examples;

• StructuredReduction: 25 examples each of defective/non-defective modules.

If limited information content is the problem, then the solution is clear: give the data miner

more information. However, as shown above, it is not useful to use more examples of the same

kinds of data. Rather, we need to give our learners different kinds of information.

One different kind of knowledge, not found in the training data of Figure 7, is the criteria by

which a learner will be assessed. We will call this evaluation criteria Q since it is applied after

another criteria P is used by the leaner to build a model.

In theory, data mining could use the evaluation criteria Q to guide their search for better

predictors. In practice, this is often not the case. For example:
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30 detectors, sorted by effort
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A B

Fig. 12. Properties of 30 defect predictors learned from Figure 7’s NASA data, sorted by effort. For example, the detector

shown at X=1 has (accuracy, effort, pd, pf) of (80, 20, 10, 5)% (respectively). From [6], [28].

P : During training, a decision-tree learner may stop branching if the diversity of the instances

in a leaf of a branch6 falls below some heuristic threshold.

Q : During testing, the learned decision-tree might be tested on any of the criteria shown in

Figure 4.

Predictors that satisfy some intra-learning assessment criteria P may not satisfy some post-

learning assessment criteria Q. For example, Figure 12 shows properties of some defect predictors

we have learned from the NASA data of Figure 7 (while only 30 predictors are shown in

that figure, we have other results where thousands of other predictors follow exactly the same

pattern [6], [28]). Observe how accuracy remains stable over a wide range of changes to pd

and effort; e.g. the predictors labeled A and B have similar accuracies while pd changes by a

factor of five. If P maximizes for accuracy, while Q prefers detectors with high pd values, then

it is conceivable that the learner will return a detector that satisfies P , but not Q (e.g. all the

detectors on the left-hand-side of Figure 12).

Hence, we say that it is important that the learner’s internal evaluation criteria P reflects

business concern Q since the latter can change markedly from application to application. For

example, in application1, a quality assurance (QA) team has insufficient budget to inspect all the

code. Therefore, they need some sorting policy that increases the defect frequency in modules

that are ranked high in the sort. In this application, Q rewards minimizing the inspection effort

while maximizing the number of defective modules they discover.

6For numeric classes, this diversity measure might be the standard deviation of the class feature. For discrete classes, the

diversity measure might be the entropy measure used in j48 [47].
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On the other hand, in application2, the manager of a new contract between a V&V consultancy

and a client may feel the need to impress the client. In which case, she may direct her engineers

to quickly skim all the code looking for some single high severity error. The priorities of

application2 are different to application1 in that the former will condone a review of all the

code (at least, at very high speed) while the latter only wants to see some of the code.

Note that some learning schemes support biasing the learning according to the overall goal

of the system; for example:

• The cost-sensitive learners discussed by Elkan [62];

• The ROC ensemblesdiscussed by Fawcett [63] where the conclusion is computed from some

summation of the conclusions of the ensemble of ROC curves7, proportionally weighted,

to yield a new learner.

At best, such biasing is only an indirect control of the P criteria. If the underlying criteria used

to guide the search is orthogonal to the success criteria of, say, application1 then cost-sensitive

learning and ensemble combinations will not be able to generate a learner that supports that

business application.

By this line of reasoning, we have an explanation for the ceiling effect described above: when

P != Q, our learners are blind to their purpose and it is hardly surprising that they cannot find

ways to improve their performance. What is required is a new kind of learner- one where a

similar user-specified criteria is applied during training and testing. The rest of this paper tests

the speculation that such a learner can overcome performance ceilings.

VI. WHICH

The WHICH [13] rule learner loops over the space of possible feature ranges, evaluating

various combinations of features. In terms of this discussion, the most important feature of

WHICH is that WHICH’s P criteria is very close to application1’s Q (denoted P ≈ Q) and is

wired into the inner loop of WHICH’s learning:

1) WHICH maintains a stack of of combinations of features, sorted by an evaluation criteria

P . WHICH’s design allows for the easy modification to P . The exact P used in this study

is discussed below in §IV.C.

2) Initially, WHICH’s “combinations” are just each range of each feature. Subsequently, they

can create conjunctions of two or more features.

7ROC= receiver-operator characteristic curves such as graphs of PD-vs-PF or PD-vs-precision
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old data !! data miner

""

new data !! predictor !! predicitons

##!!!!!!!!!!!!!!!!!!!!!!!!!!!!

sorted !! QA team !! defect reports

Fig. 13. application1: the QA team inspects the new data modules that the data miner predicts are faulty. The modules
predicted to be faulty are sorted by their relative defect frequency (RDF) where one module is ranked higher than another if it
is more likely to contain defects. The QA team inspects those modules in that sort order.

3) Two combinations are picked at random, favoring those combinations that are ranked highly

by P .

4) The two combinations are themselves combined, scored, then sorted into the stacked

population of prior combinations.

5) Go to step 1.

After numerous loops, WHICH returns the highest ranked combination of features. During

testing, if a new module satisfies this combination then it is predicted as being “defective”.

In the following experiment, we wanted to isolate the value of unifying the train/test evaluation

criteria against all other treatments. Accordingly, we “crippled” WHICH and disabled various

internal options. For example, WHICH can optimize each combination via a back select that

discards superfluous parts of the combination. Hence, the following results were obtained by

a data miner that knows nothing special about over-fitting avoidance or any other AI search

technique. The only intelligence used by WHICH to find better defect predictors is P ≈ Q.

For more details on WHICH, see Appendix IV.

A. About application1

Our study will focus on application1, the details of which are shown in Figure 13. In

application1, a QA team working on a limited budget wants to sort the modules that the data

miner predicts are defective in order to find (a) those that require urgent inspection, and (b) others

than could be inspected later (or never).

We make no presumption that application1 is the only possible way to use data miners. There

are many other business applications of defect predictors that do not conform to application1.

However, application1 was chosen for two reasons. Firstly, it is a common usage of automatic
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defect predictors. For example, if a V&V company is hired to audit the code from some new

off-shore client, they may have a large code base to inspect in the shortest possible time.

Secondly, application1 addresses current concerns in the defect prediction literature. Arisholm

& Briand [64] argue against certain standard measures of predictor performance such as accuracy

(defined in Figure 4), saying that a highly accurate predictor can be undesirable in other ways.

For example, accuracy says nothing about the appropriate sort order for reading modules. In

application1 we want a QA team to read less while finding more defects. For such a budget-

conscious team, if X% of the modules are predicted to be faulty and if those modules contain

less than X% of the detects, then the costs of generating the defect predictor is not worth the

effort.

Koru et al. [65] have much to say about the relative defect frequency (RDF) of different

biasing strategies for selecting which modules should be inspected next. Based on a literature

review and empirical studies, they make a strong case the relationship between module size and

number of defects is not linear, but logarithmic; i.e. smaller modules are proportionally more

troublesome. Accordingly, they argue that LOC can be be used to create a biasing strategy with

higher RDF. For example: if one has the resources to inspect 10,000 LOC, then their logarithm

defect hypothesis would say that it is better to pick 100 classes of size 100-LOC as opposed to

picking 10 classes of 1,000 LOC.

We can use application1 to test the logarithmic defect hypothesis by exploring two sort

orders:

• In Koru’s preferred manualUp policy, the smaller modules (those with less LOC) will be

inspected first.

• In the opposite manualDown policy, the larger modules will be inspected first.

B. Effort-vs-PD Curves

The relative merits of biasing strategies like manualUp and manualDown can be compared

using the effort-vs-pd diagram of Figure 14. The curves in that figure are generated as follows:

• Some oracle selects a set of modules to inspect. In the case of automatic data mining, this

would be the modules predicted to be defective. In the case of manualUp and manualDown,

it would be all modules.

• The selected are sorted. For example, except for manualDown, we sort all modules ascending

on LOC.
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Fig. 14. Effort-vs-PD.

• The selected set is explored in the sorted order 1 ≤ i ≤ |selected|. Each x value in Figure 14

shows
∑

i LOCi found in the first i modules.

• For each x value, the y value is the percentage of the defective modules seen in the first i

modules.

Typically, defect detectors do not trigger on all modules, and have some false alarm rate. For

example, the good curve of Figure 14 triggers on B=43% of the code while only detecting

85% of the defective modules. Similarly, the bad curve stops after finding 30% of the defective

modules in 24% of the code. To compute the area under the effort-vs-pd curve, we must fill

in the gap between the termination point and X = 100. In the sequel, we will assume the QA

team only inspects the modules referred to by the data miner. Visually, for the good curve, this

assumption would correspond to a flat line running to the right from point C = 85.

The effort-vs-pd curve of Figure 14 lets us define reasonable lower bounds on the per-

formance of an automatic data miner being used for application1. For Arisholm & Briand to

approve of a data miner, its curve must fall above the diagonal line marked as minimum. This

is the region where pd > effort; i.e where the QA team can read less and finds more. Also,

if Koru et al. are right then the manualUp and manualDown curves should appear as drawn

in Figure 14; i.e. manualUp should find defective modules faster than manualDown. A bad

automatic method performs worse than manual methods; i.e. its effort-vs-pd curve falls below

the performance curves of the manual methods. In application1, there would be no business
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justification for a learner that generates (e.g.) the bad curve of Figure 14 since it falls below one

of the manual curves.

Figure 14 also lets us define a theoretical upper bound on the performance of any learner

tackling application1. Imagine an omniscient oracle that restricts the inspections to just the A%

defective modules (in Figure 14, A = 30%). If manualUp was then applied to just those defective

modules, then that would result in the best curve. Realistically, defect predictors can approach

the best curve, but never reach it. Hence, the most we can hope for is something like the good

curve that falls below the best curve and above the manualUp and manualDown curves.

Two more details will complete our discussion of Figure 14. Firstly, in the sequel, the following

observation will become a significant point. Even though Figure 14 shows effort-vs-pd, it can

also indirectly show pf . Consider the plateau in the good curve of Figure 14, marked with “D”, at

around effort = 10, pd = 45. Such plateaus mark false alarms where the detectors are selecting

modules that have no defects. That is, one way to maximize the area under an effort-vs-pd

curve is to assign a heavy penalty against false alarms that lead to plateaus.

Secondly, when comparing supposedly good defect predictors, it is useful to express their

performance in terms of the area under the effort-vs-pd curve, expressed as a ratio of the

area under the best curve. To be complete, that evaluation should contain the “∆” factor that

models the effectiveness of QA teams that inspect modules according to the defect predictors’

recommendation (and at ∆ =1 , the inspection teams are perfect at recognizing defective

modules). Note that that factor applies to the activity that occurs after the data miners runs

and the modules are sorted in ascending order by LOC. Hence, it is the same across all data

miners. By expressing the value of a defect predictor as a ratio of the area under the best curve,

∆ cancels out. In this way, for application1, we can assess the relative merits of different defect

predictors independently of ∆.

We use Q′ to denote this performance measure; i.e. area under the effort-vs-pd curve,

measured as a percentage of the area under the best curve.

C. Designing P for application1

Recall that P is the criteria used internally by the learner to grow a model. When the learner

terminates and outputs a model, Q is used to assess the outputted model.

Our preferred Q′ was described in the last section. This section describes the P ′ used by

WHICH to incrementally grow candidate rule sets. In summary, our experiments will using a

P ′ criteria that approximates the intent of Q′, even if it does not implement it directly.
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Fig. 15. Lines of code in a sample of our data sets.

The Q′ criteria maximizes pd while minimizing effort. To emulate that criteria during rule

generation, we experimented with:

P ′ = 1−
p

pd2 ∗ α + (1− pf)2 ∗ β + (1− effort)2 ∗ γ
√

α + β + γ
(4)

where (pd, pf, effort) were normalized to fall between zero and one. The α, β, γ terms of this

expression represent the relative utility of pd, pf, effort respectively. Clearly, 0 ≤ (P ′, α, β, γ, pd, pf, effort) ≤
1 and larger values of P ′ are better. The pf term was absent from the first version of P ′ but

was added after some initial experiments that returned rules with high false alarm rates. Note

that increasing the effort or pf leads to a decrease in P ′.

Initially, we gave pd and effort equal weights; i.e. α = γ = 1. This yielded disappointing

results: the performance of the learned detectors varied wildly across our cross-val experiments.

Figure 15 explains why: there exists a small number of modules with very large LOCs. For

example, there are 126 modules in the kc4 data set, most of them are under 100 lines of code

but a few of them are over 1000 lines of code long. The presence of small numbers of very

large modules means that γ = 1 is not recommended. If the very large modules fall into a

particular subset of some cross-val, then the performance associated with WHICH’s rule can

vary unpredictably from one run to another.

To repair this problem, we had to deemphasize effort and use pf as a surrogate measure.

False alarms create plateaus in effort-vs-pd curves (recall the above discussion on the point

“D” in Figure 14). Hence, in the following experiments, we used a variant of P ′ that disables

effort but places a very large penalty on pf ; i.e. α = 1, β = 1000, γ = 0.
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2nd quartile, median
data rank treatment median Q′ and 3rd quartile
all 1 which2 70.9 !

1 micro20 67.0 !
2 manualUp 61.1 !
3 näive Bayes 56.8 !
4 manualDown 49.5 !
5 which4 49.2 !
6 which8 31.2 !
6 j48 27.6 !
7 jRip 21.9 !

50%

Fig. 16. Results from all data sets of Figure 7, combined from 10 repeats of a 3-way cross-val, sorted by median Q′. The
rank values in column 1 were generated in the same manner as Figure 9.

VII. EXPERIMENTS

Figure 16 shows results from experimental runs with different learners on Figure 7. Each run

randomized the order of the data ten times, then performed a N=3-way cross-val study (N=3

was used since some of our data sets were quite small). For each part of the cross-val study,

pd-vs-effort curves were generated using:

• Manual methods: manualUp and manualDown;

• Using standard data miners: the j48 decision tree learner, the jRip rule learner, and our

previously recommended näive Bayes method. For more details on these learners, see

Appendicies I,II, and III. Note that these standard miners included methods that we have

advocated in prior publications [2]–[10].

• Two versions of WHICH: WHICH2 discretized continuous ranges with a log filter, then

divided the numerics into two equal width bins; micro20 is WHICH2, plus the micro-

sampling strategy discussed in §IV-B. For more details on WHICH, see Appendix IV.

To be accurate, numerous versions of WHICH were explored, each with different discretization

policies. We only report WHICH2 and micro20 since they were always on the upper envelope

of the results.

A. Overall Results

Figure 16 shows the results for all the data sets of Figure 7, combined. In terms of the title

of this paper, the most important result is that WHICH performs relatively better that all of the

other methods studied in this paper. That is, unlike our prior results, all the learners in this study

do not hover around the same performance ceiling.

April 30, 2008 DRAFT



JOURNAL OF VVV, VOL. WWW, NO. XXX, MONTH 200Y 22

2nd quartile, median
data rank treatment median Q′ and 3rd quartile
ar4 1 which2 58.6 !

1 manualDown 56.5 !
1 näive Bayes 56.2 !
1 manualUp 56.2 !
1 which4 49.3 !
1 jRip 47.3 !
2 micro20 49.2 !
3 which8 42.6 !
3 j48 38.8 !

cm1 1 which2 68.1 !
1 micro20 64.7 !
1 manualUp 59.8 !
2 näive Bayes 52.1 !
3 manualDown 47.6 !
4 which8 11.4 !
4 jRip 5.8 !
4 j48 0.1 !
4 which4 0.0 !

kc1 1 which2 76.0 !
1 micro20 75.1 !
2 manualUp 67.6 !
3 näive Bayes 61.9 !
4 which4 52.9 !
5 manualDown 43.3 !
6 j48 27.8 !
7 jRip 21.3 !
8 which8 0.0 !

kc2 1 which2 81.6 !
2 micro20 74.8 !
3 manualUp 69.3 !
4 which4 59.4 !
4 näive Bayes 58.7 !
5 manualDown 46.1 !
5 jRip 42.2 !
6 which8 41.2 !
6 j48 41.2 !

kc3 1 which2 87.3 !
2 micro20 76.3 !
3 näive Bayes 64.2 !
3 manualUp 64.2 !
4 which4 47.8 !
4 manualDown 47.6 !
4 which8 46.7 !
5 j48 23.1 !
5 jRip 17.7 !

mw1 1 which2 62.4 !
1 manualDown 60.2 !
1 micro20 55.7 !
2 manualUp 47.8 !
3 which4 42.7 !
3 näive Bayes 41.7 !
4 which8 39.3 !
5 j48 20.0 !
5 jRip 15.8 !

pc1 1 which2 65.0 !
1 micro20 64.4 !
1 manualUp 60.6 !
2 näive Bayes 51.5 !
3 manualDown 44.6 !
4 which8 22.6 !
4 j48 19.2 !
4 jRip 15.1 !
4 which4 0.0 !

50%

Fig. 17. Seven examples of pattern #1: WHICH2 ranked #1 and has highest median. This figure is reported in the same format
as Figure 9.
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2nd quartile, median
data rank treatment median Q′ and 3rd quartile
ar3 1 manualDown 54.7 !

1 manualUp 52.6 !
1 j48 47.8 !
1 which8 42.7 !
1 which2 40.4 !
2 which4 41.8 !
2 micro20 38.0 !
3 näive Bayes 34.4 !
4 jRip 0.2 !

ar5 1 micro20 77.6 !
1 which4 71.4 !
1 manualDown 69.6 !
1 which2 67.6 !
1 j48 56.1 !
1 jRip 55.0 !
1 näive Bayes 54.1 !
2 manualUp 56.5 !
3 which8 0.0 !

50%

Fig. 18. Two examples of pattern #2: While WHICH2 did not achieve the highest medians, it was still ranked #1 compared
to eight other methods. This figure is reported in the same format as Figure 9.

2nd quartile, median
data rank treatment median Q′ and 3rd quartile
mc2 1 manualUp 74.3 !

2 micro20 57.1 !
2 näive Bayes 55.9 !
3 j48 43.7 !
3 manualDown 42.8 !
4 jRip 28.5 !
5 which8 21.9 !
6 which4 5.6 !
6 which2 0.0 !

50%

Fig. 19. The only example of pattern #3: WHICH2 loses (badly) but MICRO20 still ranks high. This figure is reported in the
same format as Figure 9.

Also, measured in absolute terms, WHICH performs very well. In our discussion of Figure 14,

the best curve was presented as the upper bound in performance for any learner tackling

application1. WHICH’s performance rises close to this upper bound, rising to to 70.9 and

80% (median and 75% percentile range) of the best possible performance.

Several other results from Figure 16 are noteworthy.

• In a result consistent with our prior publications [9], our näive Bayes classifier out-performs

other standard data miners (j48 and jRip).

• In a result consistent with Koru et.al.’s logarithmic defect hypothesis, manualUp defeats

manualDown.
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• Also, in a result consistent with the limited information content hypothesis, micro20 has

the same rank as WHICH2 (i.e. their performance is statistically indistinguishable). Recall

that, under micro20-sampling, learning is performed using just 40 examples, evenly mixed,

of defective and non-defective modules.

• In Figure 16, standard data miners are defeated by a manual method (manualUp). The size

of the defeat is very large: median values of 61.1% to 27.6% from manualUp to j48. One

very sobering result in Figure 16 is that two widely used methods (j48 and jRip) are defeated

by manualDown; i.e. by a a manual inspection method that Koru et al. would argue is the

worst possible inspection policy. These results calls into question the numerous prior defect

prediction results, including several papers written by the authors [2]–[10].

B. Internal Validity

Figure 16 showed combined results from all of the data sets in Figure 7. From it, we concluded

that WHICH is preferred to other methods for applciationx.

Figures 17, 18, and 19 check the internal validity of this conclusion by looking at each data

set in isolation. The results divide into three patterns:

• In the eight data sets of pattern #1 (shown in Figure 17), WHICH2 has both the highest

median Q′ performance and is found to be in the top rank by the Mann-Whitney statistical

analysis.

• In the two data sets of pattern #2 (shown in Figure 18), WHICH2 does not score the highest

median performance, but still is found in the top-rank.

• In the one data set that shows pattern #3 (shown in Figure 19), WHICH2 is soundly defeated

by manual methods (manualUp). However, in this case, the WHICH variant micro20 falls

into the second rank

In summary, when looking at each data set in isolation, WHICH2 performs very well in 10
11 of

the data sets. Hence, we say that the general conclusion of the last section almost always holds

for specific data sets.

C. External Validity

We argue that the data sets used in this paper are far broader (and hence, more externally

valid) than seen in prior defect prediction papers. All the data sets explored by Lessmann et

al. [12] and our prior work [9] come from NASA aerospace applications. Here, we use that data,

plus three extra data sets from SOFTLAB, a Turkish company writing software controllers for
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dishwashers (ar3), washing machines (ar4) and refrigerators (ar5). The development practices

from these two organizations are very different:

• The SOFTLAB software was built in a profit- and revenue-driven commercial organization,

whereas NASA is a cost-driven government entity

• The SOFTLAB software was developed by very small teams (2-3 people) working in the

same physical location while the NASA software was built by much larger team spread

around the United States.

• The SOFTLAB development was carried out in an ad-hoc, informal way rather than the

formal, process oriented approach used at NASA.

Our general conclusion, that WHICH is preferred to other methods for applciationx, holds for
7
8 of the NASA data sets and 3

3 of the SOFTLAB sets. The fact that the same result holds for

such radically different organizations is a strong argument for the external validity of our results.

VIII. CONCLUSION

Since 2002 [27], we have been using standard data miners such as j48, jRip and näive Bayes

to learn defect predictors. The general pattern of those results was documented above:

• From Figure 6, we see Lessmann et al. [12] documenting an effect that we have also

observed [48]: our learners suffer from a ceiling effect where supposedly more sophisticated

learners do no better than simple ones.

• From Figure 12, we see that our prior work generated defect detectors from the Figure 7

data with a pd performance less than the effort. Arisholm & Briand [64] might dismiss

these results, arguing that since we are finding X% of the faulty modules after reading more

than X% of the code, then the cost of generating the defect predictor is not worth the effort.

These results are troubling, on two counts. Firstly, our prior results do not add value to a

budget-conscious test engineering team using the defect predictors to prioritize their inspection

process (a task we have called application1). Secondly, neither our own research [48] nor the

research of others [12] has resulted in methods that improve our prior results (at least, for the

purposes of extracting defect predictors from Figure 7 data).

The above negative results prompted the basic rethinking of the defect prediction problem

presented in this paper. Based on:

• the RandomReduction results of Figure 8;

• the StructuredReduction results of Figure 9;

• and the micro20 results shown in Figures 17 & 18 & 19
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We assert that the performance of our learners will not improve merely by passing more of the

same kinds of data to our learners. The RandomReduction and StructuredReduction experiments

offer support for a limited information content hypothesis in static code features. i.e. (i) simple

learning methods will uncover all that can be found and (ii) more sophisticated data mining

methods will yield no more information.

Accordingly, we explored the value of giving the learners different kinds of knowledge.

Standard learners use some intra-learning assessment criteria P to generate predictors. The

learned model is assessed by a post-learning assessment criteria Q. In all our prior work, P != Q.

Therefore, it seemed important to try a new kind of learner, called WHICH, where P ≈ Q.

The version of WHICH used in this study was deliberately designed to be unsophisticated.

For example, it has no over-fitting operator that prunes away superfluous parts of a model.

WHICH’s search for predictors is completely random, biased only by some P function. That is,

the performance of this study’s WHICH learner was solely determined by P . As such, it is an

ideal tool for assessing the value of learners where P ≈ Q.

Our experiments used P criteria that approximates the intent of application1’s Q criteria,

even though it does not implement it directly. Initially, we tried P = Q but, under cross-val, the

presence of a small number of very large modules (see Figure 15) resulted in wild variations

in the measured performance. In the discussion around Figure 13, it was observed that false

alarms lead to plateaus in an effort-vs-pd curves. That is, one way to increase the area under

a effort-vs-pd curve is to assign a heavy penalty against false alarms. In the above results, we

used the utility function shown in Equation 4 where pd:pf was weighted 1:1000.

The performance measure used in this study was area under an effort-vs-pd curve, expressed

as a ratio of the area under the same curve for a theoretical upper bound on any leaner tackling

application1 (i.e. the best curve of Figure 13). WHICH’s results were compared to manual

methods and standard learners using median performance measures plus statistical tests (Mann-

Whitney, 95%) to rank the performance of all learners/ manual methods. The results are highly

supportive of our hypothesis that learners that use P ≈ Q can out-perform other learners where

P != Q:

• In 7/11 data sets, WHICH scored the highest median & rank.

• In 2/11 data sets, WHICH scored the highest ranking.

• In the remaining data set, the standard WHICH algorithm (WHICH2) performed very badly

but the micro-sampling version of WHICH (micro20) scored the highest rank.
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Hence, we recommend the use of WHICH2 or the micro20 variant for learning defect predictors

for application1.

This recommendation may not hold beyond the context of application1. This is not necessarily

a flaw with this study. Rather, it our view that it is a mistake to assess a learner except in the

context of a specific business context. The case for this view has been made above but we add

one further point here. The business acceptance of our data mining technology will be greater

if we can offer the learners alongside results relating to some business-relevant application.

Finally, we find that the conclusion of Lessmann et al. (quoted in the introduction) is correct in

certain contexts. They advise that practitioners are free to choose from a broad set of candidate

models when building defect predictors. This is certainly true when defect detectors are assessed

via accuracy since, in that case, they all exhibit a ceiling effect. However, when they are assessed

by other criteria (e.g. maximizing effort-vs-pd) then some learners such as WHICH can break

through that ceiling. Overall, WHICH’s performance was very good and rose to within 70.9

and 80% (median and 75% percentile range) of the best possible performance. Measured on the

same scale, other learners such as j48, jRip, and näive Bayes, perform much worse.
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APPENDIX I

NÄIVE BAYES CLASSIFIERS

Näive Bayes classifiers offer a relationship between fragments of evidence Ei, a prior proba-

bility for a class P (H), and a posteriori probability P (H|E):

P (H|E) =
∏

i

P (Ei|H)
P (H)

P (E)
(5)
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For numeric features, a features mean µ and standard deviation σ are used in a Gaussian

probability function [47]:

f(x) = 1/(
√

2πσ)e−
(x−µ)2

2σ2

Simple näive Bayes classifiers are called “naive” since they assume independence of each

feature. Potentially, this is a significant problem for data sets where the static code measures are

highly correlated (e.g. the number of symbols in a module increases linearly with the module’s

lines of code). However, Domingos and Pazzini have shown theoretically that the independence

assumption is a problem in a vanishingly small percent of cases [66]. This result explains (a) the

repeated empirical result that, on average, seemingly näive Bayes classifiers perform as well

as other seemingly more sophisticated schemes (e.g. see Table 1 in [66]); and (b) our prior

experiments where näive Bayes did not perform worse than other learners that continually re-

sample the data for dependent instances (e.g. decision-tree learners that recurse on each “split”

of the data [45]).

APPENDIX II

THE J48 DECISION TREE LEARNER

j48 [47] is a JAVA port of Quinlan’s decision tree learner C4.5, release 8 [45]. j48 is a iterative

dichotomization algorithm that seek the best attribute value splitter that most simplifies the data

that falls into the different splits. Each such splitter becomes a root of a tree. Sub-trees are

generated by calling iterative dichotomization recursively on each of the splits. j48 is defined for

discrete class classification and uses an information-theoretic measure to describe the diversity

of classes within a data set. A leaf generated by j48 stores the most frequency class seen during

training. During test, an example falls into one of the branches in the decision tree and is assigned

the class from he leaf of that branch. J48 tends to produce big “bushy” trees so the algorithm

includes a pruning step. Sub-trees are eliminated if their removal does not greatly change the

error rate of the tree.

APPENDIX III

THE RIPPER RULE LEARNER

RIPPER [53] is a rule-covering algorithm; i.e. one rule is learned at each pass for the majority

class. All the examples that satisfy the rule condition are marked as covered and are removed

from the data set. The algorithm then recurses on the remaining data.
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RIPPER takes a rather unique stance to rule generation and has operators for pruning, de-

scription length and rule-set optimization For a full description of these techniques, see [67]. In

summary, after building a rule, RIPPER performs a back-select to see what parts of a condition

can be pruned, without degrading the performance of the rule. Similarly, after building a set of

rules, RIPPER tries pruning away some of the rules. The learned rules are built while minimizing

their description length; the size of the learned rules, as well as a measure of the rule errors.

Finally, after building rules, RIPPER tries replacing straw-man alternatives (i.e. rules grown very

quickly by some näive method).

APPENDIX IV

THE WHICH RULE LEARNER

WHICH inputs a set of training examples and a evaluation criteria P ≈ Q and outputs a

single rule that is best for maximizing P .

Following the recommendations of [9], all numeric data is transformed using x = log(max(0.00001, x))8

then divided into N ranges using equal-width discretization. Given a value X from a column of

data with minimum and maximum values min, max (respectively), then

RANGE(X) = floor

(
X −min

(max−min)/N)

)
+ 1 (6)

This discretization policy divides the values from a continuous variable into N ranges. In this

study, we explored several variants of WHICH using different number of ranges including

WHICH2, WHICH4, and WHICH8 that use N=2,4,8 ranges (respectively).

Internally, WHICH maintains a stack of conditions, sorted by the evaluation criteria P . For

example, if Ppd is the probability of detection (see Equation 1 in Figure 4), then the condition

LOC == 0 has the score Ppd = 0 (since all modules have at least one line of code). Hence,

according to Ppd, this condition will be sorted to the bottom of the stack.

WHICH initializes the stack by scoring all the discretized ranges from Equation 6 generated

from the discretization. As shown in Figure 20, all the raw scores are accumulated and normalized

using

normalized(i) =

∑i
1 score(i)

sum of all scores

After initialization, WHICH enters a loop:

8Many static code attributes have an exponential distribution with a small number of very large outliers. This “log transform”

flattens the distribution and makes the learning simpler. For more details, see [9].
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i raw score cumulative normalized

1 100 100 100 / 220 = 0.45
2 100 200 200 / 220 = 0.91
3 10 210 210 / 220 = 0.95
4 3 213 213 / 220 = 0.97
5 3 216 216 / 220 = 0.99
6 2 218 218 / 220 = 0.99
7 2 220 220 / 220 = 1.00

Fig. 20. Example of scores on the WHICH stack.

1) Old = score of the top of the stack

2) Loop number of times, repeat:

2a : Pick two items from the stack, favoring those with higher score.

2b : Combine them and score the combination using E

2c : Sort the new combination into the stack

3) New = score of top of stack

4) If New > Old goto 1

5) Else return top of stack

Note that, initially, all the stack items are single conditionals. As the loop continues, singletons

may be combined into doubles which might then combine into triples, etc.

We set the Loop variable using our engineering judgment. Figure 21 shows typical results

from WHICH (running over sample UCI data sets [44]). The score of the top-of-stack condition

usually stabilizes in a remarkably short time (after less than a dozen “picks”; i.e. applications

of step 2, described above). Occasionally, modest improvement is seen after 100 picks (see plot

marked with an “A”). Hence, to be cautious, we set Loop to 200.

When selecting items for combination, WHICH (a) generates a random number 0 ≤ r ≤ 1;

(b) runs down the stack from top to bottom; (c) returns the first condition for which the

normalized cumulative score is less than or equal to r. On average, this approach returns

conditions nearer top-of-stack (i.e. those with higher score).

Note that, when combining conditions, ranges from different features are joined using a

conjunction and ranges from the same feature are joined with a disjunction. For example, adding

a = 1 to “a = 2 ∧ b = 3” results in “(a = 1 ∨ a = 2) ∧ b = 3”.

Also, when adding new combinations to the stack, if a counter holds the total score of all

conditions added to the stack, then the stack needs only hold the sorted raw score column. All
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Fig. 21. Top-of-stack scores of the WHICH stack seen after multiple “picks” (selection and scoring of two conditions picked

at random, then combined) for seven data sets from the UCI data mining repository [44]. Usually, top-of-stack stabilizes after

just a dozen pick. However, occasionally, modest improvements are seen after a few hundred “picks” (see the plot marked with

an “A”).

of the other columns can be computed-on-the-fly during by the condition selection algorithm

described in the last point. This avoids tedious updates of cumulative scores over the whole

stack.

WHICH is fully described elsewhere [13]. For the reader conversant with AI literature, we

remark:

• WHICH is a stochastic variant of beam search where the maximum height of the stack is

the size of the beam. A standard beam search sweeps out over a tree of possibilities and

performs cautious additions to each leaf (at most, only graft one more test to the current

branch). WHICH’s original design was a non-cautious beam search that copied entire sub-

trees from other branches in the search, then grafted them onto the current branch. On

reflection, we realized that the the above stack structure achieves the same goal, while

being much simpler to implement.

• The early stabilization of the top-of-stack is consistent with the back door variable effect

discussed in the constraint satisfaction literature [68]; i.e. many domains have a small

number of variables that control everything else. If a domain has such “back doors” then

(a) all solutions must use them; (b) all changes to the output variables will be associated

with different ranges for the back doors; (c) a stochastic search like WHICH will suffice

to find them. Elsewhere, we offer extensive discussions on the implications of back doors

on decision making in software engineering [69], [70].

WHICH would be a fruitful workbench for further experimentation. Our current results leaves
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many unexplored possibilities:

• It is possible to restrict the size of the stack to some maximum depth (and new combinations

that score less than bottom-of-stack are discarded). For the study shown here, we used an

unrestricted stack size.

• Currently, WHICH sorts new items into the stack using a linear time search from the top-of-

stack. This is simple to implement via a linked list structure but a faster alternative would

be a binary-search over skip lists [71].

• Other rule learners employ a greedy back-select to prune conditions. To implement such a

search, check to see if removing any part of the combined condition improves the score. If

not, terminate the back select. Else, remove that part and recurse on the shorter condition.

Such a back-select is coded in the current version of WHICH, but the above results were

obtained with back-select disabled.

• Currently our default value for Loop is 200. This may be an overly cautious setting. Loop

might be safely initialized to, say, 20 and only increased if no dramatic improvement is

seen in the first loop. Our initial experiments suggest that, for most domains, this would

yield a ten-fold speed increase.

We encourage further experimentation with WHICH. The current release is released under the

GPL3.0 license and can be downloaded from http://unbox.org/wisp/tags/which.
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